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Using the variational properties of epi-convergence together with

suitable results on the measurability of multifunctions and integrands, we
prove a strong law of large numbers for sequences of integrands from

Žwhich we deduce a general theorem of almost sure convergence strong
.consistency for the maximum likelihood estimator.

1. Introduction. In mathematical statistics the maximum likelihood
principle is one of the most popular in order to construct estimators. On the
other hand, an important property of estimators is the strong consistency,
that is, the almost sure convergence toward the true value of the unknown

w xparameter, as the sample size tends to `. Since Wald 33 , who first gave a
rigorous and general proof of the consistency for the maximum likelihood

Ž .estimator MLE , several other proofs of this fact have appeared, under more
or less restrictive hypotheses; for example, a more recent proof can be found

w x Ž .in the book by Ibragimov and Has’minski 21 Theorem 4.3 and Remark 4.1 .
The main objective of this paper is to present an approach, based on

epi-convergence, for proving the almost sure convergence of the MLE. This is
done under weaker hypotheses than those usually assumed. Indeed, in the
present paper, the space V of parameters is only assumed to be a Suslin
metric space, the space E of observations is an arbitrary measurable space

Žand the observations are pairwise independent instead of mutually indepen-
.dent identically distributed E-valued random variables. Further, the func-

tion f from the product space E = V into the positive reals, which defines the
family of densities, is not assumed to be continuous with respect to the
parameter v. It only satisfies a sup-compactness assumption with respect to
v. This hypothesis ensures the existence of MLE’s, but we also consider the
convergence of approximate MLE’s which are more realistic in concrete
situations. Our method, using epi-convergence, can also apply to convergence
results concerning other kinds of estimators whose construction involves an

Ž .optimization procedure this is typically the case of M-estimators .
The principle of our approach consists of regarding the consistency of the

MLE as the approximation of a deterministic optimization problem whose
solution is the true value of the unknown parameter, by a suitable sequence
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of stochastic optimization problems associated with the samples. This allows
us to apply a method for approximating optimization problems, which ap-

w x w xpeared in the 1960s in the papers of Wijsman 34 and Mosco 26 . It is based
on a notion of convergence for sequences of functions often called ‘‘epi-conver-
gence’’ which means the Painleve]Kuratowski convergence of the epigraphs´
Ž .upper graphs of these functions, viewed as subsets of the product space
V = R. Our proof of the strong consistency of the MLE precisely relies upon
an epi-convergence result for the averaged sum of integrands which can be

Žviewed as a parametrized version of the strong law of large numbers Theo-
. Ž w x.rem 5.1 . This type of result is also useful in stochastic optimization see 23 ,

Ž w x.in the calculus of variations see 10 and in certain problems of mechanics
Ž w x.involving nonhomogeneous materials see 9 . Moreover, let us mention that

Žthis method, for studying the consistency of estimators and also the rate of
. w xconvergence , has already been used by Dupacova and Wets 12 under more

restrictive hypotheses.
ŽOn the other hand, the measurability properties of functions single-valued

.as well as multivalued play an important part in our work, since they are
needed to apply the strong law of large numbers to suitable sequences of
functions, and to prove the existence of exact and approximate MLE’s. This is

w x w xwhy we also provide briefly the needed results, following mainly 6 and 8 .
The paper is organized as follows: in Section 2 we present our main result

which is Theorem 2.1. In Section 3 we provide a short description of epi-con-
vergence and we present convenient expressions of the lower and upper
epi-limits. Section 4 is devoted to the measurability of multifunctions and
integrands. In Section 5 we prove a strong law of large numbers for inte-
grands, which involves epi-convergence and is one of the main arguments in
the proof of Theorem 2.1. Finally, in Section 6, after having shown how our
method uses epi-convergence, the proof of the main result is provided as well
as some comments and examples.

Ž .2. Main result. Let V, AA, P be a probability space, X a random vari-
Ž .able defined on V with values in a measurable space E, EE and m a positive

Ž . Ž .s-finite measure defined on E, EE . Further, let V, d be a Suslin metric
Ž .space whose Borel s-field is denoted by BB V ; without restricting the gener-

ality we can assume d F 1 on V. Also let f be a function from E = V into
R , the set of positive reals, which satisfies the following hypotheses:q

Ž . Ž .a f is EE m BB V -measurable.
Ž . Ž .b For every u g V, f ?, u is a probability density function relative to m.
Ž . Ž .c For m-almost every x g E, f x, ? is sup-compact in the following

� Ž . 4sense: for each strictly positive real r, the subset u g V : f x, u G r is
� Ž . 4compact; but the subset u g V : f x, u s 0 is not assumed to be compact.

Ž . Ž . Ž . � Ž . Ž .4d u / u implies f ?, u / f ?, u , that is, m x g E : f x, u / f x, u1 2 1 2 1 2
) 0.

Ž . Ž .e For some u g V, f ?, u is ‘‘the’’ density function of the random variable
X with respect to m.
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Ž . Ž .f Let X be a sequence of E-valued random variables defined on V,n nG1
being pairwise independent and having the same distribution as X; for any

Ž .integer n G 1, let x , . . . , x be an n-tuple of possible values of the sample1 n
Ž .X , . . . , X .1 n

In mathematical statistics, V is called the set of elementary outcomes, AA
Ž .is the s-field of events and P is the probability measure. Further, E, EE is

the space of observations and V the space of parameters. The random
variable X represents the outcome of any observation; it is an E-valued
random variable whose density relative to the s-finite dominating measure m

� Ž . 4 Ž .is assumed to be a member of the family f ?, u : u g V . From condition d ,
Ž .it is clear that u is unique; it is the unknown or true value of the

parameter. The problem of statistical estimation consists of obtaining an
approximate value of u after having observed values x , . . . , x of a random1 n
sample X , . . . , X of X, where n, the sample size, is large enough. The1 n
approximate value of u is provided by a suitable function of X , . . . , X which1 n
is called an estimator of the parameter u.

