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UNIFORM RATES OF ESTIMATION IN THE SEMIPARAMETRIC
WEIBULL MIXTURE MODEL

BY HEMANT ISHWARAN

University of Ottawa

This paper presents a uniform estimator for a finite-dimensional
parameter in the semiparametric Weibull mixture model. The rates
achieved by the estimator hold uniformly over shrinking sequences of
models much more general than traditional sequences that are required to
satisfy a Hellinger differentiable property. We show that these rates are
optimal in a class of identified models constrained by a moment condition
on the nonparametric mixing distribution.

1. Introduction. The intention of this paper is to study the semipara-
Ž .metric Weibull mixture model described in Heckman and Singer 1984 , with

the intent of presenting an optimal uniform estimator for a finite-dimensional
parameter in the model. The paper explores the connection between identifi-
cation constraints imposed on the nonparametric component in the model
Ž .the unknown mixing distribution and the manner in which these con-
straints affect achievable uniform rates of estimation.

The model that we study will be assumed to come from duration data
Ž .T, Z , where T is the observed positive duration time and Z is an observed
k-dimensional vector of covariates. We also assume that potential heterogene-
ity may enter the data via an unobserved heterogeneity variable Y, with
unknown distribution G, that is assumed to be independent of Z. Write h for
the unknown density of Z taken with respect to a s-finite measure n . We

Ž . Ž .assume, as in Heckman and Singer 1984 , that T, Z has the semiparamet-
ric Weibull mixture density

<f t , z b , u , GŽ .

� 4 uy1 us t ) 0 h z u t exp yb9z y y y t exp yb9z y y dG y ,Ž . Ž . Ž .Ž .H1Ž .

Ž . Ž .where b, u denotes the k q 1 -dimensional structural parameter and G
denotes the unknown nuisance mixing distribution. The shape parameter u is
assumed to be strictly positive, while the covariate parameter b lies in R k.

Several authors have studied the Weibull regression model with unob-
Ž .served heterogeneity. Heckman and Singer 1984 verified the consistency of

Ž .a semiparametric maximum likelihood estimator for b, u , G under a first
Ž .exponential moment constraint to G. Honore 1990 proposed a class of´
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Ž ys .estimators based on order statistics that achieves an O n rlog n rate ofp
estimation for u for each 0 - s - 1r3. The result was based on the assump-
tion that no covariates are present in the model and that the mixing distribu-

Ž .tion has a finite second exponential moment using our parameterization .
Ž .Preliminary work by Honore 1994 suggests that his class of estimators can´
Ž ys . Ž .be extended to achieve an O n rlog n rate under a 1 q d th momentp
Ž .constraint for each 0 - s - dr 2 d q 1 , where d G 1 is any integer. Recently,

Ž . Ž . Ž .Ishwaran 1996 showed as a special case that if G satisfies a 1 q d th
exponential moment constraint, then it is not possible to estimate u at a

Ž yd rŽ2 dq1..uniform rate faster than O n .p
Ž .The contribution of this paper to the study of the Weibull mixture 1 will

be to present a uniform estimator for u that achieves the lower rate proposed
Ž .in Ishwaran 1996 for the case when 0 - d F 1. This will then establish

Ž yd rŽ2 dq1..O n as the optimal rate for estimating u in a class of Weibullp
mixtures with covariates. Moreover, this would also indicate that

Ž yd rŽ2 dq1.. Ž .O n is the optimal rate for estimating b, u in this class, becausep
constructing an estimator for b is relatively easy once we have an estimator
for u .

Ž . w ŽTo see why this is the case, suppose that W ; exp 1 and T s W exp b9Z
.x1ruq Y , where W, Y, Z are assumed to be mutually independent. Then

Ž . Ž . Ž .T, Z has the conditional semiparametric Weibull density 1 . If we trans-
form T by a log, then

1
2 X s log T s log W q b9Z q YŽ . Ž .

u

describes a regression problem with unknown regression parameter uy1b,
observed covariate Z and an unobserved smooth error. Constructing an

Ž y1r2 . y1O n estimator for u b is relatively straightforward using semipara-p
w Ž .metric regression methods see Bickel 1982 for a study of the general

xregression problem with unknown error . Now to estimate the covariate
parameter b, we only need to multiply a uy1b estimate with an estimate
for u .

