
The Annals of Statistics
1997, Vol. 25, No. 2, 642]661

ESTIMATING DISEASE ATTACK RATES IN
HETEROGENEOUS INTERACTING POPULATIONS,
WITH APPLICATIONS TO HIV VACCINE TRIALS1

BY DAVID WICK AND STEVEN G. SELF

Fred Hutchinson Cancer Research Center

We describe models for infectious disease attack rates outside Aalen’s
multiplicative class and incorporating heterogeneity and interactions be-
tween subjects. Large-sample theory for the Nelson]Aalen estimator is
developed, and its relevance examined in a simulation study. Planning for
randomized, controlled clinical trials of prophylactic HIV vaccines partly
motivated this work.

1. Introduction. Models appropriate for analyzing infectious disease
transmission differ fundamentally from those suitable for chronic diseases.

Ž .For chronic diseases, Aalen’s 1978 multiplicative model, or its generaliza-
w Ž .tion, the relative risk regression model Kalbfleish and Prentice 1980 and
Ž .xAndersen, Borgan, Gill and Keiding 1993 , is useful. In these models

ramdomness in the intensity function is restricted to censoring, loss-of-follow-
up or time-dependent covariates. The ‘‘baseline’’ intensity function is as-
sumed deterministic. By contrast, for infectious diseases each individual’s
risk depends on the level of exposure to the infectious agent, which is not
observable and may vary considerably between individuals and over time. In
addition, contacts between individuals can generate dependences not seen in
the chronic disease setting.

Large-scale randomized trials of HIV prophylactic vaccines are currently
w Ž .being planned Dixon, Rida, Fast and Hoth 1993 and Rida and Lawrence

Ž .x1995 . Standard statistical methods based on Aalen’s multiplicative model
are likely to be used in the analysis of trial results. However, the issues
considered above are salient in this context. The behaviors that put people at
risk of contracting HIV are highly variable, and a host of biological factors

winfluence both susceptibility to infection and infectiousness DeGrutolla,
Ž . Ž .Seage, Mayer and Horsburgh 1989 , Jewell and Siboski 1990 , Padian,

Ž .Shiboski and Jewell 1990 , Winkelstein, Lyman, Padian, Grant, Samuel,
Ž .x ŽWiley, Anderson, Lang, Riggs and Levy 1987 . As one instance, if individu-

als in the acute stage are more infectious than those in the chronic phase,
.most new cases might be due to contact with the former subgroup. Recruit-

Received March 1995; revised December 1995.
1 Research supported by NIAID Grants 5-R01-AI29168 and NO1-AI-45200.
AMS 1991 subject classifications. Primary 62F12, 60K35, 62P10; secondary 62M05, 62G30,

62E25.
Key words and phrases. Estimation in infectious diseases, interacting processes, asymptotics

of Nelson]Aalen estimators, counting processes, vaccine trials, HIV disease.

642



ESTIMATING DISEASE ATTACK RATES 643

ment in the trial might capture large parts of social networks; indeed, a
substantial part of the ‘‘at risk’’ population in some communities might
participate. As a result, many infections may be due to transmission from one
trial participant to another.

Although infectious disease epidemiologists and epidemic modelers have
long appreciated the random nature of hazards for infection, as well as the
dependences induced by contacts, the impact of these features on distribu-
tional properties of commonly used statistics has not been thoroughly as-

Ž .sessed. With the exception of Rida’s 1991 work on asymptotic distribution
theory under the relatively simple SIR model, we are not aware of any

Ž .systematic approach to this problem. As exemplified by Becker 1989 , large-
sample distribution theory is often dispensed with by a reference to martin-
gale limit theorems, without examination of whether the conditions of the
theorems apply. For example, to apply the often-cited martingale central

Ž .limit theorems of Rebolledo 1978, 1980 , the variation process must converge
to a deterministic function. However, in realistic transmission models, this
process is a complicated function of all participants’ infectious status indica-
tors, which moreover are not independent. It is not difficult to construct
examples for which convergence to a deterministic limit fails. Thus, to ensure
validity of inferences in HIV vaccine trials, we must identify conditions under
which the ‘‘standard’’ distribution theory applies, as well as develop practical
guidelines for assessing whether these conditions obtain in communities
participating in these trials.

In Section 2 we construct stochastic models of the infection counting
process, focusing exclusively on the situation in which contacts are unobserv-
able. Although counting processes in multiplicative models have been widely

w Ž .studied by statisticians Andersen, Borgan, Gill and Keiding 1993 and
Ž .xFleming and Harrington 1991 , our models are closer to the ‘‘interacting

wparticle processes’’ known to probabilists and mathematical physicists Lig-
Ž . Ž . Ž .xgett 1985 , Spohn 1991 and DeMasi and Presutti 1991 . For these pro-

cesses the large-sample limiting dynamics is typically nontrivial and gov-
w Ž .erned by infinite-dimensional evolution equations Spohn 1991 and DeMasi

Ž .xand Presutti 1991 .
In Section 3 we prove limit theorems for a wide class of random variables

related to our infection process, and in Section 4 we apply these to the
wNelson]Aalen estimator of attack rates Andersen, Borgan, Gill and Keiding

Ž .x1993 and related variance estimators. A central limit theorem justifies use
of conventional Wald-type confidence intervals. In Section 5 we relax certain
modeling assumptions and show that nonnormal statistics can dominate the
large-sample limit. We also present a small simulation study. Finally, in
Section 6 we state our conclusions and discuss directions for further research.