We begin with some definitions and notation. First, define the function b
on E by

2.1 b x [ sup f x , u : u g V .� 4Ž . Ž . Ž .

Ž . nThe likelihood function L is defined, for any u g V and x , . . . , x g E , byn 1 n

n

2.2 L x , . . . , x , u [ f x , u .Ž . Ž . Ž .Łn 1 n i
is1

Ž n n .For each n G 1, we consider the n-fold product measure space E , EE , mn
Ž . nassociated with the measure space E, EE, m . So, EE is the product s-field on

n Ž n n.E and m the n-fold product measure on the measurable space E , EE . Wen
also define the function B byn

2.3 B x , . . . , x [ sup L x , . . . , x , u : u g V .� 4Ž . Ž . Ž .n 1 n n 1 n

Our main result is as follows.

Ž .THEOREM 2.1. Let V, AA, P be a probability space, X a random variable
Ž .defined on V with values in a measurable space E, EE and m a positive

Ž .s-finite measure defined on E, EE . Further, let V be a Suslin metrizable space
Ž . Ž .and f a function from E = V into R which satisfies hypotheses a to eq

above. Also assume the integrability condition

b xŽ .
H f x , u log m dx - q`,Ž . Ž . Ž .H ž /f x , uŽ .E

Ž . Ž . Ž .where b ? is defined by 2.1 . Then for every decreasing sequence a ofn nG1
nonnegative numbers verifying lim a s 0, the two following statements holdn n
true:



STRONG CONVERGENCE OF THE MAXIMUM LIKELIHOOD ESTIMATOR 1301

Ž . Ž . w Ž . xA There exists a sequence t also denoted by t of a -n, a nG1 n nG1 nn

approximate MLE’s, namely, a sequence of maps from En into V satisfying
the two following properties:

Ž .j for every n G 1, t is EE -measurable;n n
Ž . Ž . n Ž Ž ..jj for every x , . . . , x g E , L x , . . . , x , t x , . . . , x G1 n n 1 n n 1 n
Ž .B x , . . . , x y a .n 1 n n

Ž . Ž .B For every sequence t as above, one has for almost all v g V,n

lim t X v , . . . , X v s u.Ž . Ž .Ž .n 1 n
n

Ž .REMARK 2.2. i In case the X ’s are not mutually independent, it wouldn
Ž .be better to say that t is an M-estimator relative to 2.2 rather than ann

Ž . ŽMLE. ii In the foregoing result it can be observed that the exact or
. Ž .approximate MLE, whose existence is provided by statement A , need not be

Ž .unique and that statement B is valid for any sequence of MLE’s. Moreover,
Ž .condition c yields the existence of exact MLE’s as well.

w xREMARK 2.3. In 25 , Le Cam presented miscellaneous examples where
estimators constructed by the maximum likelihood method misbehave. In

w xparticular, he studied one, adapted from Bahadur 4 , where the MLE is not
consistent. In view of Theorem 2.1, it is interesting to note that in this

Žw x . Ž .example 25 , pages 157]158 the integrability condition H does not hold.
Ž .However, we shall see in Remark 6.5 that condition H is not necessary for

the MLE to be consistent.

REMARK 2.4. Moreover, we shall see that one of the main arguments in
the proof of Theorem 2.1 is related to the possibility of approximating a

Žnormal integrand i.e., a measurable function defined on E = V, lower semi-
.continuous with respect to the second variable , by an increasing sequence of

Ž . w xLipschitz integrands Proposition 4.4 . In 24 , Lanery proved a result compa-´
rable to Theorem 2.1 for exact MLE’s. However, his approach is based on a
different approximation scheme of integrands and does not use epi-conver-

w xgence. On the other hand, see Proposition 3.9 in 12 for a related result, but
in a much more special setting.

REMARK 2.5. Let us also mention the important monograph of
w x ŽHoffmann-Jørgensen 20 I was not aware of this reference when I wrote the

.first version of the present paper in which the general problem of studying
the accumulation and limit points of ‘‘sequences of approximating maximums’’
Ž .see Remark 6.4 for the definition is addressed. This includes the study of the

w xconsistency of the MLE, but in 20 ‘‘consistency’’ is used in a different
meaning. For example, the above accumulation points are allowed to be
outside the given parameter space V. Although the method is different from

Ž .ours, one can observe that epi-convergence in fact hypo-convergence is
implicitly used.
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3. Epi-convergence of sequences of functions defined on a metric
space. In this section we present some needed facts about epi-convergence,

w x w x Ž .but we refer the reader to the monographs 2 and 9 . Let V, d be a metric
space and f a function from V into R, the set of extended reals. f is said to be
proper if it is not identically q` and if it does not take the value y`. The

Ž .epigraph of f , denoted epi f , is defined by

epi f [ u , l g V = R : f u F l .� 4Ž . Ž . Ž .