Section 3 describes a method for constructing a uniform estimator for
u based upon a sample of n independent transformed observations

Ž .X , X , . . . , X as in 2 . Transforming the data will allow us to take advan-1 2 n
tage of X being a convolution. The key idea behind our method is that, when

Ž .G is constrained by a moment condition, the density for X, Z ,

<f x , z b , u , G s u exp u x h z exp yb9zŽ . Ž . Ž .Ž .

= exp yy y exp u x y b9z y y dG y ,Ž . Ž .Ž .H3Ž .

can be approximated for large negative x as

4 u exp u x h z exp yb9z exp yy dG y .Ž . Ž . Ž . Ž . Ž . Ž .H
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Therefore, by smoothing the data with an appropriate kernel, the tail behav-
ior of the smoothed data will be driven, to a first approximation, by the

Ž .behavior of 4 . A comparison of the smoothed data to its expected behavior
Ž .under the approximation 4 provides a method for estimating u . Section 3

presents an estimator for u based on this argument. The main result of the
paper is contained in the rate result found in Theorem 22 of Section 4. There

Ž yd rŽ2 dq1..we show that our estimator for u achieves the optimal O n ratep
Ž .when G is constrained by a 1 q d th exponential moment condition, where

0 - d F 1.
The rates of estimation given in this paper are of a uniform nature. By this

� 4we mean the following. Suppose PP s P : g g F is a class of transformedg

Ž .Weibull mixtures, where F is some parameter set of b, u , G values which
indexes our model space. Then, a uniform estimator for u is an estimator that
does uniformly well over different sampling schemes from PP.

To make this more precise, write P for the distribution of the mixtureg

Ž . Ž .X, Z with parameter g s b, u , G g F. Let u be the functional u : F ª Rq
Ž .which maps g g F onto its shape parameter u g s u . Notice that we are

Žusing u to denote both the parameter value and the functional although
there is some slight ambiguity in doing so, it will greatly simplify our

.notation . By uniform rates, we mean the following.

DEFINITION 5. Let F be a sequence of families in F and let d be an n
ˆdecreasing positive sequence. Estimators u for u are said to have a uniformn

Ž .O d rate of convergence over F if for each « ) 0 there exists a finitep n n
constant k such that«

n ˆlim sup sup P u y u g G k d F « ,Ž .� 4g n « n
nª` ggFn

n Ž .where P denotes the n-fold product measure P m ??? m P n factors for a
probability P.

A word concerning notation. In most places in the paper, we use the linear
functional notation for expectation. For example, the expected value of a
function g with respect to a probability measure P is usually written as

Ž . Ž . Ž .Pg X , rather than the usual convention H g x dP x . One exception is that
the integral of g with respect to Lebesgue measure will always be written as

Ž .H g x dx.

Ž .2. Identifiability. Ishwaran 1996 shows by an explicit construction
Ž . w Ž .xthat the semiparametric mixture model 3 and consequently 1 is unidenti-

fied without constraints. The author describes constraints for Y which ensure
that the mixture

1
6 X s log W q YŽ . Ž .

u
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is identified. More precisely, for each 0 - M - ` define

r G , M s sup r G 0: G exp "rY F 1 q M� 4Ž . Ž .0

Ž .to be a measure for the tail behavior of a distribution G. Define GG r toM
Ž . Ž .be the class of distributions G with r G, M s r and let GG Rq s0 M

Ž . Ž . Ž .D GG r . Then, Ishwaran 1996 shows that the model 6 is identifiedr G R M
Ž .under the constraint that G g GG 1q for each 0 - M - `.M

With some minimal assumptions on the distribution for Z, we can ensure
that the Weibull mixture model with covariates is identified. Write P for theZ

� 4distribution of Z. We say that P is nondegenerate if P b9Z s c s 1Z Z
Žimplies that b s 0 and c s 0 for example, nondegeneracy implies that the

support for Z contains a basis for R k and elements which have at least two
.different values in each vector coordinate .

