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ESTIMATION WITH PRESCRIBED PROPORTIONAL
ACCURACY FOR A TWO-PARAMETER EXPONENTIAL

FAMILY OF DISTRIBUTIONS

BY ARUP BOSE1 AND BENZION BOUKAI

Indian Statistical Institute and
Indiana University]Purdue University

We propose a sequential procedure for estimating with prescribed
proportional accuracy one parameter in a class of two-parameter exponen-
tial family of distributions. We study the properties of the resulting
stopping time and provide second-order analysis of the coverage probabil-
ity associated with it by using Edgeworth expansion.

1. Introduction. Let x , x , . . . be a sequence of independent observa-1 2
Ž . Žtions from a model f ; u with u g Q being an unknown parameter possibly

. 2 Ž .a vector and let m and s denote the mean and variance of f ; u ,
respectively. Consider the problem of constructing a sequential procedure for
estimating the unknown mean m which achieves a fixed-proportional accu-
racy with a preassigned probability. That is, for a - 1r2 and h ) 0, we seek
a sequential procedure with a stopping time t such that

< < '1.1 P m y m F h D u f 1 y 2a ; u g Q ,Ž . Ž .ˆž /u t

where m , n s 1, 2, . . . , is the sample estimate of m and D is some propor-ˆn
tionality function. Here, 1 y 2a is the desired coverage probability and by f

Ž 2 .we mean equality up to terms of O h as h ª 0. When D ' 1, this procedure
Žleads to a fixed-width confidence interval for m of the form CC s m y h,ˆt t

.m q h . Much of the interest in such a sequential procedure was motivatedˆ t
Ž .by Stein’s 1945 two-state procedure, the purely sequential procedure of
Ž . w Ž . Ž .xAnscombe 1953 see also Chow and Robbins 1965 and Starr 1966 and

Ž .Hall’s 1981 three-stage procedure for fixed-width interval estimation in the
normal case with unknown s 2. In the normal case, the independence of the

Žsample mean and variance which in turn implies the independence of the
� 4 .event t s n and m ' x plays a crucial role. It allows a second-orderˆn n

asymptotic expansion of the coverage probability which utilizes the first two
w Ž .xmoments of the stopping time t see Woodroofe 1977, 1982 . These proce-

Ždures were developed further to include proportional accuracy in purely
. Ž .sequential and three-stage schemes by Woodroofe 1987, 1988 , who consid-
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2 Ž . Ž .ered the normal case with known s and with D ' D m in 1.1 . In practice,
of course, the unknown D is replaced by its appropriate estimate to obtain a

Ž .confidence interval for m. Woodroofe 1987 provides a weak expansion of the
average coverage probability of such a confidence interval for the normal

Ž .case. To a great extent, Woodroofe’s 1987 work demonstrates the difficulties
encountered in providing higher order expansions of the coverage probability
in cases lacking the independence property.

In this paper we develop a sequential estimation procedure as described in
Ž .1.1 , for the following class of two-parameter exponential family of distribu-
tions.

� 4Let FF s F , u g Q be a minimal regular exponential family of order 2u

characterized by densities of the form

1.2 f x ; u s a x exp u u x q u u x q c u , u s u , u g Q.� 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 1 2 2 1 2

� 2 ycŽu . 4Here Q s u g R ; e - ` is the natural parameter space. For any u g Q
Ž .the r.v. u s u , u has moments of all orders. In particular, for i s 1, 2, we1 2

Ž . 2 2 Ž . 2denote by m s y­c u r­u and s s y­ c u r­u the mean and variancei i i i
Ž .of u , respectively. We further assume that the density 1.2 satisfies thei

following assumption.