Ž .2. Models. We enroll n subjects at baseline. Let N t be a right-i
continuous HIV infection status indicator for the ith subject at time t. Let
Ž .« t be the right-continuous exposure counting process for the ith individual,i
Ž .« t being the number of exposures up to time t. Subjects are randomlyi
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Ž .assigned by a coin flip or electronic equivalent to vaccine or control group at
Ž .baseline. Let V s 0, 1 be a vaccine status indicator, V s 1 0 meaning thei i

Ž .subject was not vaccinated at baseline.
Ž .Let GG be an increasing filtration on a probability space for which V , « st i i

Ž .and N s , for s F t, and some latent variables described below are measur-i
Ž .able. We model the integrated intensity of the infection process N t withi

respect to GG byt

t]GG1 L t s exp b q b V 1 y N s] d« s .Ž . Ž . Ž . Ž . Ž .Ž .Hi 0 i 1 i i i
0

The parameters b and b determine the probability of infection given0, i 1
exposure and vaccination status. Our model for vaccine effect is ‘‘Model One’’

Ž .of Smith, Rodrigues and Fine 1984 , in which vaccination is assumed to drop
the probability of infection in each exposure by a fixed factor.

Ž .For modeling purposes we next introduce a subfiltration of GG , call it FF t ,t
Ž .generated by the N s , s F t, the V ’s and the latent variables. By thei i

w Ž .xinnovation theorem Aalen 1978 , the intensity with respect to a subfiltra-
Ž .tion is given by the expectation of 1 conditional on FF , which will be of thet

form

2 lFF t s exp b q b V 1 y N t] f FF t .Ž . Ž . Ž . Ž . Ž .Ž .i 0 i 1 i i i

We next divide the exposure intensity into contributions from contacts within
the cohort and ‘‘external’’ contacts, and model them as

n
FF3 f t s g t N t] q E t] ,Ž . Ž . Ž . Ž . Ž .Ýi i , j j i

js1

Ž .where the component-wise positive g t represents the intensity of contactsi, j
Ž .between subjects i and j, and E t is a positive random vector of ‘‘externalj

risk rates.’’ For simplicity, we assume that both the extracohort exposure rate
and the intercohort contact matrix are time independent, and the external
risk rate variables are almost surely bounded by some constant K .E

Finally, we model the contact matrix as

1
4 g s F C , C ,Ž . Ž .i , j i jn

where the C represent ‘‘contact propensities’’ of the study subjects makingi
Žcontacts within the cohort which we assume are almost surely bounded by

.some constant K . We denote by F a polynomial in two variables which isC
w x2positive on the square 0, K :C

d
p q5 F x , y s a x y G 0.Ž . Ž . Ý p , q

p , qs1

ŽThe latter is not a serious restriction, as any continuous function can be
.uniformly approximated by a polynomial on this domain. The factor of 1rn is

Ž .included in 4 to avoid comparing trials in which subjects have different
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mean numbers of contacts per unit time. A simple but not uninteresting case
Ž .is g proportional to C = C i.e., a ' a , all others 0 , reflecting thei, j i j 1, 1

intuition that if two subjects double their activity, their chance of meeting
increases by a factor of 4.

We summarize our model assumptions as follows:

�Ž . � 44ASSUMPTION 1. The notation N , . . . , N , FF represents a multivariate1 n
FFŽ . Ž Ž .. FFŽ . Ž .counting process with intensity l t s 1 y N t] f t exp b q b V ,i i i 0 i 1 i

FFŽ . Ž . n Ž . Ž .where f t is given by 1rn Ý F C , C N t] q E .i js1 i j j i

Ž .ASSUMPTION 2. The C , E are i.i.d. random variables with arbitraryi i
w x w xdistribution supported on 0, K = 0, K .C E

ASSUMPTION 3. The V are i.i.d. Bernoulli and are independent of thei
Ž .C , E .i i

Ž .After choosing the random variables V , C , E and fixing them, thei i i
process can be constructed by standard Markov process techniques.

Finally, since we focus here on the heterogeneity in contacts, we drop the
variability in infection given exposure by setting b ' 0 and, for simplicity,0 i

Ž . Ž . Žwe write u ' exp b ' exp b . Our interest is in estimating u or, equiva-1
.lently, b . Note that u s 0 represents a perfect vaccine, and u s 1 a totally

ineffective one.

3. Limit theorems. In this section we prove large-sample limit theo-
rems under Assumptions 1]3 for a large class of random variables related to
the infection process. We apply these results to estimators of attack rates,
standard errors and other interesting quantities in Section 4. Although we
work in an infinite-dimensional context, it turns out that both the determinis-
tic process derived from the law of large numbers and the Gaussian process
derived from the central limit theorem are expressible in terms of a finite-
dimensional subspace of deterministic functions. These functions are in turn
governed by a system of ordinary differential equations.