w Ž .xTHEOREM 7 Compare with Heckman and Singer 1984 . Suppose that
d ) 0 and 0 - M - `. If P is nondegenerate, then the identification ex-Z
pressed by

1 1
X X8 log W q b Z q Y , Z s log W q b Z q Y , ZŽ . Ž . Ž .1 1 DD 2 2ž / ž /u u1 2

Ž . k Ž . ŽŽ . .for each pair b , u , G g R m 0, ` m GG 1 q d q , is only possible ifj j j M
Ž . Ž .b , u s b , u and Y s Y , where Y denotes the variable with distribu-1 1 2 2 1 DD 2 j
tion G .j

Ž .PROOF. The equality between the two mixtures 8 implies that

1 1
X X w x9 log W q b z q Y s log W q b z q Y , for a.a. z P .Ž . Ž . Ž .1 1 DD 2 2 Zu u1 2

Ž .Suppose that z is a value in the support for Z where 9 holds. Let0
U X U U Ž .Y s b z q Y with distribution G , for j s 1, 2. Because G g GG 1q forj j 0 j j j M *

Ž . Ž .a large enough 0 - M* - `, Theorem 15 of Ishwaran 1996 shows 9
implies that u s u and Y U s Y U. Therefore,1 2 1 DD 2

10 log W q b X Z q Y s log W q b X Z q Y q b y b 9z .Ž . Ž .1 1 DD 2 1 1 2 0

ˆIf we write g for the Fourier transform of log W q Y and h for theˆ 1 b jX Ž .transform of b Z, the equality 10 becomesj

ˆ ˆg s h s s g s h s exp is b y b 9z for all real s.Ž . Ž . Ž . Ž . Ž .Ž .ˆ ˆb b 1 2 01 2

The tail behavior of the distribution for log W q Y ensures that its transform1
must be analytic in the horizontal strip containing complex values with

Žimaginary parts less than 1. Therefore, g must be nonzero otherwise itˆ
.would be zero throughout its region of analyticity . Dividing throughout by g,ˆ

deduce that

b X Z s b X Z q b y b 9z .Ž .1 DD 2 1 2 0
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Indeed, our argument shows that we can replace z on the right-hand side by0
w xa.a. values of z P . The nondegeneracy of P now gives b s b , andZ Z 1 2

consequently that Y s Y . I1 DD 2

3. Construction of an estimator. Even without the presence of a
Ž .covariate, Ishwaran 1996 shows that it is not possible to estimate the u

parameter in the Weibull mixture at a uniform rate faster than
Ž yd rŽ2 dq1..O n . This result holds over the class of identified mixtures whosep

ŽŽ . .mixing distributions are members of GG 1 q d q , where d ) 0 and 0 - MM
- `. The remainder of this paper will be devoted to showing that this rate is

Ž .in fact the optimal uniform rate for u in 3 for fixed values 0 - d F 1 and
0 - M - `. Because from here on we will only consider d and M values fixed
within this range, we will hereafter suppress their use, whenever possible,
unless there is ambiguity.

ŽŽ . .Write F for the index set BB m Q m GG 1 q d q , where BB and Q denoteM
the parameter spaces for b and u , respectively. Let l be the functional l:

2 Ž . Ž . Ž .F ª R which maps each g s b, u , G g F onto l g s u , f , whereq

f s G exp yY P exp yb9Z .Ž . Ž .Ž . Ž .Z

Ž .For notational convenience we will write l F for the range of l. Also,
following the convention used with the u functional in Section 1, we will use

Ž .l s u , f to denote both the parameter value and the functional itself:
Ž .l s l g .

The identification argument of the previous section and the lower rate
Ž .calculation given in Ishwaran 1996 implicitly rely on the left exponential

tail behavior for the density of a log exponential variable. It is this left tail
Ž .behavior that we will exploit in constructing an estimator for u in 3 . Let K

Ž . Ž .� 4be a kernel density and write m x s u exp u x x F 0 to denote the densityu

Ž .for a negative exp 1 random variable. Then our optimal estimator for u will
Ž . Ž .be based on the value of l s u , f in l F which minimizes, or nearly

minimizes, the following criterion function
2n1yCn w x11 G l, C s K u y X y f K ) m u du.Ž . Ž . Ž . Ž .ÝHn n i už /ny` is1

Here C ª ` is a positive sequence yet to be specified. Notice that then
nuisance distribution function G is eliminated from the optimization prob-
lem, except for the estimation of the scalar nuisance parameter f.