Ž . Ž .ASSUMPTION A. For some function c , u s yu c 9 m , where c 9 m s2 1 2 2
Ž . Ž .dc m rdm and u is a 1]1 function on the support of 1.2 .2 2 2

The class FF includes the normal, gamma and inverse Gaussian families
Ž . wand was studied in details by Bar-Lev and Reiser 1982 henceforth referred

Ž .xto as BLR 1982 in the context of construction of UMPU tests and by
Ž .Barndorff]Nielsen and Blæsild 1983 for its reproductive properties. With

Ž . Ž . Žthe homeomorphic reparametrization u , u ª u , m g Q = NN varying1 2 1 2 1 2
.independently , it can be shown that there exists an infinitely differentiable

Ž . Ž . Ž .function G on Q with G0 u ) 0, such that m s c m q G9 u and1 1 1 2 1

y12 < <1.3 s u ' ­m r­u s u c 0 m .Ž . Ž . Ž .2 2 2 1 2

y q w Ž . xBy Assumption A, either Q ; R or Q ; R see BLR 1982 for details ,1 1
and without loss of generality we assume the former.

Ž .Let x , . . . , x , . . . , n ) 1, be independent observations from 1.2 . For each1 n
n Ž .n and i s 1, 2, we let u s Ý u x and let u s u rn. The maximumi:n js1 i j i:n i:n

ˆlikelihood estimators u and m of u and m satisfy m s u andˆ ˆ1: n 2 1 2 2 2:n

ˆ1.4 nG9 u s u y nc u ' z .Ž . Ž .Ž .1:n 1:n 2:n n

Ž . w Ž .xBose and Boukai 1993 henceforth abbreviated here as BB 1993 estab-
lished certain second-order results on the properties of a sequential point

Ž .estimation procedure for m ' E u . It was shown that the stopping time,2 2

ˆbeing based on the MLE u of the nuisance parameter u , is independent of1: n 1
the terminal estimate for m . In the present paper we apply this indepen-2
dence result to the construction of a sequential estimation procedure for the
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Ž .mean m which achieves, in similarity to 1.1 , prescribed proportional accu-2
racy with a preassigned probability. Following the suggestion of an Associate

Ž .Editor of BB 1993 , we also allow the proportionality function D to depend on
the nuisance parameter u . More precisely, let q be some positive, twice1
continuously differentiable and strictly increasing function on Rq and let

< < < <1.5 D u ' D u , m s q u r u c 0 mŽ . Ž . Ž . Ž .Ž .1 2 1 1 2

Ž . Ž .in 1.1 . It may be noted that if q x s x, then the length of the interval is
free of u . If in addition c 0 is a constant, the interval is of fixed width. We1
further assume that this function satisfies the following condition.

Ž < <.ASSUMPTION B1. For any u g Q and 0 - x - 1, q satisfies xq u F1 1 1
Ž < <.q x u .1

Ž . Ž . ŽWith a D as in 1.5 , it follows from 1.3 and the CLT that the nonran-
.dom sample size required to achieve

< <P u y m F h D u , m G 1 y 2a' Ž .ž /u 2:n 2 1 2

Ž .asymptotically as h ª 0 would have to exceed the nominal sample size

2 2 < <1.6 a s h rh q u ,Ž . Ž .1

y1Ž .where h s F a . Here F stands for the standard normal distribution
whose p.d.f. is denoted by f. Since u is unknown, we estimate a by using1
ˆ Ž .u in 1.6 and consequently stop sampling as soon as n G a. Accordingly weˆ1: n
consider the stopping time

ˆ 2 2< <t̃ s inf n G m ; q u ) h rh nŽ .½ 5h 0 1:n

s inf n G m ; z - nG9 yqy1 h 2rh2 n ,� 4Ž .Ž .0 n

Ž .where the last equality follows from 1.4 . In order to reduce bias, we consider
a modified stopping rule

1.7 t s inf n G m ; z l - nG9 yqy1 h 2rh2 n ,Ž . � 4Ž .Ž .h 0 n n

Ž .where l ) 1 are constants of the form l s 1 q l rn q d with d s o 1rnn n 0 n n
as n ª `. Since G9 and q are strictly increasing and z ' z rn convergesn n