The epigraph is also called the ‘‘upper graph.’’ A function f is lower semicon-
Ž . Ž .tinuous lsc if and only if epi f is a closed subset of V = R. Now, let us

Ž . w Ž .recall the definition of epi-convergence. In the present section f or fn nG1 n
xfor short denotes a sequence of functions from V into R. For any u g V, the

lsc functions li f and ls f are defined bye n e n

3.1 li f u [ sup lim inf inf f vŽ . Ž . Ž .e n n
nª` Ž .vgB u , 1rkkG1

and

3.2 ls f u [ sup lim sup inf f v ,Ž . Ž . Ž .e n n
Ž .vgB u , 1rknª`kG1

Ž .where B u, 1rk denotes the open ball of radius 1rk centered at u. The
Ž . Ž .function li f u is the epi-limit inferior and ls f u is the epi-limit superiore n e n

Ž . Ž .of the sequence f . The sequence f is said to be epi-convergent at u, if then n
following equality holds true:

3.3 li f u s ls f u .Ž . Ž . Ž .e n e n

Ž . Ž .If 3.3 is satisfied for any u g V, we simply say that f epi-converges. Inn
Ž .this case, the common value of 3.3 defines an lsc function which is called the

Ž .epi-limit of the sequence f and will be denoted by lim f . Now we recalln e n
Ž w x.the sequential characterization of epi-convergence Proposition 1.14 in 2 .

Ž .PROPOSITION 3.1. A sequence of functions f from V into the extendedn
reals epi-converges to a function f at v g V, if and only if the two following
properties hold:

Ž . Ž . Ž .a For each sequence v converging to v in V, one has f v Fn
Ž .lim inf f v .n n n

Ž . Ž .b There exists a sequence v in V converging to v and such thatn
Ž . Ž .f v G lim sup f v .n n n

The term ‘‘epi-convergence’’ comes from the fact that f s lim f if ande n
Ž Ž .. Ž .only if the sequence of subsets epi f in V = R converges to epi f in then

sense of Painleve and Kuratowski.´
Now, let us recall the variational properties of epi-convergence, which play

a crucial role in the present paper. For this purpose, some notation is useful.
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For any extended real-valued function f defined on V, we define the set of
Ž .exact minimizers of f on V by setting

Argmin f [ u g V : f u s inf f v .Ž . Ž . Ž .½ 5
vgV

More generally, for a function f such that the infimum on V is different from
y`, we define, for any a G 0, the set of a-approximate minimizers by

a-Argmin f [ u g V : f u F inf f v q a .Ž . Ž . Ž .½ 5
vgV

ŽWhenever a ) 0, the set a-approximate minimizers is nonempty unlike the
.set of exact minimizers which is obtained for a s 0 . The variational proper-

Ž w xties of epi-convergence that we need are stated in the following result see 2 ,
.Corollary 2.10, page 131 .

Ž .PROPOSITION 3.2. Let a be a sequence of positive reals converging to 0.n
Ž .Assume that f is epi-convergent to f , that is, f s lim f . Then, the follow-n e n

ing inequality holds:

3.4 inf f v G lim sup inf f v .Ž . Ž . Ž .ž /n
vgV vgVnª`

Further, for any n G 1, let v be an a -approximate minimizer of f . If then n n
Ž .sequence v admits a subsequence converging to some u g V, then u belongsn
Ž . Ž .to Argmin f and 3.4 becomes

3.5 min f v s lim sup inf f v .Ž . Ž . Ž .ž /n
vgV vgVnª`

Now, let us recall the following procedure of approximation for a function
which goes back to Hausdorff. For any u g V and any integer k G 1, we set

f k u s inf f v q k d u , v : v g V .� 4Ž . Ž . Ž .
The function f k is the Lipschitz approximation of f , of order k. Its main
properties are listed in the following proposition.

PROPOSITION 3.3. Let f be a lower semicontinuous function from V into R,
not identically q` and satisfying the following condition: there exist a ) 0,

Ž . Ž .b g R and u g V such that, for each u g V, f u q a d u, u q b G 0.0 0
Then, the following properties hold:

Ž . kŽ . Ž .i for any k ) a and u g V, one has f u q a d u, u q b G 0;0
Ž . kii for every integer k G 1, f is finite valued and Lipschitzian with

Lipschitz constant k;
Ž . Ž kŽ .. Ž .iii for any u g V, the sequence f u is increasing and f u s

kŽ .sup f u .k

The next proposition, which will serve in the proof of Theorem 5.1, provides
expressions of li f and ls f in terms of the Lipschitz approximations ofe n e n
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functions f . Although this type of result is not entirely new, it extendsn
several previous ones, and the method of proof presented here can be general-

Ž w x.ized to the case of functions with values in an ordered vector space see 22 .
Similar formulas for the Moreau]Yosida approximation were obtained by

w x Ž w x.Attouch 2 , Theorem 2.65, page 232 see also 27 .