The heuristic which leads to this method is as follows. Suppose that we are
Ž . Ž .sampling under the model P for X, Z , where g s b , u , G is a parame-g n n n nn

Ž . Ž . Ž X . Ž .ter in F. If we let h z s h z exp yb z , then the density 3 for P can beb n gn n

expressed as

< < <12 f x , z g s f x , z g q f x , z g ,Ž . Ž . Ž . Ž .n 1 n 2 n

where
<f x , z g s G exp yY m x h zŽ . Ž . Ž .Ž .1 n n u bn n



ESTIMATION IN THE SEMIPARAMETRIC WEIBULL MIXTURE 1577

and

<f x , z g s u exp u x h zŽ . Ž .Ž .2 n n n b n

X � 4= exp yy exp yexp u x y b z y y y x F 0 dG y .Ž . Ž . Ž .Ž .H n n n

Ž . Ž X . Ž < .If w x, y, z s exp u x y b z y y , then we can express f x, z g forn n 2 n
x F 0, as

m x h z exp d u x y b X zŽ . Ž . Ž .Ž .u b n nn n

exp yw x , y , z y 1Ž .Ž .
= exp y 1 q d y dG y .Ž . Ž .Ž .H ndw x , y , zŽ .

13Ž .

< Ž . < dThe moment constraint imposed on G and the inequality exp yw y 1 rwn
Ž .F 1, for w G 0, imply that 13 is bounded by

14 1 q M m x h z exp d u x y b X z .Ž . Ž . Ž . Ž . Ž .Ž .u b n nn n

Consequently, for x F 0, write
X< <f x , z g s f x , z g 1 q O exp d u x y b zŽ .Ž . Ž . Ž .Ž .n 1 n n n

to indicate that it is the f contribution which drives the left tail behavior of1
f for large negative x. Notice that the contribution from the smaller order
term depends directly upon the rate of decrease imposed on the tails of the
distribution G .n

Forgoing exact details for the moment, assume that the kernel K is some
smooth density over the real line with rapidly decreasing tails. Then, approxi-
mately, the average of the smoothed data should be

n1
15 K u y X f P K u y X .Ž . Ž . Ž .Ý i g nn is1

Ž .If h is n-integrable, then the expression for the density 12 shows thatbn

16 P K u y X s f K ) m u q D u ,Ž . Ž . Ž . Ž .g n u gn n n

Ž Ž ..Ž Ž X ..where f s G exp yY P exp yb Z andn n Z n

<D u s K u y x f x , z g dx dn z .Ž . Ž . Ž .Ž .HHg 2 nn

The behavior of D depends upon the behavior of f , while the behavior ofg 2n

w xthe convolution f K ) m depends upon f , which as we have seen is then u 1n

dominant of the two terms for large negative values. Therefore, if the tails for
K decrease rapidly enough, we expect D to be small in comparison to thegn

convolution. Thus, on average, we expect the smoothed data on the left-hand
Ž .side of 15 to be close to the convolution when u is negative and large. This

Ž .leads to our method of estimation based on 11 .
Although the results in the remainder of the paper can be proved using

Ž .any density kernel with tails decreasing fast enough , many of the proofs are
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greatly simplified by working with a prespecified K. In particular, choosing K
Ž .to be a uniform 0, 1 kernel is especially appealing. In this case

17 K ) m u s exp u u 1 y exp yu when u F 0,Ž . Ž . Ž . Ž .Ž .u n nn

showing that the tail behavior for the convolution is driven solely by the
parameter of interest u . For simplicity we will assume that K is then

Ž .uniform 0, 1 density.
To ensure that our rates will hold uniformly over a given family of models,

we will need to control the behavior of the corresponding u parameters. A
family of models will be said to be regular if the following is true.

Ž .DEFINITION 18. Families F : F are said to be regular if u F convergesn n
Ž .to an interior point of Q such that for any pair u , u g u F ,1 2 n

y1< <u y u F A log n ,Ž .1 2

for some fixed A - `.

