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IDENTIFIABILITY AND RATES OF ESTIMATION
FOR SCALE PARAMETERS IN LOCATION

MIXTURE MODELS1

BY HEMANT ISHWARAN

University of Ottawa

In this paper we consider the problem of identifiability and estimation
Ž .for the scale parameter u in the location mixture model u X q Y , where

X has a known distribution independent of the Y, whose distribution is
unknown. Identification of u is ensured by constraining Y based on the
tail behavior of the distribution for X. Rates for estimation are described
for those X which can be written as a square summable series of exponen-
tial variables. As a special case, our analysis shows that the structural

Ž .parameters in the Weibull semiparametric mixture Heckman and Singer
'Ž .are not estimable at the usual parametric O 1r n rate. The exactp

relationship between identifying constraints and achievable rates is ex-
plained.

Ž .1. Introduction. Heckman and Singer 1984 studied economic theories
concerning continuous durations of occupancy of states. In order to properly
estimate structural parameters in the presence of population heterogeneity,
they proposed the use of a semiparametric mixture model as a method for
modeling duration data. The model they proposed was the Weibull semipara-
metric mixture

f t N z , b , u , GŽ .
1

1ruy1 1ru� 4s t ) 0 t exp yb9z y y y t exp yb9z y y dG y ,Ž . Ž .Ž .H
u

1Ž .

where t is the observed positive duration time, z is a vector of time-invariant
Ž .observed covariates and b, u is a vector of unknown structural parameters

k Ž . Ž . Žin R m 0, ` . The distribution G in 1 referred to as the unknown mixing
.distribution was introduced in order to account for potential heterogeneity,

and was assumed to be completely unspecified up to an identifying moment
constraint.

Let Y denote the random variable with unknown distribution G, and let W
denote a standard exponential variable. If W and Y are independent, then

u2 T s W exp b9z q YŽ . Ž .
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Ž . Ž .has the conditional Weibull mixture density 1 . In the absence of covariate
Ž .information, or equivalently if we set b s 0, a log transformation in 2

results in the location mixture

3 u log W q Y ,Ž . Ž .
with unknown scale parameter u .

In general, if X has known distribution independent of unknown Y, then

4 M s u X q Y , u ) 0,Ž . Ž .
describes a location mixture model with unknown scale parameter u . The
intent of this paper is to study the problem of identification and estimation

Ž .for u in the general mixture 4 . Given a sample of n independent realizations
Ž .from 4 , this paper studies the relationship between identifying constraints

on Y and uniform lower rates of estimation for u . Because the problem of
Ž .estimation for u from the Weibull mixture 1 is at least as difficult as from

Ž .the transformed and reduced model 3 , the Weibull mixture will serve as
both a special case and as motivation for this problem.

Ž .Jewell 1982 observed that a theorem of Bernstein implies the existence of
a variable Y, independent of W, such that

W u1 s W u2 exp Y where 0 - u - u .Ž .D 2 1

That is, a Weibull distribution with a fixed shape parameter can always be
written as a scale mixture of Weibull distributions. However, because Jewell
based his argument on an existence proof, no explicit form for Y in the
construction was given excepting for the special case u s 2 and u s 1.1 2

Ž .Jewell’s 1984 observation is of particular relevance to this paper, for it
Ž .shows that the Weibull mixture model 1 is unidentified without constraints.

In Section 3 we will provide an explicit construction for Y as a direct proof of
the lack of identification. If s denotes a sequence of binomial variables withj

Ž . Ž .distribution Bin 1, 1 y u ru , and W ; exp 1 a sequence of standard expo-2 1 j
nentials, then, under the assumption that all variables are mutually indepen-

Ž . w Ž .xdent, the nonidentifiability of 3 and hence 1 follows from the equality of
distributions:

5 u log W s u log W q Y for 0 - u - u ,Ž . Ž .1 D 2 2 2 1

where
`u u 1 u1 1 2

6 Y s yg y 1 y s W y 1 q ,Ž . Ý2 j jž / ž /u u j u2 2 1js1

and g s Euler’s constant f 0.57722.
Ž .The construction 5 shows that u need not be identified in the general