Ž . Ž .a.s. to G9 u see Lemma 2 , it follows that for each fixed h the stopping rule1 ' Ž . < <t is finite a.s. and lim t s ` a.s. Let X s n u y m u c 0 m .' Ž .h hª 0 h n 2:n 2 1 2
Ž . Ž . Ž . Ž .By relations 1.3 , 1.5 and 1.6 , the coverage probability in 1.1 may be

written as

< < < <PP h , u ' P u y m F h D u , m s P X F h t ra .'Ž . Ž . 'ž /ž /u 2:t 2 1 2 u t hh

The closely related problem of constructing confidence sets for m can be2
Ž .formulated similarly. The unknown nuisance parameter u in 1.5 can be1
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Ûestimated by some consistent estimator u in order to obtain such confidence1: t
sets. The coverage probability of such a set is

U Uˆ ˆ< < < < < <1.8 PP* h , u ' P u y m F h q u r u c 0 m .'Ž . Ž . Ž .Ž .u 2:t 2 1:t 1:t 2ž /
Ž .Alternatively, both u and m can be estimated in 1.5 leading to a confi-1 2

Ž .dence interval for m of the form CC s u y h D , u q h D , with' '2 D 2:t t 2:t tt
ÛŽ .D ' D u , u . We discuss these procedures further in the next section. Int 1:t 2:t

Section 2 we present the asymptotic properties of the stopping variable th
Ž .Proposition 2 and Theorems 1 and 2 and provide second-order asymptotic
expansion of the coverage probabilities PP and PP* as the width factor h

Ž .shrinks to zero Theorems 3 and 4 . Section 3 is devoted to proofs.

2. Main results. This section contains all the main results of this paper.
w xWe provide their proofs separately in Section 3. Throughout, we write I AA

for the indicator function of the set AA.

w Ž .xPROPOSITION 1 BB 1993 . For all n G 2 and u g Q, the random variable
w xI t s n is independent of u .h 2:n

Ž .THEOREM 1. If q satisfies B1, then lim t ra s 1 a.s. andhª 0 h
Ž .lim E t ra s 1.hª 0 h

To keep our presentation simple, we strengthen Assumption B1 by the
following assumption.

Ž . lASSUMPTION B2. q x s x for some l ' 1rd with d G 1.

2 2 < <l Ž . Ž .Clearly with such a q, a s h rh u in 1.6 and t in 1.7 takes the form1 h

d2.1 t s inf n G m ; z l - nG9 u arn .Ž . Ž .Ž .½ 5h 0 n n 1

The next result provides the asymptotic normality of t as h ª 0.h

U 2'Ž . Ž .PROPOSITION 2. Under Assumption B2, t ' t y a r a ª NN 0, t ash h DD
2 2Ž . w 2 < <2 Ž .xy1h ª 0, where t ' t u s d u G0 u .1 1 1

The initial sample size m and the left tail behavior of the underlying c.d.f.0
w Ž .xplay a crucial role in any secondary-order analysis Woodroofe 1977, 1982 .

We address these issues in the following two lemmas.

1Ž . < < < <LEMMA 1. Let s G 1 be fixed. If G x ; y log x as x ª `, then as2

h ª 0,

i asP t F ar2 ª 0, if m ) 1 q 2 srd ,Ž . Ž .h 0

s w xii aE art I t F ar2 ª 0, if m ) 1 q 2 1 q s rd .Ž . Ž . Ž .Ž .h h 0
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LEMMA 1a. Let d ) 1 and s G 1 be fixed. Suppose that m and G satisfy0
the following set of conditions:

g Ž .C1. for some g ) 1rd , sup x G9 yx F M - `.x G 4 < u1 <
Ž yb . Ž .C2. m is such that for some b ) 0, E z - ` for all u g Q .0 u m 1 11 0

s Ž . Ž . Ž . ŽŽ . s wThen a P t F ar2 ª 0, if b ) 1 q 2 s r dg y 1 , and aE art I t Fh h h
x. Ž . Ž .ar2 ª 0, if b ) 3 q s r dg y 1 .