Note the generality of the shrinking sequences that will be implicit in our
uniform rates. In particular, our rates will not be restricted to sequences that
are required to satisfy a Hellinger differentiable property as is the traditional

wpractice in semiparametric estimation see for example Begun, Hall, Huang
Ž .xand Wellner 1983 .

Two further assumptions that are needed to ensure uniformity will be that
the parameter space for b and u is compact and that the density for Z has
tails which decrease rapidly enough. Hereafter, the following will be as-
sumed.

Ž . �Ž . < < 4ASSUMPTION 19. i BB m Q s b, u : b F b , t F u F t , where 0 - b0 0 1 0
Ž . ŽŽ . < < .- ` and 0 - t - t - ` are known fixed values. ii P exp 1 q d b Z - `.0 1 Z 0

Ž .Ž . Ž .One consequence of Assumption 19 i is that the parameter space l F is
Ž .bounded and strictly finite see Lemma 20 . A straightforward argument

Ž . Ž .using the dominated convergence theorem and identity 17 shows that 11 is
continuous in l. Therefore, an important consequence to Lemma 20 is that a

Ž . Ž .global minimizer of 11 exists and lies in l F .

Ž . w x w xLEMMA 20. l F s t , t m p , p , where 0 - t - t - ` and 0 -0 1 0 1 0 1
p - p - `.0 1

The proof of Lemma 20 is given in the Appendix.

4. Uniform rates of estimation. In order to construct our optimal
uniform estimator, we will need the existence of a preliminary uniform
estimator for u in order to fine-tune the cutoff sequence used in our criterion

˜ Ž .function. More precisely, if u is a preliminary o 1rlog n uniform estimator,n p
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˜Ž .then our optimal estimator is obtained from nearly minimizing G l, C ,n n
˜ ˜ ˜ ˜Ž .where C s C u is a random cutoff sequence based on u .n n n n

Ž .Using a standard comparison argument, Ishwaran 1995 establishes the
Ž .existence of a uniform o 1 estimator for u . Note that by uniform consis-p

tency, or for that matter uniform probability, we always mean uniformity
over some regular sequence of families F . Thus, for example, a uniform on p
statement such as

z s o 1 uniformly over F ,Ž .n p n

will mean that for each « ) 0,
n < <lim sup P z G « s 0.� 4g n

nª` ggFn

Ž .Although the result in Ishwaran 1995 only asserts the existence of an
Ž .o 1 estimator, it is still possible to use this estimator to construct thep
Ž . Žo 1rlog n estimator needed in our proof of optimality in fact using ap

.consistent estimator we can construct a near optimal estimator for u . The
technical details of this construction, along with the proof of consistency, can
be found in the same paper. Those details will be omitted here, but for
completeness the consistency result is stated in the following theorem. It
should be noted that the key condition in the theorem is to choose the cutoff

� 4sequence C so that it increases at a rate no faster than the log of a powern
of n.

THEOREM 21. Let F be a regular sequence of families. Suppose thatn
C ª ` with uniform probability tending to 1 and for some 0 - s - 1,n

log nsŽ .
C F q o 1 uniformly over F .Ž .n p ninf u : u F� 4Ž .n

ˆ ˆ ˆŽ . Ž .If the estimator l s u , f g l F satisfiesn n n

ˆ y2 sG l , C F o n q inf G l, C uniformly over F ,Ž . Ž .Ž .n n n p n n n
Ž .lgl F

then for each « ) 0,

n ˆ< <lim sup P u y u g G « s 0.Ž .� 4g n
nª` ggFn

Notice that the proposed estimator in Theorem 21 is not required to
Ž .uniquely minimize G l, C . Allowing for a near minimizer is possible with-n n

out requiring any additional assumptions, thus permitting a slightly more
general theorem. As noted earlier in Section 3, the existence of a near
minimizer, indeed a global minimizer, is guaranteed by the continuity of
Ž . Ž .G l, C over the compact set l F . Furthermore, because the conditions forn n

wC are easily satisfied for example by the sequence r log n ª `, wheren n
Ž .xr s o 1 , it follows that the conditions for Theorem 21 hold in practice, thusn

establishing the existence of a consistent estimator. Consequently, from our
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previous discussion, we can assume with no loss of generality that we have a
Ž .uniform o 1rlog n estimator at our disposal.p