Ž .mixture 4 . Section 3 studies the identification problem. There we present
Theorem 15 which states conditions on the moments for Y sufficient to

Ž . Ž .ensure identification of u in 4 . The construction for the nuisance variable 6
is especially useful in understanding the conditions and application of the
theorem. The construction will enable us to identify exactly which terms in
the sum-representation create problems for identification.
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Theorem 20 of Section 4 expresses the main result of the paper by
Ždescribing the relationship between moment constraints on Y sufficient to

.ensure identifiability and lower rates for estimation of u . The theorem
applies to those X variables which can be written as a square summable
series of centered exponentials, and consequently is applicable to the trans-

Ž .formed Weibull mixture 3 . In particular, establishing a lower rate in the
Ž . Ž .constrained mixture 3 involves modifying the variable 6 just enough to

satisfy the required moment constraints, while still making it difficult to
Ž .distinguish between the u log W variable and the u log W q Y mixture.1 2 2

The analysis shows that the scale parameter in the Weibull mixture cannot
Ž yd rŽ2 dq1.. Ž .be estimated at better than an O n rate under a 1 q d th momentp

constraint to the mixing Y. This seems to be a sharp lower rate. Under
Ž .a second moment constraint, Honore 1990 constructed a class of estima-´

Ž ys .tors that achieve an O n rlog n rate of estimation for each 0 - s -p
Ž . Ž yd rŽ2 dq1..1r3. Preliminary work by Ishwaran 1994 suggests that O np

is the optimal rate for 0 - d - 1, while preliminary results by Honoré
Ž .1994 suggest that his class of estimators can be extended to achieve an

Ž ys . Ž . Ž .O n rlog n rate under a 1 q k th constraint for each 0 - s - kr 2k q 1 ,p
where k G 1 is any integer.

In summary, the layout of the paper is as follows. Section 2 provides a
working definition for locally uniform rates of estimation. Section 3 contains
the Weibull construction and describes conditions which ensure identifiability

Ž .of u in the general mixture model 4 . Section 4 contains the main result in
Theorem 20.

A word concerning notation. In most places in the paper, the linear
functional notation for expectation is employed. For example, the expected
value of a function g with respect to a probability measure P is written as

Ž . Ž . Ž .Pg, or Pg X , rather than the usual convention H g x dP x . One exception
Ž .is that H g, or H g x dx, will be written to denote the integral of g with

respect to Lebesgue measure.

2. Locally uniform estimation. The scale]location mixture problem
falls under the following general framework. Let PP be a family of probability

Ž .models on a common measurable space XX , AA , and let l be the functional
Ž .which maps a probability P g PP onto its structural parameter l P s u in

Ž .the metric space D, d . Thus, in the context of our mixture problem, PP
Ž . Ž .denotes a family of models consisting of mixtures of the form 4 , while l P is

Ž .the functional which maps P g PP onto its scale parameter u in 0, ` .
ˆ ˆLocally uniform estimation by an estimator u for u will mean that un n

Ž . Ž .becomes close to l P uniformly for all P over a possibly changing family of
models PP : PP.n

DEFINITION 7. Let PP be a sequence of families in PP, and let d be an n
ˆ Ž .decreasing positive sequence. Estimators u for l P are said to have ann
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Ž .O d rate of convergence over PP if for each « ) 0 there exists a finitep n n
constant k such that«

n ˆlim sup sup P d u , l P G k d F « ,Ž .Ž .½ 5n « n
nª` PgPPn

n Ž .where P denotes the n-fold product measure P m ??? m P n factors for a
probability P.

The crucial idea for determining lower bounds for rates on estimation
involves translating a proposed rate of convergence into an assertion involv-
ing LL -distances between probability measures. The technique is originally1

Ž .due to Le Cam 1973 , and has more recently been studied by Donoho and Liu
Ž .1987, 1991 .