To state the second-order results we use in the sequel the notation

G- u l G9 uŽ . Ž .1 0 1
2.2 v s t u G0 u y .'Ž . Ž . Ž .0 1 1 2 G0 uŽ .2 G0 uŽ . 1Ž .1

THEOREM 2. Suppose that m and G satisfy either the conditions of0
Ž .Lemma 1 with m ) 1 q 2rd or those of Lemma 1a with b ) 3r dg y 1 .0

Then as h ª 0,

E t s a q r y v q t 2r2 q o 1 ,Ž . Ž .h 0

2 ` ˜ ˜ŽŽ . . Ž . Ž w x.where r s 1 q t r2 y Ý 1rk E S I S - 0 is the expected value ofks1 k k
˜ Ž .the asymptotic overshoot and S , k G 1, are defined in 3.3 .k

Ž .The proof of Theorem 2 is similar to that of Theorem 3 in BB 1993 and
therefore is omitted.

THEOREM 3. Suppose that m and G satisfy either the conditions of0
Ž .Lemma 1 with m ) 1 q 5rd or those of Lemma 1a with b ) 9r2 dg y 1 .0

Then as h ª 0,

PP h , u s 1 y 2aŽ . Ž .
l2 2< <h u f h 2 tŽ .1 2 2q p h q r y v y h y 1 q o h ,Ž . Ž .Ž .2 0h h 4

Ž . Ž .where p ? is the second Edgeworth polynomial. See the proof of Theorem 3.2

REMARK 1. The three most important classes of distributions that satisfy
Ž 2 .our conditions are the two-parameter normal distribution NN m, s with

2 Ž . 2 Ž .m s m, u s y1r2s and c m s m ; the gamma distribution GG a , l2 1 2 2
Ž . Ž .with m s arl, u s a and c m s log m ; and the inverse Gaussian2 1 2 2

Ž . Ž . w'distribution IINN l, a with m s lra , u s ylr2 and c m s 1rm see2 1 2 2
1Ž . Ž . x Ž . < <BLR 1982 or BB 1993 for details . In all these cases G x ; y log x as2

< <x ª `. It follows that when d s 1, Theorem 2 holds with m G 4 and0
Ž .Theorem 3 holds with m G 7. This agrees with Woodroofe’s 1977 result for0

Ž .the normal distribution case. Note that in some of the case s, l in 2.2 can be0
Ž . Ž . Ž 2 .chosen so that PP h, u G 1 y 2a q o h as h ª `.
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We now turn to the confidence estimation problem. Consider the estimator
Ûu of u which satisfies1: n 1

Û ˆ2.3 G9 u s G9 u l ' z l .Ž . Ž . Ž .1:n 1:n n n n
Û ÛClearly, u ª u a.s., u may be viewed as a bias-corrected estimator for1: n 1 1:n

Ž . Ž . Ž .u . By using relations 1.3 and 1.5 , we rewrite the coverage probability 1.81
as

Ž .ly1 r2Û< <2.4 PP* h , u s P X F h t ra u ru .Ž . Ž . ' Ž .u t n 1:t 1ž /h

ÛThe next theorem exhibits the effect that u has on the coverage probability.1: t

THEOREM 4. Under the conditions of Theorem 3 we have as h ª 0,
2 < <lh u f hŽ .1

PP* h , u s PP h , u q 1 y dŽ . Ž . Ž .
h

2.5Ž .
2t

2 2= v y 1 q d h y 1 q o h ,Ž . Ž .Ž .0 4

Ž .where PP h, u is as given in Theorem 3.