PROPOSITION 3.4. Assume the following hypothesis:

there exist a ) 0, b g R and u g V such that , for any03.6Ž . integer n G 1 and for any u g V , f u q a d u , u q b G 0.Ž . Ž .n 0

Then, for any u g V, the two following equalities hold:

3.7 li f u s sup lim inf f k u ,Ž . Ž . Ž .e n n
nª`kG1

3.8 ls f u s sup lim sup f k u .Ž . Ž . Ž .e n n
nª`kG1

Ž .PROOF. Let us prove 3.7 . Fix u g V. First, we shall show that the
left-hand side is greater than or equal to the right-hand side. Using the
definitions of the epi-limit inferior and the Lipschitz approximation, we easily
obtain

k kli f u G sup lim inf f u y krp s lim inf f u .Ž . Ž . Ž .e n n nž /
nª` nª`pG1

This being true for any k G 1, we obtain the desired inequality. In order to
show the reverse inequality, set, for any u g V,

3.9 c u [ sup lim inf f k u .Ž . Ž . Ž .n
nª`kG1

Ž . Ž . Ž .We ought to prove c u G li f u . If c u equals q`, there is nothing toe n
Ž .prove; otherwise, fix an integer p G 1 and a g 0, 1 . For every n, k G 1,

consider the two following conditions:

3.10 f v q k d u , v G f k u q a ; v f B u , 1rpŽ . Ž . Ž . Ž . Ž .n n

and

3.11 f k u s inf f v q k d u , v : v g B u , 1rp .� 4Ž . Ž . Ž . Ž . Ž .n n

Ž . Ž . Ž .Clearly, 3.10 implies 3.11 . On the other hand, looking at 3.9 , we see that,
for any k G 1, one can find a strictly increasing sequence of integers
Ž Ž ..n k, m verifyingmG1

3.12 c u q a G f k u .Ž . Ž . Ž .nŽk , m.

Ž . Ž .Our goal is to obtain condition 3.10 with n s n k, m , for any m G 1 and for
Ž .any k G k , where k will be chosen below. So, for every v f B u, 1rp we0 0

want the following inequality to hold:

3.13 f v q k d u , v G f k u q a ,Ž . Ž . Ž . Ž .nŽk , m. nŽk , m.
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Ž .which, in view of 3.12 , is a consequence of

3.14 f v q k d u , v G c u q 2.Ž . Ž . Ž . Ž .nŽk , m.

Ž . Ž .Now, using condition 3.6 , it is readily seen that 3.14 is implied by the
following choice of k:

k G k [ integer part of p c u q 2 q a d u , u q b q a q 1 .� 4Ž . Ž .Ž .0 0

Ž .Thus, we can deduce that, if k G k , inequality 3.13 holds for any m G 10
Ž .and v f B u, 1rp which, as already noticed, implies

3.15 f k u s f v q k d u , v : v g B u , 1rp .Ž . Ž . Ž . Ž . Ž .� 4nŽk , m. nŽk , m.

Ž .Consequently, using 3.12 , we see that, for any k G k , the following rela-0
tionships are valid:

kc u q a G lim inf f u s lim inf inf f v q k d u , v ,Ž . Ž . Ž . Ž .nŽk , m. nŽk , m.
mª` mª` Ž .vgB u , 1rp

whence

c u q a G lim inf inf f v .Ž . Ž .n
nª` Ž .vgB u , 1rp

Ž . Ž .This last inequality, being true for any p G 1 and a g 0, 1 , yields c u G
Ž .li f u , which is the desired inequality and, thus, completes the proof ofe n

Ž . Ž .3.7 . The proof of 3.8 is similar. I

Ž .REMARK 3.5. It can be observed that condition 3.6 is of a global nature.
Ž .An inspection of the above proof shows that 3.6 can be replaced by the

following local condition: for any u g V there exist a neighborhood W of u
Ž .and b ) 0 such that, for every n G 1 and v g W, one has f v G b.n

REMARK 3.6. Epi-convergence is a one-sided notion which has been de-
vised for analyzing the behavior of sequences of minimization problems. The
corresponding symmetric notion for maximization problems is that of ‘‘hypo-
convergence’’ defined by considering the Painleve]Kuratowski convergence of´

Ž .the hypographs lower graphs of functions.

REMARK 3.7. For a detailed treatment of epi-convergence, set convergence
w x w x w x w x w xand miscellaneous applications, we refer the reader to 2 , 3 , 5 , 9 , 10 ,

w x w x w x w x w x w x w x12 , 14 , 15 , 23 , 26 , 29 and 34 .

4. Some facts on the measurability of multifunctions and inte-
grands. In this section we present several measurability properties of

Ž .functions or integrands defined on a product space S = V. These properties
concern the measurability of several operations to be used later, infimum,
argmin multifunction, sum and Lipschitz approximation. They will also serve
to prove the existence of exact and approximate MLE’s. Most of the results of

Ž w x w x w x w x w x.this section are known see, e.g., 6 , 8 , 17 , 18 and 28 .
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Ž . Ž .Let S, SS be a measurable space and V, d a separable metric space
Ž .whose Borel s-field is denoted by BB V . A map G defined on S which assigns

Ž .to each s g S the set G s in V is called a multifunction with values in V.
Ž . Ž .The graph Gr G and the domain dom G of G are, respectively, defined by

Gr G [ s, u g S = Vru g G s and dom G [ s g SrG s / B .� 4 � 4Ž . Ž . Ž . Ž . Ž .
ˆ ˆConsider the s-field SS on S defined by SS s F SS , where l ranges over thel l

Ž .set of all positive s-finite measures on S, SS and where SS denotes thel
ˆ Žl-completion of SS . SS is the s-field of universally measurable or absolutely

.measurable subsets of S, relative to SS .
A selector of G is a function g from dom G into V such that, for any

Ž . Ž . Ž .s g dom G , g s g G s . Concerning the existence of measurable selectors,
Ž w x.we recall the following fact Theorem 3.22 in 8 : if V is a Suslin space, then

Ž .any multifunction G whose graph is SS m BB V -measurable admits at least
ˆ Ž .one selector which is measurable relative to the s-fields SS and BB V .