We begin by introducing a sufficiently rich class of random variables. Let
Ž . � 4B ' B V denote the space of bounded continuous functions on V ' 0, 10 0 0

w x w x Ž .= 0, K = 0, K . Given f g B , we write f s f v, c, e , and make B aC E 0 0
Ž .Banach space with the uniform norm. Let L B denote the space of bounded0

linear functionals on B . Although a well-known Banach space in its own0
right if given the total-variation norm, in order to make efficient use of
existing theorems concerning infinite-dimensional processes we think of it

w Ž .as contained in a larger space of ‘‘generalized functions’’ Gelfand 1964 ,
Ž . Ž .xDeMasi and Presutti 1991 and Schwartz 1950 .

Given f g B , define a random variable by0

n1
6 X f , t ' f V , C , E 1 y N t .Ž . Ž . Ž . Ž .Ž .Ýn i i i in is1



D. WICK AND S. G. SELF646

ŽThese variables describe the key characteristics vaccination status, contact
.propensity and external exposure risk of the uninfected population at time t.

A finite-dimensional subspace spanned by these variables plays a central
role in the dynamics. Let

n1
pI p , t s C N t ,Ž . Ž .Ýn i in is17Ž .

t
J q , t s I q , s dsŽ . Ž .Hn n

0

Ž .for 1 F p F d, where d ' deg F , the degree of the polynomial appearing in
Ž .5 . These functions measure the rate and integrated contact propensity of
the infected population at time t. We will show that the large n limits of

Ž . Ž .these quantities, denoted by I p, t and J p, t , respectively, together with
Ž .the distributions of V, C, E , govern the limits of all the random variables

Ž .defined in 6 .
For the first theorem we also require the following functions. Define a

functional on Rdq1 = B by0

d
p8 G x , y , . . . , y ; f ' exp y 1 y v q u v xe q y c f ,Ž . Ž . Ž . Ý1 d p¦ ;ž /ps1

² :where ? denotes expectation with respect to the joint distribution of
Ž .V, C, E . Also define d ordinary functions of real variables defined in terms

Ž .of 8 :

² q: q9 G x , y , . . . , y ' c y G x , y , . . . , y ; c .Ž . Ž . Ž .q 1 d 1 d

THEOREM 3.1. Assume zero infected individuals at t s 0. In terms of the
Ž .bounded, continuous solution of the system of ODE’s

dJ q , tŽ .
10 s G t , a J r , t ,Ž . Ž .Ýq ?, rž /dt r

with zero initial conditions, define

11 X f , t ' G t , a J r , t ; f .Ž . Ž . Ž .Ý ?, rž /
r

Then the following limit holds for any f g B, t and d ) 0:

< <12 lim P sup X f , t y X f , t ) d s 0.Ž . Ž . Ž .n
nª` 0FtFt

Ž .We actually prove a stronger result than expressed in 12 : the so-called
w Ž .x Ž .‘‘weak convergence’’ Billingsley 1968 of the X ?, ? process to the deter-n

Ž .ministic process defined in 11 . As one consequence, the limits hold also for
random stopping times which have deterministic limits, a result we exploit in
Section 5.
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For the central limit theorem we need the following operators. Define6

Ž . Ž . Ž . Ž .time-dependent linear operators A t , B t : B V B V by0 0

A t f v , c, e ' y 1 y v q u vŽ . Ž . Ž .

= pef v , c, e q a I q , t c f v , c, e ,Ž . Ž . Ž .Ý p , q
p , q

13Ž .

p q14 B t f v , c, e ' a X 1 y v q u v c f , t c .Ž . Ž . Ž . Ž . Ž .Ž .Ý p , q
p , q

Finally, define fluctuation variables by

'15 Z f , t ' n X f , t y X f , t .Ž . Ž . Ž . Ž .n n

Ž .THEOREM 3.2. Let Z ?, t be the Gaussian Markov process with paths in
Žw x Ž ..C 0, ` ; L B defined informally by the stochastic differential equations

w x16 dZ f , t s Z A q B t f , t y Z B t f , 0 dt q dB f , t ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .

with, as initial conditions, Gaussian random variables with mean 0 and
covariance

² : ² :² :17 EZ f , 0 Z g , 0 s fg y f g .Ž . Ž . Ž .

Ž . Ž .In 16 , B ?, t is the Brownian motion process with covariance

18 E dB f , t dB g , s s d X yA t fg , t dt .Ž . Ž . Ž . Ž . Ž .t , s

Ž .More precisely, Z ?, t is the unique process with continuous paths and the
`Ž .indicated initial conditions, such that, for any f g C R and using the

Ž Ž ..shorthand f ' f Z f , t , the expressiont

t w xf y f y ds f9 Z A q B s f , s y Z B t f , 0� 4Ž . Ž . Ž .Ž . Ž .H st 0
019Ž .

1y f0 X A t fg , sŽ . Ž . Ž .Ž .s2

w Ž .xis a mean-zero martingale Holley and Stroock 1978 .
Then, for all t G 0, f , . . . , f in B and j , . . . , j in R,1 n 0 1 n

' 'lim E exp y1 j Z f , t s E exp y1 j Z f , tŽ . Ž .Ý Ýk n k k k
nª`

1s exp y cov f , f ; t , t j j ,Ž .Ý k l k l2
k , l

20Ž .

where the limiting covariance

21 lim EZ f , s Z g , t ' cov f , g ; s, tŽ . Ž . Ž . Ž .n n
nª`
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exists and satisfies

d
w xcov f , g ; t , t s cov A q B t f , g ; t , t y cov B t f , g ; 0, tŽ . Ž . Ž .Ž . Ž .