˜ Ž .THEOREM 22. Let u be a uniform o 1rlog n estimator for u over an p
regular sequence of families F . Letn

1
1rŽ2 dq1.C̃ s log nŽ .n

ũn

ˆ ˆ ˆŽ . Ž .and suppose that the estimator l s u , f g l F satisfiesn n n

ˆ ˜ y2 Ž1qd .rŽ2 dq1. ˜G l , C F O n q inf G l, C uniformly over F .Ž . Ž .ž /n n n p n n n
Ž .lgl F

ˆ yd rŽ2 dq1.Ž .Then u is a uniform O n estimator for u over F , where 0 - d F 1.n p n

The idea behind the proof of Theorem 22 will be to closely approximate the
˜ 2Ž .criterion function G ?, C by a function H that will be easier to work with.n n n

ˆ ˜Ž .The approximation will ensure that the near minimizer l of G ?, C willn n n
also nearly minimize H 2. We construct H 2 so that it achieves its minimumn n

ˆat l ; consequently, the distance between l and l can be determined byn n n
the behavior of H 2 near its minimum. In essence, H 2 plays the role of an n

ˆmetric in determining the rate for l .n
The argument behind this heuristic can be formalized through the follow-

ing lemma.

w Ž .x � 24LEMMA 23 Compare with Pollard 1993 . Suppose that H is a se-n
� 24 � 4quence of functions and R and C are sequences such that the followingn n

hold:

ˆŽ . Ž .i l g l F ;n
ˆ 2Ž . Ž . Ž . Ž .ii G l , C F O r q inf G l, C ;n n n p n lg lŽF . n n

Ž . < Ž . Ž .2 < 2 Ž . Ž .iii G l, C y H l F R q 2 R H l for l g l F ;n n n n n n
Ž . Ž . Ž .2iv There exists a l g l F such that H l s 0.n n n

2 Ž 2 .Then if R F O r ,n p n
2 2ˆH l F O r .Ž .Ž .n n p n

ˆŽ . Ž .PROOF. From iii evaluated at l g l F ,n

2 2ˆ ˆ ˆH l F R q 2 R H l q G l , C .Ž . Ž . Ž .n n n n n n n n n

Ž .By ii the right-hand side can be increased further to
2 ˆ 2R q 2 R H l q O r q G l , C .Ž .Ž .Ž .n n n n p n n n n

Ž . Ž .Invoke iii once more, this time evaluated at l . From assumption ivn
Ž . 2infer that G l , C F R . Consequently,n n n n

2 2 2ˆ ˆH l F 2 R q 2 R H l q O r ,Ž .Ž . Ž .n n n n n n p n
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which can also be written as

2 2 2 2 2ˆ ˆH l y 2 R H l y R F R q O r F O r .Ž . Ž .Ž . Ž .n n n n n n n p n p n

Complete the square on the left-hand side to find that

2
2ˆH l y R F O r .Ž .Ž .ž /n n n p n

ˆŽ . Ž .It follows that H l F O r . In n p n

A natural candidate for H 2 presents itself by considering the contributionn
˜w Ž .x Ž .from the smoothed data left-hand side of 15 to G ?, C . The followingn n

ˆempirical process notation will make this analysis clearer. Write P for thegn
Ž .empirical distribution under sampling from P , where g s b , u , G isg n n n nn1r2 ˆŽ .some sequence in F. Let m s n P y P denote the correspondingg g gn n n

empirical process.
Ž . Ž . Ž .Let l s u , f denote the value for l g . From expression 16 , rewriten n n n

Ž .the smoothed data on the left-hand side of 15 as

ˆP K u y X q P y P K u y XŽ . Ž .ž /g g gn n n

y1r2s f K ) m u q D u q n m K u y X .Ž . Ž . Ž .n u g gn n n

˜Ž . Ž .Therefore, substituting this expression, rewrite G l, C for l s u , f asn n