DEFINITION 4.1. Let h be an extended real-valued function defined on
S = V and c an extended real-valued function on S. Define the infimum

Ž .function m ? and the level set multifunction G associated with h and c , by
setting, for every s g S.

m s [ inf h s, v : v g V and G s [ s g S : h s, v F c s .� 4 � 4Ž . Ž . Ž . Ž . Ž .
Ž . Ž . Ž .In the special case where c ? s m ? , the multifunction G is called the exact

Ž .Argmin multifunction of h. Further, assume that m s ) y` and consider,
Ž . Ž .for any positive real a , the function c defined on S by c s [ m s q a . For

such a function c , the multifunction G defined above is the approximate
Argmin multifunction of order a .

Now, we provide a result concerning the measurability of the infimum
function and the level set multifunction of a function defined on S = V. It is a

w xslight extension of Theorem 2 of 6 , page 908.

Ž .PROPOSITION 4.2. Let V be a Suslin space and h an SS m BB V -measurable
function defined on S = V. Then:

ˆŽ . Ž .a The infimum function m ? is SS-measurable.
Ž .b For any real-valued SS-measurable function c , the graph of the level set

ˆ Ž .multifunction G, associated with h and c , is SS m BB V -measurable.
ˆŽ . Ž .c The exact and approximate Argmin multifunctions of h have SS m BB V -

ˆmeasurable graphs. Consequently, each of them admits at least one SS-mea-
surable selector.

Ž .PROOF. To prove a , it suffices to observe that, for any a g R, the
following equality holds true:

s g S : m s - a s proj s, v g S = V : f s, v - a� 4 � 4Ž . Ž . Ž .Ž .S

Žand to invoke the measurable projection theorem see, e.g., Theorem 3.23 in
w x.8 .



STRONG CONVERGENCE OF THE MAXIMUM LIKELIHOOD ESTIMATOR 1307

Ž . Ž . Ž . Ž . Ž .As for b , since the function s, v ª h s, v y c s is SS m BB V -
Ž . Ž .measurable, Gr G is a member of this product s-field. Statement c follows

easily. I

REMARK 4.3. The version of the measurable projection theorem invoked in
w xthe above proof is due to Sainte-Beuve 30 and extends previous results of

Aumann and Von Neumann. On the other hand, Brown and Purves also
Ž w x .proved a variant of Proposition 4.2 Corollary 1 in 6 , page 904 . Their proof

Žw x w xis based on another projection theorem due to Arsenin and Novikov 1 , 11
w x.and 32 . This second projection theorem states that if B is a nonempty

Ž .member of the product s-field SS m BB V and satisfies the condition: ‘‘for any
Ž . � Ž . 4s g S, the set B s [ v g Vr s, v g B is the countable union of compact

Ž .subsets of V,’’ then proj B is a member of SS . Further, this theorem impliesS
Ž .the existence of an SS-measurable selector for multifunction B ? . Clearly, this

could provide an alternate setting for the measurability issues of the present
w x w xpaper. See 18 and 31 for more recent developments in this direction and

w x16 for another variant of Proposition 4.2. The following result concerns the
measurability of the Lipschitz approximation.

Ž .PROPOSITION 4.4. Let V be a metric Suslin space, h an SS m BB V -
measurable function defined on S = V, u g V and k G 1. In addition, as-0

Ž .sume that there exists a positive constant a and a function a ? such that for
Ž . Ž . Ž . Ž .every s, v g S = V, one has h s, v q a d v, u q a s G 0. Then, the Lip-0

k ˆ Ž .schitz approximation of order k of h, denoted by h , is SS m BB V -measurable.

Ž . Ž . Ž .PROOF. For every u g V the function s, v ª h s, v q k d u, v is SS m
Ž . Ž .BB V -measurable. Hence, using Proposition 4.2 a , we can see that

s ª hk s, u [ inf h s, v q k d u , v : v g V� 4Ž . Ž . Ž .

ˆis an SS-measurable function. Thus, it suffices to show that, for any s g S,
kŽ . � Ž .h s, ? is continuous. For this purpose define S s s g S : h s, ? is identi-0

4 kŽ .cally q` . Clearly, on S the function h s, ? is equal to the constant q`,0
kŽ .whence it is continuous, whereas for every s g S R S the function h s, ? is0

finite valued and Lipschitzian with Lipschitz constant k. I

Ž .5. A strong law of large numbers for integrands. Let V, AA, P be a
Ž . Ž .probability space, E, EE a measurable space, V, d a metrizable Suslin space

and g a normal integrand defined on the product space E = V, that is, an
Ž .EE m BB V -measurable function which is lsc with respect to the second vari-

able. Also consider an E-valued random variable X defined on V. In the proof
Ž w x.of the main result of the section, we shall use Etemadi’s SLLN see 13 . It

extends the Kolmogorov SLLN in that the real random variables are only
supposed to be pairwise independent, instead of mutually independent. For
positive random variables the SLLN holds even if the expectation is equal
to q`.
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Ž .So, let X be a sequence of E-valued random variables defined on V,n nG1
pairwise independent and having the same distribution as X. The following

w xtheorem, already contained in 16 , will be the main argument in the proof of
Ž .the almost sure convergence of the MLE Section 6 . It also provides an SLLN

for integrands which may serve in other situations.

THEOREM 5.1. Let V be a Suslin metric space and g a normal integrand on
E = V with values in R . For any n G 1, define h on V = V byq n

n1
h v , u [ g X v , uŽ . Ž .Ž .Ýn in is1

Ž . Ž .and also assume that the function f ? [ E g X, ? is not identically q` on
V. Then, there exists a P-negligible subset N of V such that, for every u g V
and v g V R N, one has

5.1 E g X , u s lim h v , u ,Ž . Ž . Ž .e n
nª`

where E stands for the expectation of a random variable.