22 dtŽ .
qX yA t fg , t q terms with f l g ,Ž . Ž . Ž .Ž .

Ž .with initial conditions given in 17 .

As for Theorem 3.1, the conclusion is actually much stronger than the
Ž . Ž .single-time CLT stated in 20 : weak convergence of the Z ?, t process ton

the Gaussian Markov process defined in the theorem. In passing we remark
w xŽ .that the operator A q B t occurring in the ‘‘drift’’ term in the stochastic

Ž .differential equation 16 is the linearized right-hand side of the infinite-
w Ž . xdimensional ODE governing the X-variables see 29 below performed

Ž .around the solution X ?, t . This reflects the intuition that fluctuations are
gentle perturbations of the deterministic evolution, and so propagate under
the linearized equation.

Ž .PROOF OF THEOREM 3.1. Let B ' B V denote bounded continuous func-
� 4ntions on V ' 0, 1 = V , the configuration space of the process. Let L :0 n6

Ž . Ž .B V B V be the generator of the Markov process used in the construc-
Ž . Ž . Ž .tion of N t , 0 F t F `, so that, for H g B V and for D H N denotingi i

Ž . Ž . Ž .H N , . . . , N q 1, . . . y H N , . . . , L H N , . . . is given by1 i 1 n 1

F C , CŽ .i j
23 1 y V q u V 1 y N N q E = D H N .Ž . Ž . Ž . Ž .Ý Ýi i i j i ini j

w Ž .xBy standard Markov theory see Section 2.6.3 of DeMasi and Presutti 1991 ,

t
24 H t s H 0 q L H s ds q M tŽ . Ž . Ž . Ž . Ž .H n n , 1

0

and
t2 2w x25 M t s L H y 2 HL H s ds q M t ,Ž . Ž . Ž . Ž .� 4Hn , 1 n n n , 2

0

where the final terms in these equations are locally square-integrable, mean-
zero martingales.

Ž .A straightforward computation using 24 gives the following result when
applied to the X -variables:n

X f , tŽ .n

s X f , 0 q M f , tŽ . Ž .n n , 1

1t q qq ds y a C y X c , tŽ .Ý ÝH p , q j n½ n0 p , q j

26Ž .

=X 1 y v q u v c p f , t y X 1 y v q u v ef , t .Ž . Ž .Ž . Ž .n n 5
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Ž .Another easy computation using 25 gives

1 1t2EM f , t s E 1 y V q u V 1 y N sŽ . Ž . Ž .Ž .ÝHn , 2 i i in n0 i

1 2
= F C , C N s q E f V , C , EŽ . Ž .Ž .Ý i j j i i i iž /n j

27Ž .

5 5 2 y1F constant f tn .Ž .
w Ž .xHence, by Kolmogorov’s inequality Billingsley 1968 ,

< <28 lim P sup M f , t ) d s 0.Ž . Ž .n ,2
nª` 0FtFt

Ž .Applying the law of large numbers to 27 and the definition of weak
Ž . Ž .convergence, we see that any limit X ?, t in distribution of the X ?, tn

process along any subsequence n ª ` will have the property thatk

t
29 X f , t s X f , 0 y G f , s ds,Ž . Ž . Ž . Ž .H

0

Ž .where G f, t equals
q q p² :a c y X c , t X 1 y v q u v c f , tŽ . Ž .Ž .Ý p , q

p , q30Ž .
y X 1 y v q u v ef , t .Ž .Ž .

Rather than develop the appropriate machinery here to prove such limit
points exist for our random measure-valued processes, we appeal to more

Ž . XŽ� 4 w X x w X x.general results. Regard L B as a subspace of D 0, 1 = 0, K = 0, K ,0 C E
X X ŽK ) K , K ) K , a direct sum of spaces of generalized functions or, inC C E E

. Ž .Schwartz’s terminology, ‘‘distributions’’ ; see Gelfand 1964 and Schwartz
Ž . Ž . Ž . Ž .1950 . The spaces D9 U , or S9 U Schwartz-class distributions , where U is
a differentiable manifold, are countable unions of Hilbert spaces and as such
have particularly desirable properties for proving limit theorems in infinite-

w Ž .dimensional spaces DeMasi and Presutti 1991 and Holley and Stroock
Ž .x Žw x Ž ..1978 . We regard the process as living in D 0, T , D9 V , the space of0

Ž .right-continuous trajectories with left limits with values in D9 V , equipped0
Ž .with the Skorohod topology, as in DeMasi and Presutti 1991 . That cluster

points exist now follows from uniform boundedness of the compensators
Ž . Ž .appearing in 24 and 25 , by a minor modification of Theorem 2.6.2 in

Ž . Ž .DeMasi and Presutti 1991 and Mitoma 1983 . Furthermore, since individ-
Ž . Ž5 5 .ual jumps change each X f , t only by a quantity of magnitude O f rn , itn

Ž .follows from Theorem 2.7.8 in DeMasi and Presutti 1991 that any such
limiting process is supported on the space of continuous D9-valued trajecto-
ries. They will again be positive measures.

Hence we need only prove a uniqueness result for continuous solutions
Ž .of 29 to conclude that such a process is supported on a single path}that

Ž .is, the law of large numbers holds. Equation 29 embodies an infinite-
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dimensional system of quadratic ordinary differential equations to which
general theorems for existence and uniqueness of solutions might apply
w Ž .xDeimling 1977 . However, in our case the solution can be found in closed
form modulo a finite-dimensional system.