LEMMA 8. Suppose there exist models P , Q g PP such thatn n n

5 n n 5lim sup P y Q - 2,1n n
nª`

5 5where ? denotes the LL -distance. Then u cannot be estimated at a rate1 1
Ž Ž ..better than O l P , Q over PP in the sense of Definition 7.p n n n

ˆ ˆ� Ž Ž .. 4 Ž .PROOF. Let A s d u , l P - d r2 , where d s l P , Q and u isn n n n n n n n
n n ˆ� Ž Ž .. 4some estimator for u . Then Q A F Q d u , l Q G d r2 , by the d sepa-n n n n n n n

ˆ Ž .ration between P and Q . If u had a rate better than O d , then then n n p n
right-hand side of the last inequality would eventually be bounded by arbi-
trarily small « ) 0, while P nA G 1 y « eventually. This would lead to then n
contradiction

1 n n n n5 5 < <P y Q G P A y Q A G 1 y 2« eventually.1n n n n n n2

ˆ Ž .Thus u cannot do better than O d . In p n

In order to establish the best possible lower rate in the mixture problem,
Ž . Ž .our strategy will be to search for mixtures u X q Y and u X q Y which0 0 n n

are close in the Hellinger distance, but whose u parameters are as far apart
as possible. The Hellinger calculation is convenient because it provides a
simple method for bounding the LL -distance between n-fold product mea-1

w Ž . xsures see, e.g., Le Cam 1973 , Lemma 1 . In particular, by Lemma 8, in
Ž .order to establish a lower rate of O u y u for u , it would suffice to findp n 0

mixtures so that
«

H u X q Y , u X q Y F for small « ) 0,Ž . Ž .Ž .0 0 n n 'n

Ž .where H V , V is the Hellinger distance between any two random variables1 2
V and V . This is the method used in Section 4 for establishing rates of1 2
estimation.
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3. Identifiability. Consider the problem of identifiability of the scale
parameter u from knowledge of the distribution of the location mixture model
Ž .4 , where X has a known fixed distribution F independent of the Y, which
itself has unknown distribution G. To motivate the problem, let us first
consider scale mixtures of Weibull distributions, that is, distributions of

w Ž .xurandom variables of the form W exp Y , where Y is a positive random
Ž .variable independent of W ; exp 1 . A direct construction will show that,

without constraints on the mixing distribution, the Weibull scale mixtures
are not identified.

The construction will use the following representation.

X Ž .LEMMA 9. Suppose W is an i.i.d. sequence of exp 1 variables. Then therej
Ž .exists a random variable W ; exp 1 such that

`
X10 log W s yg y W y 1 rj,Ž . Ž .Ý j

js1

where g s Euler ’s constant.

N Ž .PROOF. Let H s Ý 1rj. Then H s log N q g q o 1 . Define X toN js1 N N
Ž .be the partial sum to N terms of the right-hand side of 10 . Use the fact that

W X s max W X s W X rN q ??? qW Xr1,ŽN . j D N 1
1FjFN

to see that

X s yg q H y W X .N D N ŽN .

It follows that

� 4 X
P X ) x s P yx q log N q o 1 ) WŽ .� 4N ŽN .

Ns 1 y exp x y log N q o 1Ž .Ž .Ž .
Ns 1 y exp x q o 1 rNŽ .Ž .Ž .

ª exp yexp x as N ª `.Ž .

That is, X has a limiting log W distribution. Furthermore, the weightedN
Ž .sum of independent variables on the right-hand side of 10 converges in LL ,2

and hence almost surely to some random variable. Deduce that X convergesN
to a log W variable. I

To establish the nonidentifiability of u , we will construct a Y independentu

Ž .of a log W variable such that log W s u log W q Y , for some fixed 0 - u - 1.D u

That is, there is no way to distinguish observations on W, a Weibull with
w Ž .xushape parameter 1, and observations from the W exp Y scale mixtureu

with shape parameter u .
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Ž .By the representation 10 , we see that in order to demonstrate the lack of
identification, we need to find a Y , independent of an i.i.d. sequence W X ;u j