Ž .PROOF. In order to show 5.1 , it suffices to prove the two following in-
equalities:

5.2 li h v , u G E g X , u ; v g V R N , ; u g V ,Ž . Ž . Ž .e n 1

5.3 ls h v , u F E g X , u ; v g V R N , ; u g V ,Ž . Ž . Ž .e n 2

where N and N are some negligible subsets of V. First, recall that, for any1 2
v g V and for any fixed k G 1, the Lipschitz approximation, of order k, of

Ž .h ?, v is defined byn

hk v , u [ inf h v , v q k d u , v : v g V ; u g V .� 4Ž . Ž . Ž .n n

Now, using the super-additivity of the infimum operation, we easily obtain
n1

k kh v , u G g X v , u .Ž . Ž .Ž .Ýn in is1

k k ˆ Ž .An appeal to Proposition 4.4 shows that g and h are AA m BB V -measurable.n
Consequently, for any u g V and k G 1, we can apply Etemadi’s SLLN to the

Ž kŽ ..sequence g X , u . This proves the existence of a negligible subsetn nG1
Ž . Ž .N u, k such that, for any v g V R N u, k ,1 1

5.4 lim inf hk v , u G E g k X , uŽ . Ž . Ž .h
n

Ž .Set N [ D D N u, k , where D is a dense countable subset of V.1 ug D k G1 1
Ž .Inequality 5.4 is valid for v g V R N , k G 1 and u g D; moreover, it1

Ž .remains valid for any u g V, because each side of 5.4 defines a Lipschitzian
function of u, with Lipschitz constant k. Then, taking the supremum, with

Ž . Ž .respect to k, in both sides of 5.4 and using formula 3.7 together with the
Ž .monotone convergence theorem, we obtain 5.2 .
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Ž . kŽ .To prove 5.3 , it is useful to put, for any k ) 1 and u g V, f u [
� Ž . Ž . 4inf f v q k d u, v rv g V . First, observe that, due to the properness of f,

f k is finite on V. On the other hand, an appeal to Fatou’s lemma shows that
f is lsc on V. Further, for any u g D, p G 1 and k G 1, one can find

X XŽ . Ž X. Ž X . kŽ .v s v u, p, k g V such that f v q k d u, v F f u q 1rp. Hence, for
each u g D and k G 1, the following equality holds true:

5.5 f k u s inf f vX u , p , k q k d u , vX u , p , k : p G 1 .� 4Ž . Ž . Ž . Ž .Ž . Ž .
Further, applying Etemadi’s strong law of large numbers to the sequence
� Ž XŽ ..4g X , v u, p, k , we can see that, for every u g D, k G 1 and p G 1,n nG1

Ž .there exists a negligible subset N u, p, k such that, for every v g V R2
Ž .N u, p, k ,2

5.6 f vX u , p , k s lim h v , vX u , p , k .Ž . Ž . Ž .Ž . Ž .n
n

Ž .Put N [ D D D N u, p, k and consider v g V R N . For any2 ug D pG1 k G1 2 2
u g D and k G 1, we have

klim sup h v , u F inf lim sup h v , v q k d u , v .Ž . Ž . Ž .n n
vgVn nª`

� XŽ . 4 Ž .Restricting the infimum to the subset v u, p, k : p G 1 and using 5.6 and
Ž .5.5 , we obtain

X Xk klim sup h v , u F inf f v u , p , k , v q k d u , v u , p , k s f u .Ž . Ž . Ž . Ž .Ž . Ž .n
pG1n

So, we have proved, for each k G 1 and v g V R N ,2

5.7 lim sup hk v , u F f k u ; u g D.Ž . Ž . Ž .n
n

Ž .Then, invoking once more the Lipschitz property, we conclude that 5.7
remains valid for all u g V. Finally, taking the supremum on k in both sides

Ž . Ž . Ž .of 5.7 and using 3.8 , we get 5.3 . I

REMARK 5.2. Let us mention some extensions of Theorem 5.1.

Ž .a It is not difficult to check that the conclusion of this theorem still holds
under the following less restrictive hypotheses:

Ž .i g is a normal integrand on E = V.
Ž . Ž .ii There exist an integrable function b ? , a constant a ) 0 and u g V0

Ž . Ž . Ž .such that, for any x, u in the product space E = V, g x, u q b x q
Ž .a d u, u G 0.0

Ž .b Returning to Remark 3.5, it is readily seen that the conclusion of
Theorem 5.1 also holds under the following local condition: for any u g V

Ž .there exist a neighborhood W of u and an integrable function b ? such that,
Ž . Ž . Ž .for every x, v g E = V, g x, v G b x .

Ž .c More generally, an inspection of the above proof shows that if g is not
Ž .assumed to be lsc on V, but only EE m BB V -measurable, the conclusion
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Ž .continues to hold at each point u such that g x, ? is lsc at u, for almost all x
in E.

REMARK 5.3. Results similar to Theorem 5.1 have been obtained by King
w xand Wets 23 when V is a reflexive separable Banach space and by Attouch
w xand Wets 3 when V is a separable Banach space. On the other hand, the

measurably parametrized Lipschitz approximation studied in Section 4 has
w xalready been used by Castaing 7 in order to prove epi-convergence results

for certain sequences of integrands.