REMARK 2. It is easy to verify that the coverage probability of the confi-
ly1Û< < Ž .dence interval CC , with D s u rc 0 u , may be written asD t 1:t 2:nt

Ž .ly1 r2Û< < < <P u y m F h D s P t w u F h t ra u ru ,' ' 'Ž . Ž .ž /u 2:t 2 t u h 2:t h 1:t 1ž /
Ž . Ž .w Ž . < < x1r2where w x s x y m c 0 x u . It can be shown, by using the same2 1

arguments given in the proof of Theorem 4 along with the formal Edgeworth
Ž .expansion of Bhattacharya and Ghosh 1978 for functions of sample means,

that

< <P u y m F h D'ž /u 2:t 2 t

l2 2< <h u f h tŽ .1 2 2˜s P h , u q 1 y d v y 1 q d h y 1 q o h ,Ž . Ž . Ž . Ž .Ž .0h 4

Ž̃ .where PP h, u is as given in Theorem 3 but with a different second Edge-
Ž . Ž .worth polynomial. That new polynomial p x say has coefficients which˜2

Ž .now depend on the moments of 1.2 as well as on the function w. For sake of
brevity, we omit the details.

3. Proofs. We begin with some basic properties of G and z .n

w Ž .xLEMMA 2 BB 1993 . For each u g Q , we have:1 1

Ž .a z s 0 and z ) z a.s.;1 n ny1
Ž .b G9 is positive on Q ;1
Ž . Ž .c z ' z rn ª G9 u a.s. as n ª `;n n 1

'Ž . Ž Ž .. Ž Ž ..d n z y G9 u ª N 0, G0 u , as n ª `.n 1 DD 1
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Ž .BLR 1982 have shown that the distribution of z is a member of then
one-parameter exponential family of distributions with moment generating
function

3.1 M s s exp H s q u y H u , s q u g Q ,Ž . Ž . Ž . Ž .Ž .z n 1 n 1 1 1n

Ž . Ž . Ž . Ž .where for all u g Q , H u s nG u y G nQ . We will use relation 3.11 1 n 1 1 1
repeatedly in the proofs to follow. For later use, we also note that z s Ýn Yn js1 j

w Ž .x Ž . Ž .y j , where see BB 1993 Y , . . . , Y are i.i.d. r.v.s. with E Y s G9 u ,n 1 n 1 1
2Ž . Ž . Ž . Ž .Var Y s G0 u and j ' n u y m c 0 m r2 is slowly changing with1 1 n 2:n 2 2

Ž . Ž .c 0 m ª c 0 m a.s. Since G9 is monotonically increasing on Q , by puttingn 2 1
Ž . y1Ž . Ž .g u s G9 u , we may rewrite t in 2.1 ash

l l< <t't s inf n G m ; n yg z l ) u aŽ .Ž .½ 5h 0 n n 1
3.2Ž .

˜ ˜s inf n G m ; S q j ) a .½ 50 n n

Ž .The last equality in 3.2 was obtained by a Taylor’s series expansion of g
yl l ˜ ˜Ž . < < Ž Ž ..about G9 u , which yields u n yg z l ' S q j , where with j and1 1 n n n n n

Y as before,i

n l Y y G9 uŽ .Ž .i 1˜ ˜ ˜S s Y , Y s 1 y , i G 1,Ýn i i < <u G0 uŽ .1 1is1

2
lj lz l q nd n z l y G9 uŽ . Ž .Ž .n n 0 n n n 1

j̃ s y q D g .Ž .n nl< < < <u G0 u u G0 u < <Ž . Ž . 2 u1 1 1 1 1

3.3Ž .

Ž . Ž 2wŽ Ž .1r2 x. 2 < < Ž . <Here D g ' d yg u rdu and g satisfies g y G9 u Fusgn n n 1n

˜ ˜ 2< Ž < Ž . Ž .z l y G9 u . Note that E Y s 1 and Var Y s t . Following Examplen n 1 i i
˜Ž . Ž .4.1 ii and Lemma 1.4 in Woodroofe 1982 it is easily seen that j are slowlyn

changing. By Lemma 2 and the independence of u and z it follows that2: n n
j̃ ª V, wheren DD

l V y V G- uŽ . Ž .1 2 1
V s q V y 2 l G9 uŽ .2 0 1< < < <2 u G0 u u G0 uŽ . Ž .1 1 1 1

l2

q V ,22< <2 u G0 uŽ .1 1

3.4Ž .