Ž .exp 1 , such that
` `

X Xu log W q Y s yug y u W y u rj q u Y s yg y W y 1 rjŽ . Ž . Ž .Ý Ýu j u D jž /
js1 js1

for 0 - u - 1. This suggests the choice
`

u Y s yg 1 y u y B y 1 q u rj,Ž . Ž .Ýu j
js1

where we need to find variables B independent of the W X such that W X sj j j D
u W X q B . By comparing characteristic functions on the left- and right-handj j
sides of the last equality in distribution, we are forced to find a variable with
the characteristic function

1 y u it r 1 y it s u q 1 y u r 1 y it for all real t .Ž . Ž . Ž . Ž .
Ž .Remarkably, such a variable does exist. If we let s denote a Bin 1, 1 y u0

Ž .variable independent of W ; exp 1 , then the variable we seek is s W .0 0 0
Let s and W be sequences of variables that have the distribution of sj j 0

and W , respectively. Furthermore, suppose that s , W and W X are mutually0 j j j
independent. If we define Y byu

`

11 u Y s yg 1 y u y s W y 1 q u rj for 0 - u F 1,Ž . Ž . Ž .Ýu j j
js1

Ž .then we arrive at the equality log W s u log W q Y , where Y is indepen-D u u

dent of log W. This establishes the lack of identification in the Weibull
mixture.

Ž .REMARK 12. Note that 11 is well defined because the sum of independent
variables on the right-hand side converges in LL , and hence almost surely.2

General conditions for identifiability. Return to the general problem of
Ž .identifiability of u from knowledge of the distribution for u X q Y . As the

Weibull example shows, it might be possible to have distinct u and u , for1 2
which
13 u X q Y s u X q Y .Ž . Ž . Ž .1 1 D 2 2

Equivalently,
14 u X q Y s X q Y ,Ž . Ž .1 D 2

where we may assume u s u ru F 1. Thereom 15 will show that the identi-1 2
Ž .fication expressed by 13 cannot occur when u - 1 if the distributions for Y1

and Y are assumed to satisfy an exponential moment condition.2
To express these conditions, we present the following method for measur-

ing the tail behavior of a distribution. For each distribution G and each
0 - M F `, let

r G , M s sup r G 0: G exp "rY - 1 q M .� 4Ž . Ž .0
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Ž . Ž .Define GG r to be the class of distributions G with r G, M s r and letM 0
Ž . Ž .GG Rq s D GG r .M r G R M

Ž .THEOREM 15. Suppose that 0 - R s r F, ` - `. Then the identification0
Ž .expressed by 13 is only possible when u s u and Y s Y if the distribu-1 2 1 D 2

Ž .tions of Y and Y are required to belong to GG Rq for 0 - M F `.1 2 M

Note that, in particular, Theorem 15 shows that the u shape parameter in
Ž . Ž .1 is identified under the constraint that Y has a distribution in GG 1q .M

Ž .This can be compared to the result in Heckman and Singer 1984 , who show
Ž .that u is identified under the restriction G exp yY - `.

PROOF OF THEOREM 15. By the Tonelli]Fubini theorem and the tail
behavior for X and Y ,1

P exp "ru X q Y s P exp "ru X P exp "ru YŽ . Ž . Ž .Ž .Ž . Ž .1 116Ž .
- ` for 0 - r - Rru .

Ž . Ž Ž .. Ž .The left-hand side of 16 must equal P exp "r X q Y by 14 . Therefore,2
one more application of the Tonelli]Fubini theorem gives

P exp "rX P exp "rY - ` for 0 - r - Rru .Ž . Ž .Ž . Ž .2

The second factor on the left-hand side does not vanish. Therefore, if u - 1,
Ž Ž ..we would arrive at the contradiction P exp "rX - ` for R - r - Rru . It

follows that u must equal 1.
ˆLet f denote the Fourier transform for X, and let g and g denote theˆ ˆ1 2