˜yCn w xf K ) m y f K ) m uŽ .Ž .H ž n u uny`24Ž .
2y1r2qD u q n m K u y X du.Ž . Ž . /g gn n

The first term inside the square of the integrand is minimized at l s l .n
Furthermore, we will see that its contribution to the integral will be larger
than the contribution from either of the two remaining terms except when
l f l . Thus, an obvious candidate for the H 2 in Lemma 23 is the functionn n
Ž .2H ?, l defined byn

˜yC2 2n w x25 H l, l s f K ) m y f K ) m u du.Ž . Ž . Ž .Ž .Hn n u uny`

Ž . 2Expand the square in 24 , subtract H , and take absolute values. Now apply
the Cauchy]Schwarz inequality to the absolute value of the cross product

Ž .term to obtain an expression similar to condition iii of Lemma 23:

22˜ ˜ ˜< <26 G l, C y H l, l F R C q 2 R C H l, l ,Ž . Ž . Ž .Ž . Ž . Ž .n n n g n g n nn n
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Ž .2where R ? is defined byg n

2yC2 y1r227 R C s D u q n m K u y X du for each C G 0.Ž . Ž . Ž . Ž .H Ž .g g gn n ny`

Now we can use Lemma 23 to prove Theorem 22.

PROOF OF THEOREM 22. Suppose that we are sampling under the model
2 2 Ž .2P defined as above. Take the H and R of Lemma 23 to be H ?, l andg n n nn ˜ 2Ž . Ž . Ž . Ž .R C defined by 25 and 27 , respectively. Therefore, by 26 , all theg nn 2 Ž 2 .conditions of the lemma will be satisfied if we can show that R F O r ,n p n

yŽ1 qd .rŽ2 dq1. ˆwhere r s n . The rate will then follow by solving for l inn n

2 2 2 2ˆ ˆ28 H l s H l , l F O r s O exp y2u C O d ,Ž . Ž .Ž .Ž . Ž .Ž . Ž .n n n n p n p n n p n

where d s nyd rŽ2 dq1. andn

1
1rŽ2 dq1.C s log n .Ž .n un

˜ ˜Ž . Ž .The o 1rlog n consistency of u ensures that C s C q o 1 , uniformlyp n n n p
over F . Therefore, with no loss of generality, we can argue along the setn

˜� 4C G C y « which occurs with uniform probability tending to 1 over F ,n n n
˜where « ) 0 is some fixed number. Therefore, replace C with C y « ton n

2 Ž .obtain an upper bound to R . Consequently, by Lemma 30 see the Appendix ,n

22R F R C y «Ž .n g nn

s O exp y2 1 q d u C q O ny1 exp yu CŽ . Ž .Ž .Ž . Ž .n n p n n

s O ny2 Ž1qd .rŽ2 dq1. q O ny2 Ž1qd .rŽ2 dq1.Ž . Ž .p

s O r 2 uniformly over F .Ž .p n n

ˆ Ž .To complete the proof we establish the rate by solving for l in 28 . Recalln
Ž . w xŽ . Ž .Ž Ž ..from identity 17 that K ) m u s exp u u 1 y exp yu when u F 0. Us-u

˜ing this identity and changing variables from u to u q C , we getn

2 2ˆ ˆH l s H l , lŽ . Ž .n n n n

202 ˜ ˆs B exp y2u C exp 2u u 1 y r exp u y u u du,Ž .Ž . Ž .H ž /n n n n n n n
y`

Ž Ž ..where B s f 1 y exp yu andn n n

ˆ ˆf 1 y exp yuŽ .ž /n n ˆ ˜r s exp u y u C .Ž .ž /n n n nf 1 y exp yuŽ .Ž .n n
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The sequence B is strictly bounded away from zero by the positivity ofn
Ž . Ž . Ž . Ž .l F see Lemma 20 . Replace exp 2u u by the lower bound exp 2u *u ,n

˜Ž .where u * G u F is a finite upper bound to u . Therefore, because C s C qn n
ˆŽ . Ž .o 1 , we can invert 28 by solving for l inp n

20 2ˆ29 exp 2u *u 1 y r exp u y u u du F O d .Ž . Ž . Ž .Ž .H ž /n n n p n
y`

ˆŽ . Ž .From this we see immediately that r s 1 q O d and that u y u sn p n n n
Ž . Ž .O d . Furthermore, because the probability on the right-hand side of 29p n