2 ˜ 'with V and V being two i.i.d. x random variables. Note that j r n ª 01 2 Ž1. n PP
Ž . 2 Ž .and that E V s v q t r2, where v is as given in 2.2 . It can be easily0 0

Û Ž . Ž .verified that with u as defined in 2.3 , the overshoot of t in 3.2 is1: n h
˜ ˜ Û lŽ .-3.6R ' S q j y a s t u ru y a. We use this fact later toward thea t t h 1:t 1

proof of Theorem 4.

˜ ˜'Ž .PROOF OF PROPOSITION 2. Since 3.2 holds, j r n ª 0 and j aren PP n
Ž .slowly changing, the result follows from Lemma 4.2 in Woodroofe 1982 . I
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The next lemma is on the right tail behavior of t and is analogous toh
Ž .Lemma 3 of BB 1993 . There was, however, an oversight in its proof. The

proof of Lemma 3 given here serves also as a correct proof to that lemma.

LEMMA 3. Suppose q satisfies Assumption B1 and let « ) 1 be fixed. Then
for all n ) a« , there exists a constant C ) 0 depending on « , q and G such
that

a
y1 < <P t ) n F P z l ) nG9 yq q u F exp yC n y a .� 4Ž . Ž .Ž .h n n 1ž /ž /ž /n

Ž .PROOF. The first inequality follows directly from 1.7 . By Assumption B1,

a au1y1 < <P z l ) nG9 yq q u F P z l ) nG9 .Ž .n n 1 n nž /ž / ž /ž /n n

Ž .To verify the second inequality, define « s arn - 1 and let s ) 0 be smalln
Ž . Ž .to be chosen . By Markov’s inequality and 3.1 ,

P z l ) nG9 u « F exp ysnG9 u « M sl ' exp w s ,� 4Ž . Ž . Ž . Ž .Ž . Ž .n n 1 n 1 n z n nn

Ž . Ž . Ž . Ž .where we have put w s s H sl q u y H u y snG9 u « . By using then n n 1 n 1 1 n
Ž . Ž . Ž .definition 3.1 of H ? , we rewrite w s asn n

w s s n G u q sl y G uŽ . Ž . Ž .n 1 n 1

y G n u q sl y G nu y snG9 u « .Ž . Ž . Ž .Ž .1 n 1 1 n

3.5Ž .

Ž Ž .. Ž . Ž . USince G n u q sl y G nu ) 0 and G0 ) 0, 3.5 implies that for some «1 n 1 n
between 1 and « and some u U between u and u q sl ,n 1 1 1 n

w s F ynsu « y 1 G0 u «UŽ . Ž . Ž .n 1 n 1 n

q ns2 l 2G0 u U r2 q s l q d G9 u .Ž . Ž . Ž .n 1 0 n 1

3.6Ž .

Ž . w xNote that G0 x G C for all x g u , 0 for some constant C ) 0, and in a0 1 0
Ž .small neighborhood of u , G0 is bounded above. Thus for a small s, 3.6 gives1

Ž . Ž .w s F ynsu « y 1 C , for some constant C ) 0 and the lemma follows. In 1 n 1 1

Ž .PROOF OF THEOREM 1. The first assertion follows from Lemma 2 and 1.7 .
The second assertion follows from Lemma 3 and is similar to Theorem 2 of

Ž .BB 1993 . We omit the details. I

PROOF OF LEMMAS 1 AND 1a. Let 1r2 - a - 1 be fixed, and let C denote a
Ž .generic constant. Then for ii we have

s sa a a
aaE I t F F aE I m F t F ah 0 hž / ž /ž / ž /t 2 th h

a
1qsŽ1ya . aq a P a - t Fhž /2

s asq1I q I say .Ž .1 2
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Ž .Now, by 2.1 ,

w a x w a xa a d1 1 a
I s P t s k F P z l F kG9 u .Ž .Ý Ý1 h k k 1s s ž /ž /ž /k k kksm ksm0 0

a Ž .d Ž .For m F k F a , let « s ark ) 1, let n s u « y 1 and note that n - 0.0 k 1 k
Ž .Since l ) 1, by Markov’s inequality and 3.1 ,k