Observe that only products of the general variable with the special vari-
Ž . Ž . Ž .ables I q, t appear. Temporarily assuming the I ?, t and J ?, t functions

are known, we rewrite the equations to be linear with time-dependent
Ž .coefficients; that is, we rewrite 29 as

t
31 X f , t s X f , 0 q X A s f , s ds.Ž . Ž . Ž . Ž .Ž .H

0

Ž .The multiplication operators A t commute for different t ’s. Hence exponen-
tiating time integrals does not require product-integration theory but only

w Ž .xordinary operator exponentiation Kato 1985 , for example, by convergent
Ž .power series. Thus, to solve 29 , we multiply both sides by an integrating

factor, defining a new dependent variable by

t
32 exp y A s ds X ?, t f .Ž . Ž . Ž . Ž .H½ 5

0

This variable has zero time derivative, so

p33 X f , t s exp y 1 y v q u v et q a J q , t c f .Ž . Ž . Ž . Ž .Ý p , q½ 5¦ ;
p , q

Ž . q Ž .This yields 11 . We next put f s c for q s 1, . . . , d to get 10 . We have
reduced the proof to showing that the solution of the latter system is unique.
However, uniqueness for a finite system of ODE’s with C1 and bounded

w x wright-hand sides, over any fixed time interval 0, T , is standard Birkhoff and
Ž .xRota 1969 . I

PROOF OF THEOREM 3.2. As in the proof of Theorem 3.1, it will be
convenient to regard the process as a random signed measure living in

w xD9 V . The existence and uniqueness of the limiting Gaussian Markov0
Ž .process with continuous paths defined by the martingale condition 19 is

Ž .proven as in Holley and Stroock 1978 .
To derive the weak limit of the fluctuation process, we proceed as in

Ž . `Ž . Ž . Ž .Theorem 3.1. Let f ? g C R . Let A t be the operator defined as A t butn
Ž . Ž . Ž Ž ..with I ?, t replacing I ?, t . Then writing f Z f , t ' f , applying then n t

generator to f and expanding to second order in quantities of order ny1r2,t
we have that

­ X f , sŽ .t X'f y f y ds f n X A s f , s yŽ . Ž .Ž .Ht 0 s n n½ 5½ ­ s0
34Ž .

1
Y 2q f X yA s f , sŽ . Ž .s n n 52
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is a mean-zero martingale up to terms of order ny1. To treat the term
Ž Ž . .containing f9, add and subtract terms with each occurrence of X A s f , sn n

Ž Ž . . Ž .replaced by X A s f , s in curly brackets and use 29 to obtain thatn

t
f y f y dsŽ . Ht 0

0

= X w xf Z A q B s f , sŽ .Ž .s n½
p q qy a X 1 y v q u v c f , t Z c , t y Z c , 0� 4Ž . Ž . Ž .Ž .Ý p , q n n n

p , q

35Ž .

Y1 2 y1q f X yA s f , s q O nŽ . Ž .Ž .s n n2 5
is a martingale.

Ž .The existence of a weak limit of the fluctuation process Z ?, t follows fromn
2 Ž .the L -boundedness of the compensators which appear in 21 ; see DeMasi

Ž .and Presutti 1991 . The compensators can be written, up to negligible terms,
as linear combinations of the fluctuation variables themselves; therefore the
required bounds follow from L2-bounds on these variables. These in turn

Ž . Ž .follow from the proof of 22 below. By 36 and uniqueness results similar to
Ž .those in Holley and Stroock 1978 , any such limit point must be the law of

the Gaussian Markov process described in the theorem.
Ž .Finally, we prove formula 22 for the covariance of the fluctuation process.

Ž . Ž .Applying the generator to the product Z f , t = Z g, t givesn n

d
EZ f , t Z g , tŽ . Ž .n ndt

w x w xs EZ A q B f , t Z g , t q EZ f , t Z A q B g , tŽ . Ž .Ž . Ž .n n n n36Ž .
y EZ B t f , 0 Z g , t y EZ f , t Z B t g , 0Ž . Ž . Ž . Ž .Ž . Ž .n n n n

q X yA t fg , t q O ny1 .Ž . Ž . Ž .Ž .n

Ž . Ž . Ž . Ž .We regard 22 and 36 as equations for bilinear forms on B V = B V ,0 0
Ž . Ž .with B V given its natural Banach space norm. Since the operator A t is0

Ž . Ž .contractive in this norm, 36 minus all terms containing B t would imply a
Ž .bound uniform in n on the solution. Since B t is a finite-rank projection,

standard theory for bounded perturbations of contractive operators in Banach
w Ž .xspaces Kato 1985 gives existence, uniqueness and a bound on the solution

Ž .independent of n. Hence we can pass to the limit as n ª ` in 36 , and we
have proved the final assertions in the theorem. I

4. Application: estimators of attack rates and vaccine efficacy. We
introduce two infected population variables:

n n

37 N t s V N t , N t s 1 y V N t ,Ž . Ž . Ž . Ž . Ž . Ž .Ý Ýv i i 1yv i i
is1 is1
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Ž .and two susceptible population variables no censoring :
n n