Ž .transforms for Y and Y . With u s 1, the equality 14 implies that1 2

ˆ ˆ < <f z g z s f z g z for z : F z - R .� 4Ž . Ž . Ž . Ž . Ž .ˆ ˆ1 2

ˆThe analyticity of f guarantees that the transform must be nonzero in some
Ž .open region within this strip otherwise it would be 0 everywhere . Therefore,

g must agree with g within this open region, and, hence, by analyticity theˆ ˆ1 2
two transforms must agree along the real axis, yielding Y s Y . I1 D 2

4. Rates of estimation for square summable exponentials. Theo-
rem 15 presented sufficient conditions that ensure identification for the

Ž .location mixture model 4 . In this section we consider how these constraints
Ž .play a role in the estimation for the unknown scale parameter in 4 . The crux

of the theory revolves around the relationship between the severity of mo-
Ž .ment constraints imposed on the mixing Y to ensure identifiability and the

manner in which these constraints affect the Hellinger distance between
mixture models with differing parameters.

To motivate the discussion, first consider the problem of estimation for the
Ž .u parameter in the transformed Weibull mixture 3 . Suppose then that PP is

Ž .the identified class of mixtures of the form 3 whose Y have distributions in
ŽŽ . .GG 1 q d q for some 0 - M F ` and d G 0. Let us consider how well u canM

be estimated.
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In order to derive a sharp lower rate of estimation for u , we will construct a
ŽŽ . .Y with distribution in GG 1 q d q that makes discrimination between theu M

Ž .mixture u log W q Y and the log W variable as difficult as possible. Becauseu

Ž .the Y presented in 11 represents the worst one-dimensional case for theu

unconstrained problem, the strategy we use will be to modify this variable
slightly so as to satisfy the necessary moment constraints.

Ž .In order to determine how we might modify 11 , let us calculate the tail
behavior of its distribution. The contribution from each j-term in the sum
Ž . Ž .11 to P exp rY equalsu

1 y u r 1 y u rŽ .
exp y u q for - u - 1.ž /ž /ju 1 y rr ju jŽ .

If k is the largest integer less than or equal to 1 q d, then it is the first k
Ž .terms in the sum of 11 that are problematic. For even when u is near 1,

Ž .their contribution to P exp rY becomes unbounded as r approaches j F 1 qu

d. As we shall see, these are the only terms that cause any difficulties.
Consequently, one method for satisfying the moment constraint would be to
replace the k problematic terms by truncated versions

17 s W U y 1 q u rj for j s 1, . . . , k ,Ž . Ž .j j

U Ž .where W ; C exp yw , 0 - w - t , are truncated exponential variablesj t

Ž Ž ..assumed to be independent of s , and C s 1r 1 y exp yt for 0 - t - `.j t

Ž .Our strategy, then, will be to replace a finite number of terms in 11 with
Ž .the modified variables 17 . By allowing t ª ` as rapidly as possible in order

to comply with the moment constraints, we will be able to construct a mixture
Ž .u log W q Y in PP that is difficult to distinguish from the log W variable.u

This method will generate our rates of estimation.
Ž .The same strategy can be extended to apply to the general mixture 4 for

the class of X variables that can be written as the sum of independent
X Ž .W ; exp 1 variables:j

`
X18 X s a q a W y 1 ,Ž . Ž .Ý0 j j

js1

< < < < < < ` 2where 0 ) a G a G ??? , a - ` and Ý a - `. For the general case,1 2 0 js1 j
lower rates will be established using a nuisance mixing variable defined as
follows. For k G 0 and 0 - u F 1, define Y byk , u

k `
U19 u Y s a 1 y u q a s W y 1 q u q a s W y 1 q u ,Ž . Ž . Ž . Ž .Ý Ýk , u 0 j j j j j j

js1 jskq1

where s , W and W U are assumed to be mutually independent.j j j

Ž . Ž .THEOREM 20. Let PP be the identified class of mixtures 4 with X ; F of
Ž . Ž .the form 18 and Y with distribution in GG R q for 0 - M F ` andM d

Ž . Ž . Ž .R s 1 q d r F, ` . Suppose u X q Y is a mixture in PP, where Y hasd 0 0 0 0
Ž X . Xdistribution in GG R q for R ) R . Then there exists a family PP : PPM d d d n
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Ž .that converges uniformly in LL to u X q Y such that u can be estimated at1 0 0
Ž . Ž yd rŽ2 dq1..a rate no faster than O 1rlog n over PP when d s 0 and O np n p

when d ) 0.