Ž .6. Proof of the main result. Observe first that, by condition c in
Ž .Section 2 and Proposition 4.2 a , the function b defined by

b x [ sup f x , u : u g V� 4Ž . Ž .
ˆ 2is finite valued and EE-measurable. Also define the function F from V into

the extended reals by

b xŽ .
6.1 F u , v [ f x , u log m dx .Ž . Ž . Ž . Ž .H ž /f x , vŽ .E

Ž .REMARK 6.1. In 6.1 , it is possible to replace the measure m by bm, which
is stills-finite, and the function f by frb, so that F can be rewritten as

1
F u , v [ f x , u log m dx .Ž . Ž . Ž .H f x , vŽ .E

Therefore, in view of the definition of F, f can be assumed to take its values
w xin 0, 1 . This will be assumed from now on.

Ž . Ž .Further, as in Section 5, define the function f on V by f v [ E g X, v s
Ž . Ž . Ž .F u, v , where g x, v [ ylog f x, v . Recall that u denotes the unknown

value of the parameter to be estimated.

Ž .REMARK 6.2. i Recall that, using the convexity of the function t ª
Ž . Ž . w Ž .ylog t and Jensen’s inequality, it is readily shown that f u s inf f v : v
x Ž . Ž .g V . ii In addition, because the convexity is strict, the inequality f u F

Ž .f u implies u s u.

Ž .PROOF OF THEOREM 2.1 A . Here, the sample size n is assumed to be fixed.
Ž . nFrom condition c it follows that the function B , defined on E byn

6.2 B x , . . . , x [ sup L x , . . . , x , u : u g V , x , . . . , x g En ,� 4Ž . Ž . Ž .n 1 n n 1 n 1 n

is finite valued. For any fixed n and a ) 0, define the multifunction G onn, a

En, with closed values in V, by

G x , . . . , x [ u g V : L x , . . . , x , u G B x , . . . , x y a� 4Ž . Ž . Ž .n , a 1 n n 1 n n 1 n

and also, the multifunction G such thatn

G x , . . . , x [ u g V : L x , . . . , x , u s B x , . . . , x .� 4Ž . Ž . Ž .n 1 n n 1 n n 1 n
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Now consider the n-fold product measure m on the n-fold product spacen
Ž n n.E , EE . Using Proposition 4.2, it is not hard to prove the measurability of

Ž n.function B , and of multifunctions G and G , relative to the s-field EE mn n n, a n
which denotes the m -completion of the product s-field EE n on En. Then,n
denoting by t a selector of G and, for any a ) 0, by t a selector of G ,n n n, a n, a

Ž n. Ž .which are measurable with respect to EE m , we obtain, for any x , . . . , xn 1 n
g En,

6.3 L x , . . . , x , t x , . . . , x s B x , . . . , xŽ . Ž . Ž .Ž .n 1 n n 1 n n 1 n

and

6.4 L x , . . . , x , t x , . . . , x G B x , . . . , x y a .Ž . Ž . Ž .Ž .n 1 n n , a 1 n n 1 n

Clearly, t is an MLE and t an a-approximate MLE for the parametern n, a

Ž .u g V. Thus part A of Theorem 2.1 is proved. I

Now, it will be convenient to introduce the following notation:

g x , u [ ylog f x , u ; x , u g E = VŽ . Ž . Ž .

and, for every n G 1 and v g V,

n1 1
h v , u [ g X v , u s y log L X v , . . . , X v , u .Ž . Ž . Ž . Ž .Ž . Ž .Ýn i n 1 nn nis1

w xBy the convention of Remark 6.1, g takes its values in the interval 0, q` .
Further, it is clear that, for each n G 1 and v g V, the maximization of Ln

Ž .with respect to u is equivalent to the minimization of h v, ? .n
Now, let us explain how epi-convergence is involved in our approach to the

Ž .convergence of MLEs or more generally of M-estimators . For each n G 1
and for almost all v in V, we have to consider the minimization problem

PP min h v , u : u g V .� 4Ž . Ž .n n

The SLLN for positive random variables implies that, for any u g V,
Ž . Ž . Ž . Ž .E g X, u s lim h v, u for all v in V R N u , where N u is a negligiblen n

Ž .subset of V depending generally of u . Thus it is natural to consider also the
following minimization problem:

PP min E g X , u : u g V .� 4Ž . Ž .`

Ž .Note that PP is a stochastic minimization problem, in that the variable vn
Ž .appears in the objective function, whereas PP is a deterministic minimiza-`

tion problem in which v no longer appears. In Theorem 5.1, we have shown
Ž Ž ..that, for almost all v g V, the sequence h v, ? epi-converges on V ton

Ž .E g X, ? . We shall deduce, from this and from the sup-compactness assump-
tion on f, the almost sure convergence of the MLE, as the sample size n
tends to `.
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Ž .PROOF OF THEOREM 2.1 B .

Step 1. V is assumed to be compact.
Ž .As already noted, we may assume that b x s 1 on E. Further, observe

Ž . Ž .that hypothesis H implies that E g X, ? is proper, which allows us to apply
Theorem 5.1. Thus, there exists a negligible subset N of V verifying, as n
tends to `.