38 Y t s V 1 y N t] , Y t s 1 y V 1 y N t] .Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ý Ýv i i 1yv i i
i i

Ž .Define the jump intensities with respect to FF in the two groups by l t st v
Ž . Ž . Ž . Ž . Ž .a t Y t and l t s a t Y t , where, for example,v v 1yv 1yv 1yv

n nu Ý V 1 y N t] Ý g N t] q EŽ . Ž .Ž .i i i j i , j j j
39 a t s .Ž . Ž .v Y tŽ .v

The estimable intensities are those with respect to the observable filtra-
o oŽ . oŽ . Ž . o Ž .tion, denoted by FF , and are given by l t s a t Y t and l t st v v v 1yv

o Ž . Ž .a t Y t , where, by application of the innovation theorem, we have1yv 1yv

n n o ouÝ V 1 y N t] Ý E g N FF N t] q E E N FFŽ . Ž .Ž .i i i j i , j t ] j j t ]o40 a t s ,Ž . Ž .v Y tŽ .v

o Ž .with a similar expression for a t . We note that, for traditional multiplica-1yv
w Ž .x Ž .tive intensity models Andersen, Borgan, Gill and Keiding 1993 , a ? andv

Ž .a ? are deterministic. However, in our model, these are complicated1yv
functions of the infection counting processes for all individuals in the cohort.
The estimable intensities will also be random, since the conditional expecta-

Ž .tions in 40 will be even more complicated functions. Nevertheless, proceed-
ing as for the deterministic case, a natural estimator of the integrated
intensity function

t
41 A t s a s dsŽ . Ž . Ž .Hv v

0

is the Nelson]Aalen estimator

t y1ˆ42 A t s Y s dN s ,Ž . Ž . Ž . Ž .Hv v v
0

which is just a sum over event times:
y1ˆ43 A t s Y t ,Ž . Ž . Ž .Ýv v j

j: t Ftj

Ž .where t is the infection time of the jth vaccinated subject. Note that 43j
Ž .does not explicitly involve the unobserved contact process.

Since the integrated intensity function being estimated is random and not
invariant over replicate trials, interpreting traditional frequentist inferential
statements is problematic. We avoid this problem by taking the parameter to

Ž . `Ž .be estimated as the limiting value of A ? , denoted by A ? . Under Assump-v v
tions 1]3, this function is fixed and coincides with the limiting value of the
Nelson]Aalen estimator. Another approach would be to take the ‘‘estimand’’
as the expected value of the integrated intensity. Unfortunately, this esti-
mand depends on the size of the cohort and so is not invariant over trials of

`Ž .different sizes. Nevertheless, in situations where the limiting function A ?v
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Ž .is not fixed i.e., when Assumptions 1]3 do not obtain , this may be the most
appropriate target for inference.

Let
tU44 A t s a t J t dt ,Ž . Ž . Ž . Ž .Hv v v

0
U Ž . Ž . Ž Ž . .with a similar expression for A t , where J t s I Y t ) 0 . Then1yv v v

J tŽ .t vUˆ45 A t y A t s dM t ,Ž . Ž . Ž . Ž .Hv v vY tŽ .0 v

Ž . Ž .where M t is the martingale from the decomposition of N t . As a first usev v
of this martingale decomposition we obtain the limits of the attack estimates
for both groups, as follows.

THEOREM 4.1. The asymptotic limit of the Nelson]Aalen estimator of
integrated intensity is given by

ˆ46 lim A t s ylog 2 X v , tŽ . Ž . Ž .Ž .v
nª`

Ž . Ž .in distribution, where X v, t is defined in Theorem 2.1 with f v, e, c s v,
ˆwith a similar equation for A with v replaced by 1 y v.1yv

PROOF. A calculation similar to that for the martingale appearing in the
Ž .proof of Theorem 3.1 establishes that the martingale in 45 goes to 0 in

ˆ UŽ . Ž . Ž .distribution. Thus A ? and A ? have the same limit. Equation 46 there-v v
fore follows directly from Theorem 3.1, the bounded convergence theorem for

Ž . Ž .integrals, the easily proved limits J t ª 1 and X v, 0 ª 1r2 and thev n
computation

yX A s v , s dŽ .Ž .t t
ds s y log X v , s dsŽ .Ž .H HX v , s dtŽ .47Ž . 0 0

s log X v , t y log X v , 0 . IŽ . Ž .Ž . Ž .

Ž .Equation 45 suggests defining the mean-squared error function to be

J tŽ .2 t vU2 ˆ48 s t ' E A t y A t s E a t dt .Ž . Ž . Ž . Ž . Ž .� 4 Hv v v v½ 5Y tŽ .0 v

Ž .An estimator of the latter quantity can be obtained by replacing a t dt byv
ˆ Ž .dA t :v

t y22s t ' J t Y t dN tŽ . Ž . Ž . Ž .Ž .ˆ Hv v v v
0

s Yy2 t .Ž .Ý v j
t -tj

49Ž .

Ž .Again, 49 has the advantage of not depending explicitly on the unobserved
contact process. The results of Section 3 apply and give the following result.
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2Ž . 2THEOREM 4.2. The variance estimators s t and s enjoy limits inˆ ˆv 1yv
distribution of the form

1 y 2 X v , tŽ .
2 250 lim Ns t s lim N s t s ,Ž . Ž . Ž .v̂ v X v , tnª` nª` Ž .

with a similar expression for v replaced by 1 y v.