P z l - kG9 u « F exp yn kG9 u « M n ' exp w n ,� 4Ž . Ž . Ž . Ž .Ž . Ž .k k 1 k 1 k z kk

Ž . Ž . Ž . Ž . Ž .where we have put w n s H n q u y H u y n kG9 u « . By 3.1 ,k k 1 k 1 1 k

w n s k G u « y G u y n kG9 u « y G ku « y G ku .Ž . Ž . Ž . Ž . Ž . Ž .k 1 k 1 1 k 1 k 1

< Ž . < w Ž . Ž .xNote that sup G ku rk F C and hence k G ku rk y G u F kC. More-k 1 1 1
1 1 1Ž . Ž . Ž . < <over, since inf « ª ` we have, yG ku « ; log k q log « q log uk k 1 k k 12 2 2

1 1Ž . Ž . < <and G u « ; y log « y log u . It is also easy to verify that1 k k 12 2
< Ž . < < <n G9 u « F C u . Hence we obtain1 k 1

1 1 1 1
< <w n F k C y log « q log k q log « q log uŽ . Ž . Ž . Ž .k k k 1ž /2 2 2 2

k y 1Ž .
F y C q log « .Ž .Ž .k2

Ž Ž ..It follows that for any « ) 0, arbitrary small, P z l - kG9 u « Fk k 1 k
Ž .d Žky1.r2y«kra . Hence, by arguments similar to those given in Woodroofe
wŽ . x1982 , page 107 ,

w a xa k
sq1 Žky1.r2y«ys Ž1qsyd Žm y1.r2q« .03.7 a I F a d F Ca ª 0.Ž . Ý1 ž /aksm0

It can be easily shown, using the same arguments as in Lemma 4 in BB
Ž .1993 , that for some arbitrary large r and a ) 1r2,

3.8 I F O a1qsŽ1ya .qr Ž1r2ya . ª 0.Ž . Ž .2

Ž . Ž .The second part of Lemma 1 is now obtained by combining 3.7 and 3.8 . The
Ž .proof of i is similar. Lemma 1a may be proved along the lines of Lemma 4 in

Ž .BB 1993 . The details are omitted. I

The following lemma establishes the uniform integrability of tU as definedh
Ž .in Proposition 2. Its proof is similar to that of Lemma 6 of BB 1993 and is

therefore omitted.

LEMMA 4. Suppose m and G satisfy the conditions of Lemma 1 with0
Ž .m ) 1 q 2rd or of Lemma 1a with b ) 3r dg y 1 . Then:0

Ž . Ž U 2 w x. Ž U 2 w x.a E t I t F ar2 q E t I t G 2 a ª 0, as h ª 0;h h h h
Ž . U 2 w x Ž U 2 . 2b t I ar2 - t F 2 a are uniformly integrable and lim E t s t .h h hª 0 h
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' Ž .PROOF OF THEOREM 3. As in Section 1, we let X s n u y m =n 2:n 2
< < Ž . Ž < <u c 0 m and recall that the covrage probability is PP h, u ' P X F' Ž .1 2 u th

.h t ra . By Proposition 1,' h

< <3.9 PP h , u ' PP h , u s E P X F h t ra ,Ž . Ž . Ž . 'ž /1 u t hh

Ž .where E denotes expectation with respect to t . Note that PP h, u dependsh
U Ž Ž .only on u . Since X is a partial sum of the i.i.d. r.v.’s u s u x y1 n j 2 j

. < < Ž .m u c 0 m j s 1, . . . , n , we obtain by an Edgeworth expansion of the' Ž .2 1 2
Ž .probability in the right side of 3.9 ,

y1 y2PP h , u s E 2F h y 1 q 2 t p h f h q t O 1Ž . Ž . Ž . Ž . Ž .Ž .1 t h 2 t t h
3.10Ž .