ˆholds uniformly over F , deduce that the rate for u holds uniformly. In n

APPENDIX

Ž .PROOF OF LEMMA 20. The bounds to u follow by Assumption 19 i . There-
ŽŽ . .fore, we only need to verify the bounds on f. Suppose that G g GG 1 q d q .M

Ž . y1rŽ1qd .Apply Jensen’s inequality to the convex function F x s x over1
positive x, to show that

G exp yY s GF exp 1 q d YŽ . Ž .Ž .Ž .1

Ž .y1r 1qdG F G exp 1 q d Y G 1 q M .Ž . Ž .Ž .Ž .1

One more application of Jensen’s inequality, this time applied to the convex
Ž . 1qdfunction F x s x over positive x, shows that2

F G exp yY F GF exp yY s G exp y 1 q d Y F 1 q M .Ž . Ž . Ž . Ž .Ž . Ž . Ž .2 2

Ž .Take 1 q d th roots on the left- and right-hand sides. This and the previous
inequality show that

Ž . Ž .y1r 1qd 1r 1qdU Up s 1 q M F G exp yY F p s 1 q M .Ž . Ž . Ž .0 1

Ž . Ž .The distribution which concentrates at either "log 1 q M* r 1 q d lies in
ŽŽ . . � Ž .GG 1 q d q for 0 F M* F M. By varying M*, deduce that G exp yY :M

ŽŽ . .4 w U U xG g GG 1 q d q s p , p .M 0 1
Ž .Now use Assumption 19 ii , to deduce that

0 - p s pU inf P exp yb9ZŽ .0 0 Zž /
< <b Fb0

and

p s pU sup P exp yb9Z - `.Ž .1 1 Zž /
< <b Fb0

This gives the lower and upper bounds to the parameter space. I
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Ž .LEMMA 30. Suppose that g s b , u , G is a sequence in F. Then for anyn n n n
positive sequence C ª `,n

2 y1R C F O exp y2 1 q d u C q O n exp yu CŽ . Ž . Ž .Ž .Ž . Ž .g n n n p n nn

uniformly over F.

Ž .2PROOF. The behavior of R C depends upon the sum of the two termsg nn

2yC yCn n2 y1r2D u du q n m K u y X du,Ž . Ž .H H Ž .g gn ny` y`

Ž . Ž .which we denote, from left to right, as A and B . We consider the contribu-
tion from each of these terms separately.

Ž . Ž . Ž .A Use the bound 14 and change variables from x to u y x in D u togn

see that when u F 0,

1
<D u s f u y x , z g dx dn zŽ . Ž .Ž .HHg 2 nn

0

F 1 q M exp 1 q d u uŽ . Ž .Ž .n

1 X= u exp y 1 q d u x dx h z exp y 1 q d b z dn z .Ž . Ž . Ž . Ž .Ž . Ž .H Hn n n
0

The first integral in the last inequality is bounded by 1, while the second
Ž .integral is uniformly bounded by Assumption 19 ii . Deduce that

yCn 2
D u du F O exp y2 1 q d u C uniformly over F.Ž . Ž .Ž .Ž .H g n nny`

Ž . nB Expand the integrand and take its expectation under P . The cross-gn

product terms factorize by independence and vanish because they have zero
means. Bound the remaining term by

1 1 1yC yC yCn n n231 P K u y X du s f K ) m u q D u .Ž . Ž . Ž . Ž .H H Hg n u gn n nn n ny` y` y`

w Ž . 2The right-hand side follows from the identity 16 , the fact that K s K for a
Ž . Ž . Ž . xuniform 0, 1 kernel and by setting l g s u , f .n n n

We have already evaluated the behavior of D in the second integral ongn
Ž .the right-hand side of 31 . The integrand of the first integral is uniformly

Ž Ž .. Ž . Ž .O exp u u by identity 17 and the boundedness of l F . Deduce by Cheby-n
Ž . Ž y1 Ž ..shev’s inequality that B is O n exp yu C , uniformly over F. Ip n n
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