The proof is similar to that of Theorem 4.1.
Combining these results with standard martingale central limit theorems

w Ž . Ž .xDeMasi and Presutti 1991 and Andersen, Borgan, Gill and Keiding 1993
yields the following theorem.

THEOREM 4.3.

U Uˆ ˆ'51 n A y A , A y A ª U , UŽ . Ž .ž /v v 1yv 1yv v 1yv

w x2weakly in D 0, t , where U and U are independent Brownian motionsv 1yv
2Ž Ž . Ž .. Ž . Ž .with covariances given by cov dU s , dU t s s t d s y t dt, and simi-v v v

larly with v replaced by 1 y v.

The error estimates in Theorem 4.2 refer to the variance of the
Nelson]Aalen estimator centered around the random compensators. As ex-
plained above, one can regard the asymptotic limit of these compensators as
the ‘‘target’’ to be estimated; if we do, the proper error estimate becomes

22 `ˆ52 s t ' E A t y A t ,Ž . Ž . Ž . Ž .� 4ṽ v v

with a similar equation with v replaced by 1 y v. In general, these will be
different from the estimates of Theorem 4.2. Theorem 3.2 applies and yields
the following result.

THEOREM 4.4. The errors in attack rates, with deterministic centering and
assuming zero fluctuations in vaccinatedrunvaccinated populations at t s 0,
enjoy limits of the form

cov v , v ; t , tŽ .
253 lim ns t s ,Ž . Ž .ṽ 2nª` X v , tŽ .

Ž . Ž . Ž .where X v, t is given in Theorem 3.1, cov v, v; t, t is the solution of 22
with f s g s v, whose existence and uniqueness were guaranteed in Theorem
3.2, and a similar result holds with v replaced by 1 y v.

PROOF. An easy computation gives

ˆ54 A t s H Y t rn, Y 0 rn s H Y t rn, 1r2 ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .v n v v n v
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where
w xny 1 y 1

55 H x , y ' s ln q O .Ž . Ž . Ýn ž / ž /k x nw xks nx

The theorem then follows from Theorem 4.1 and the delta-method for comput-
Ž .ing variances applied to the function yln 2 x . I

A simple estimator of the true biological parameter b, which would be
Ž .approximately unbiased at small values of t i.e., if events are ‘‘infrequent’’ ,

is given by

Â tŽ .vˆ56 b s logŽ .
Â tŽ .1yv

and has asymptotic limit

log X v , t q log 2Ž . Ž .Ž .ˆ57 lim b ' b ` s log .Ž . Ž .
log X 1 y v , t q log 2nª` Ž . Ž .Ž .

Thus the ‘‘model bias’’ is given by

58 b ` y b s b ` y log u .Ž . Ž . Ž . Ž .
ŽThis can be small for moderate contact propensities in the population see

.Section 6 . An estimate of standard error based on the Nelson]Aalen martin-
Žgale variance can be formed and has asymptotics given by let b * be the

ˆ.compensator of b :
2ˆlim nE b y b *

nª`

2 2s t s tŽ . Ž .ˆ ˆv vs lim q2 2` `A t A tŽ . Ž .Ž . Ž .v 1yv
59Ž .

1 y 2 X v , t 1 y 2 X 1 y v , tŽ . Ž .
s q .2 2X v , t ln 2 X v , t X 1 y v , t ln 2 X 1 y v , tŽ . Ž . Ž . Ž .Ž . Ž .

An asymptotic result for the error with deterministic centering is
2ˆlim nE b y b `Ž .

nª`

cov v , v ; t , t cov 1 y v , 1 y v ; t , tŽ . Ž .
s q2 22 2X v , t ln 2 X v , t X 1 y v , t ln 2 X 1 y v , tŽ . Ž . Ž . Ž .Ž . Ž .60Ž .

cov v , 1 y v ; t , tŽ .
q .

X v , t X 1 y v , t ln 2 X v , t ln 2 X 1 y v , tŽ . Ž . Ž . Ž .Ž . Ž .
Ž . Ž . Ž .Unfortunately, comparing 59 and 60 is difficult, since 22 cannot be

solved exactly but requires a resort, for example, to perturbation expansions
w Ž .xKato 1985 . We note that, provided fluctuations in the vaccination assign-
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Ž .ments are removed at baseline e.g., by using permutation assignments , the
first term in this expansion is simply the Nelson]Aalen limiting expression,
so the expansion is around the standard statistical estimator. Examination of
the next term in the expansion reveals that, to that level of approximation,
the variance with deterministic centering is larger than that with random
centering. We conjecture that this is true more generally but we are unable to
provide a proof. Qualitatively, the difference in variance with deterministic

Ž . Ž .centering 60 and that with random centering 59 is determined by the
variability in the compensators and the covariance between the compensators
and the associated martingales, which may not vanish in the interacting case.

5. Examples and simulations. In some populations, the limiting model
dynamics with bounded contact rates may approximate finite-sample behav-
ior. However, in others contact heterogeneity may be profound. These may be
better approximated by models in which small subgroups exhibit extraordi-
nary contact propensities.