Ž .The theorem applies to the Weibull semiparametric mixture 1 . In particu-
lar, we find that even though u is identified when d s 0, it still cannot be

Ž .estimated at better than an O 1rlog n rate. Interestingly, this shows thatp
Ž .the first moment constraint assumed by Heckman and Singer 1984 , al-

though sufficient to ensure consistency of their nonparametric maximum
likelihood estimator, is not strict enough to guarantee a polynomial rate of
estimation. Polynomial rates can only be achieved under the more stringent
moment constraint when d ) 0. In particular, the theorem shows that rates

'Ž .of estimation approach O 1r n only as d ª `.p

Ž .PROOF OF THEOREM 20. To establish the rates, we will use 19 to con-
Ž .struct a mixture in PP difficult to distinguish from the u X q Y mixture.0 0

Because we can always rescale u by u , we can assume without loss of0
generality that u s 1. Furthermore, we could always add an independent Y0 0

Ž .term to the right-hand side of 19 in constructing our mixture. Because
X Ž .R ) R , the distribution for Y ru will eventually lie in GG R q for ud d 0 M d

values close enough to 1. Therefore, the contribution from Y to our construc-0
Ž .tion would not undermine our efforts to ensure that 19 satisfied the neces-

sary moment constraints. Thus, without loss of generality, we can assume
that Y s 0 and u s 1.0 0

Ž . < < < <Let k be the first integer so that R s 1 q d r a - 1r a . The as-d 1 kq1
serted lower rates will follow from a Hellinger distance calculation between

Ž . Ž .X and the mixture u X q Y , where Y is defined by 19 withk , u k , u

ur 1 y u r , for d s 0,Ž .
21 t sŽ . ½ yu log 1 y u q r r d q 1 y u , for d ) 0,Ž . Ž .Ž .

Žand r ) 0 is yet to be specified we assume that 0 - u F 1 is close enough to
.1 to ensure that t ) 0 .

Ž .Of course, we first need to verify that u X q Y belongs to PP for thek , u

Ž .truncation level specified in 21 . To do so, it suffices to show that
Ž .P exp "R Y - 1 q M.d k , u

Ž .From the inequality 1 q x F exp x , deduce that

P exp r s W y 1 q uŽ .Ž .j j

1 y u rŽ .
s exp yr 1 y u 1 qŽ .Ž . ž /1 y r22Ž .

1 y u r 2Ž .
F exp for r - 1 and 0 F u F 1.ž /< < < <1 y r
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< <Our choice for k ensures that R a is strictly less than 1 uniformly ford j
Ž . Ž .j G k q 1. Use 22 over the j G k q 1 terms in 19 to show that

Ž .P exp "R Y is smaller thand k , u

k U< < < < < <1 y u R a q k a R a s WŽ . Ž .d 0 1 d j j j
exp P expŁ ž /ž / ž /u ujs1

` 2 2 21 y u R a ruŽ . d j
= exp .Ý < < < <ž /1 y R a rud jjskq1

The denominator in the summation of the above expression remains strictly
bounded away from 0 for u close to 1. This and the square summability of a j
shows that the expression is bounded by

kU1 q o 1 P exp 1 q d s W ru ,Ž . Ž .Ž . Ž .Ž .1 1

Ž .where the o 1 term is uniform as u ­1. Meanwhile,

U1 q d s W u 1 y u C d q 1 y u tŽ . Ž . Ž .1 1 t
P exp s u q exp y 1 ,ž / ž /u d q 1 y u uŽ .