E g X , u s lim h v , u ; u g V , ; v g V R N.Ž . Ž .e n

Ž .Now, let a be a decreasing sequence of positive reals converging to 0n nG1
and, for each n G 1, let t be an a -approximate MLE. Thus, for eachn n

Ž . Ž Ž . Ž ..v g V R N, t v [ t X v , . . . , X v satisfiesn n 1 n

h v , t v F inf h v , v q a .Ž . Ž .Ž .n n n n
vgV

Consequently, using Proposition 3.2, we get

6.5 lim sup h v , t v F lim sup inf h v , v F inf E g X , v ,Ž . Ž . Ž . Ž .Ž .n n n
vgV vgVn n

Ž .whence from Remark 6.2 i

6.6 lim sup h v , t v F E g X , u .Ž . Ž . Ž .Ž .n n
n

On the other hand, for any v g V R N, one can extract a subsequence
Ž Ž .. Žt v converging to some v g V the subsequence and the limit pointnŽk . k G1 0

.generally depend upon v . Using Proposition 3.1, we obtain

lim inf h v , t v G E g X , v ,Ž . Ž .Ž .nŽk . nŽk . 0
k

Ž . Ž . Ž . Ž .whence by 6.6 E g X, v F E g X, u which, by Remark 6.2 ii , implies0
Ž Ž ..v s u. Therefore, u is the unique cluster point of the sequence t v so0 n nG1

Ž .that u s lim t v .n n
Step 2. The general case.
Consider the embedding C from V into the Hilbert cube W, and define

gX, hX , for n G 1, and fX on E = W, V = W and W, respectively, by setting,n
Ž .for any v g V, x g E and w g C V ,

gX x , w [ g x , Cy1 w , hX v , w [ h v , Cy1 w ,Ž . Ž . Ž . Ž .Ž . Ž .n n

fX w [ f Cy1 w .Ž . Ž .Ž .
Ž .These functions are taken to be equal to q` if w f C V . From these

Ž .definitions, we deduce that, for any v, w g V = W, one has
n1

X X X Xh v , w s g X v , w and f w s E g X , w .Ž . Ž . Ž . Ž .Ž .Ýn in is1

Ž .For any x g E, the sup-compactness of f x, ? implies the inf-compactness of
Ž . XŽ .g x, ? on V, which, in turn, implies the lower semicontinuity of g x, ? on

� XŽ . 4W. Indeed, for any r g R and x g E, we have w g W : g x, w F r s
Ž� Ž . 4. X

C v g Vrg x, v F r . Thus, for each n G 1, h is inf-compact, too. Further,n



STRONG CONVERGENCE OF THE MAXIMUM LIKELIHOOD ESTIMATOR 1313

X Ž .applying Fatou’s lemma, it is easily seen that f is lsc on W. Now, let tn nG1
Ž X .be a sequence of an a -approximate MLE and consider the sequence tn n nG1

X Ž . Ž Ž ..defined by t v [ C t v . As in the first step, we can show that then n
XŽ Ž .. Ž .sequence t v converges to some w g W. Then, using 3.5 , it is notn nG1

Ž . Ž .hard to see that w s C u for u g V, which is a solution of PP . Finally, the`
y1 Ž .continuity of C yields u s lim t v a.s. In n

REMARK 6.3. Several variants of Theorem 2.1 could be given. For instance,
Ž . Ž .using Remark 5.2 a instead of Theorem 5.1 in the proof of part B , it is

Ž .easily seen that condition H can be replaced by the two following conditions:

Ž . Ž . 1 Ž .a There exist u g V, a ) 0 and b ? g L such that, for any x, v g0
E = V,

f x , v F exp a d v , u q b x .� 4Ž . Ž . Ž .0

yy1b f x , u log f x , u m dx - q`,Ž . Ž . Ž . Ž .� 4H
E

y Ž .where, for any real u, u [ max yu, 0 .

REMARK 6.4. It is interesting to make some additional remarks comparing
our results with those obtained recently by Hoffmann-Jørgensen in the first

w xchapter of his monograph 20 .

Ž . w xi In 20 , in order to study the consistency of estimators obtained by a
maximization procedure, Hoffman-Jørgensen has introduced the notion of

Ž .sequence of approximating maximums SAMs . In our setting, in terms of
Ž .minimization due to the use of epi-convergence instead of hypo-convergence ,

Ž . Ž .it can be observed that the sequence t appearing in inequality 6.6n
precisely corresponds to a SAM. In fact, the above proof shows that, in the

Ž .presence of epi-convergence, a sequence t of a -approximate MLE’s, suchn n
that lim a s 0, is a SAM.n n

Ž . w x Ž .ii On the other hand, in 20 , no sup-compactness condition like c is
explicitly assumed. In our approach, this condition yields the finiteness of

Ž . Ž Ž ..function b ? and ensures that any limit point of the sequence t v is an
w xmember of V. In 20 , there is no similar requirement, since the accumulation

points of sequences of MLE’s are allowed to go outside the given parameter
space V.

REMARK 6.5. Finally, it is important to point out that, in spite of its
Žinterest in explaining some pathological behaviors of the MLE see Remark

. Ž .2.3 , condition H is not necessary for the MLE to be consistent, as the
following example shows. Take E s NU s the set of strictly positive integers,

Ž 1V s the set of all probability measures on E V is endowed with the l
.metric and m the measure on E which assigns the value 1 to each integer.

Ž . Ž .Then we have f x, v s v and b x ' 1. Using the SLLN and Lebesgue’sx
dominated convergence theorem, it is readily seen that the MLE is consis-

Ž .tent, but hypothesis H need not be satisfied. Indeed, it suffices to assume
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Ž .that the true value of the parameter is a sequence u s u in V such thatn
y1Ž .Ý u log u s q`.nG1 n n
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