s E q E q E say ,Ž .1 2 3

where h ' h t ra and't h

2 2 4 2p y s yy k r24 y y 3 q k r72 y y 10 y q 15 ,Ž . Ž . Ž . Ž .Ž .2 4 3

with k , i s 3, 4, being the ith cumulant of the standardized random variablei
U Ž . Ž .u . The O 1 term in 3.10 is bounded uniformly over all sample paths.1

Ž . Ž y1 .Hence it immediately follows from Lemma 1 or Lemma 1a that E s o a .3'Ž . Ž .Let C x s 2F x y 1 and let C9 and C0 be its first and second deriva-
wŽ . xtives. The arguments of Woodroofe 1982 , page 111 together with Lemma 4

yield

h 2 t 2h 4
2 2 2 y13.11 E s C h q C9 h E t y a q C0 h q o a .Ž . Ž . Ž .Ž . Ž . Ž .1 ha 2 a

Ž . Ž . ŽSince p x f x is bounded and continuous, it follows via one-step expan-2
. Ž .sion from Theorem 1 and Lemma 1 or 1a that

2
y1 y13.12 E s E 2 t p h f h s p h f h q o a .Ž . Ž . Ž . Ž . Ž . Ž .2 h 2 t t 2a

Ž . Ž .The proof is completed by combining 3.9 ] 3.12 and Theorem 2. I

REMARK 3. A crucial step in the preceding proof is to show that
wŽ .3r2 w xx Ž y1 . Ž .E art I t F ar2 s o a , which is guaranteed by Lemma 1 or 1a .h h

Any other set of conditions which ensures this would yield all results of the
present paper.

PROOF OF THEOREM 4. Since z is independent of u and G9 is injective,t 2:t
ÛŽ .it follows from 2.3 that u is also independent of u . Hence, by an1: t 2;t

Ž . Ž .Edgeworth expansion as before , we may rewrite PP* in 2.4 as

2 y1 y2PP* h , u s E C x s 2 t p x f x q t O 1Ž . Ž . Ž . Ž .Ž .t h 2 t t h3.13Ž .
s E q E q E ,1 2 3
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U Žly1.r2ˆŽ .where we have put x ' h t ra u ru . Note that since the over-'t h 1:t 1
Û l 2 2Ž . Ž .shoot of t is R s t u ru y a, we may rewrite x in 3.13 as x 'h a h 1:t 1 t t

h 2 q h 2 r , witht

Ž .ly1U d 1ydˆt u t Rh 1:t h a
3.14 r s y 1 ' 1 q y 1,Ž . t ž / ž /ž /a u a a1

Ž y1 .where d s 1rl. As in the proof of Theorem 3, we have E s o a and3
Ž . Ž . Ž . Ž y1 .E s 2ra p h f h q o a . To evaluate the term E , define2 2 1

lÛu1:t� 4AA s ar2 F t F 2 a and BB s F 2 .h ½ 5ž /u1

Ž . Ž c. Ž y1 . Ž c c.From Lemma 1 or 1a and Lemma 3, P AA s o a and hence P AA l BB
Ž y1 . Ž .s o a . Also, by using relation 2.3 and arguments similar to those of

Ž . Ž c. Ž y1 .Lemma 6 in BB 1993 , it can be easily shown that P AA l BB s o a .
Thus, since C is a bounded function,

2 w c c x y1E C x I AA j BB s o a .Ž .Ž .Ž .t

Ž 2 . Ž 2 .On the set AA l BB, we first expand C x about C h and then utilizet
Ž . Ž .d Ž .1ydrelation 3.14 to expand t ra and 1 q R ra about 1. From theseh a

expansions, which are omitted for the sake of brevity, it is clear that the
Ž Ž 2 . w x.asymptotic expansion of E C x I AA l BB will be established, provided thatt

4U 4'< < Ž .t and R r a are uniformly integrable on the set AA l BB. Both of theseh a
can indeed be easily established by following the lines of the proof of Lemma

Ž .6 of BB 1993 . We omit the details. I
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