Ž .which by 21 is less than or equal to

1 q C exp 1rr y 1 s 1 q o 1 , for d s 0,Ž . Ž .Ž .t½ 1 q C exp yr r d q 1 y u s 1 q o 1 , for d ) 0,Ž . Ž . Ž .t

Ž .where the o 1 variable is uniform as u ­1 and r ­`. This proves that Yk , u

Ž .has distribution in GG Rq for a suitably large enough r and u close enoughM
to 1.

Now to establish the rate. The same argument given in Section 3 implies
Ž .that X s u X q Y . Therefore, k y 1 applications of the triangle inequal-D 0, u

ity gives

H X , u X q Y s H u X q Y , u X q YŽ . Ž . Ž .Ž . Ž .k , u 0, u k , u

k

F H u X q Y , u X q Y .Ž . Ž .Ž .Ý jy1, u j , u
js1

23Ž .

Ž . Ž .The Hellinger distance satisfies H V q V , V q V F H V , V for any ran-1 2 1 2
dom variable V independent of any V and V . We can assume that1 2
� X U 4s , W , W , W : j G 1 are mutually independent. Therefore, because thej j j j
Hellinger distance is invariant under a change of scale and location, we can

Ž .bound the right-hand side of 23 by

k
X X X XU U24 H u W q s W , u W q s W s kH W , u W q s W ,Ž . Ž .Ž .Ý j j j j j j 1 1 1 1

js1
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where the last equality follows from the identity W X s u W X q s W . Let mj D j j j
denote the density for W . Then the same identity shows that1

? 1 ?
m s m q 1 y u m ) m .Ž .ž / ž /u u u

Furthermore, if m denotes the density for the truncated exponential W U,u 1
then u W X q s W U has density1 1 1

? 1 ?
m q 1 y u m ) m s m q 1 y u D ,Ž . Ž .u už / ž /u u u

where
1 ?

w xD s m ) m y m .u už /u u

Ž .Hence, deduce from 24 that

2'H X , u X q Y F k m y m q 1 y u D'Ž . Ž .Ž . H( ž /k , u u

25Ž .
2DuF k 1 y u ,Ž .(H m

2 2' 'Ž . Ž .where the last inequality follows from a y b F a y b ra for any
a, b G 0.

� 4Let 1 ? denote the indicator function. To determine the contribution from
Ž .the integral on the right-hand side of 25 , use the bound

< < � 4 � 4u D w F exp yw w C y 1 1 w - t q t C y 2 q w 1 w G t ,Ž . Ž . Ž . Ž .Ž .u t t

to show that
2

tD wŽ .u 22 2u dw F C y 1 w exp yw dwŽ . Ž .H Htm wŽ . 0

q` 2q exp yt t C y 1 q w exp yw dwŽ . Ž . Ž .Ž .H t
0

s O exp y2t q O exp yt ,Ž . Ž .Ž . Ž .
Ž Ž ..because C y 1 s O exp yt . Therefore,t

26 H X , u X q Y F O 1 y u exp ytr2 .Ž . Ž . Ž . Ž .Ž .Ž .k , u

The asserted rates will now follow by allowing u to depend on the sample
wŽ . xsize n. Let t s u r 1 y u r s log n when d s 0, and let u s 1 yn n n

yd rŽ2 dq1. w Ž .x« n when d ) 0 note that this defines t by 21 . Therefore, from
Ž .26 ,

O ny1r2rlog n , for d s 0,Ž .
27 H X , u X q Y FŽ . Ž .Ž .n k , u n ½ y1r2« 9n , for d ) 0,

where « 9 ) 0 can be made arbitrarily small by varying « .
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Ž .Let PP : PP be the family of mixtures X and u X q Y , where u F u - 1.n k , u n
Then we have exhibited mixture models in PP whose structural parametersn

Ž . Ž yd rŽ2 dq1..are separated by O 1rlog n when d s 0 and O n when d ) 0, and
whose Hellinger distance is a small multiple of ny1r2. Furthermore, because

Ž .the Hellinger distance 27 bounds the LL -distance, PP converges uniformly1 n
in LL to X. This establishes the asserted rates. I1
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