Consider a bimodal distribution for contact propensity concentrated on two
� 4 w xpoints 1, c , with c s nrK and probability P C s c s Krn for someq q i q

Ž .positive K. The external risk is also Krn, and we put F c , c s c c . Call thei j i j
individuals with the higher contact propensities the ‘‘superactives.’’ Now let

Ž .t be the random time at which the first superactive becomes infected. Thissa
time may exceed the length of the trial. If so, the number of infected cases at
the trial’s end t s T will be small. Next suppose t - T. Then, very quicklysa
following t , for large n all the superactives become infected. Indeed, let nsa q

Ž .denote the number of superactives enrolled and n t the number of superac-sa
tives infected at time t. Then it is easy to show that, conditional on n ) 0q

Ž .and n t rn G f at time t, at time t q d t,sa q

2En t q d t uc n f d tŽ .sa q q
61 G 1 y exp y .Ž .

n nq

For the indicated scaling, c2 rn ª `, so the superactive’s epidemic isq
virtually instantaneous once it occurs. Afterwards the risk among ‘‘normals’’

Ž . Ž .equals their external small plus a fixed extra risk n c rn f constant .q q
w xThus, conditional on n ) 0 and t - T, over the interval t , T the trialq sa sa

closely resembles one treated in previous sections.
These statements become exact in the scaling limit, and we have the

following informal theorem. The limiting distribution of numbers of infec-
ˆtions, Nelson]Aalen estimate of attack rates and b are mixtures of Gauss-

ians with parameters corresponding to a trial held over a fixed time interval,
with constant external risk and bounded contact rates. The mixture distribu-

Ž .tion is over three quantities: the number of superactives enrolled Poisson ,
Ž .the fraction of enrolled superactives that are vaccinated binomial and the

time before the superactive’s epidemic begins.
ŽThese results suggest running trials to a random time say the time to

.reach a preselected case load to at least partly resolve the mixture. Indeed,
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this practice is common in large clinical trials with formal trial monitoring
mechanisms. However, the random stopping time strategy would likely not
resolve the mixtures for more complicated situations in which multiple,
rarely interacting subgroups of ‘‘superactives’’ exist. We note that, under
Assumptions 1]3, the theorems in Sections 3 and 4 still apply to randomly

Ž .stopped processes provided the properly rescaled time scale has a limit law
w Ž .xBillingsley 1968 .

To further explore these issues, we conducted a small simulation study. We
simulated vaccine trials using the models discussed in the previous sections,
with the product form of the contact matrix and two distributions for contact
propensities and external exposure intensities. For the asymptotically well-

w xbehaved case, we took the C ’s uniform on 0, 10 and the E ’s uniform oni i
w x0, 1 . In the ill-behaved situation, we took the C ’s to have a bimodali

� 4 � 4distribution concentrated on 1, 100 with Pr C s 1 s 0.01 and the E ’si i
w xuniform on 0, 0.01 . Two thousand subjects were randomized to have equal

numbers in vaccine and placebo groups. The vaccine parameter u was 1.0, 0.6
or 0.2. Our program simulated the infection process by generating, after each
infection event time, n independent exponential random variables with pa-

FFŽ .rameters l t , computing the minimum T and recording an infectioni min
event at t q T for the associated individual. We generated 1000 replicatemin
trials under each parameter configuration.

We ran the trials stopping either at a fixed time equal to the average time
Žnecessary to obtain a predetermined total of infections N s 50, 100 or 150stop

.cases, respectively , these times having been computed from earlier runs, or
stopping at a random time as discussed above. Some realizations with fixed

Ž .time stopping ended with few - 10 infections; we discarded these and
Ž .tabulated the fraction of all runs indicated by ‘‘s.f.’’ or ‘‘success fraction’’

meeting this minimum information criterion.
ˆWe chose as the representative statistic b of Section 4, modified to be

finite if either subgroup had zero infection rate at trial’s end. We then
ˆcomputed the following quantities: b, the average of b over the trials;

Ž . Ž .‘‘bias model ,’’ the average bias relative to the model parameter, b y log u ;
Ž . Ž‘‘bias ` ,’’ the average bias relative to the asymptotic limit for bounded

ˆ ˆ. w Ž . Ž .xscenarios only ' b y lim log A t rA t , where t represents stop-v N 1yv N N
ping at a fixed fraction of 0.025, 0.05 or 0.075 times n. We computed the latter

Ž . Ž .by numerically integrating 10 and using 46 .
ˆŽ .In addition, we computed the average standard deviation SD of b over
Ž .the replicate trials; the average Nelson]Aalen estimated standard error SE ;

the coverage rate of a Wald-type 95% confidence interval for b, recorded as
ˆŽ .rej" the fraction of trials in which b " 1.96 = SE - or ) b, respectively ;

and, finally, the coverage rate of a similar confidence interval for b recorded
as Rejq or Rejy .

Results with fixed stopping time and uniform or bimodal contact propensi-
ˆties are reported in Tables 1 and 2. Bias in b is small for vaccines of low

efficacy but increases for efficacious vaccines. Note that the relative risk has
value u at time 0 but is time dependent and converges to 1 as time increases.
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TABLE 1
Simulated data from 1000 trials with uniform contact distribution and fixed-time stopping rule

( ) ( )u N bias model bias ` SD SE rejH rejI RejH RejIstop

1.0 50 y0.004 y0.004 0.280 0.289 0.019 0.013 0.019 0.013
100 y0.005 y0.005 0.198 0.198 0.016 0.032 0.017 0.029
150 y0.004 y0.004 0.164 0.164 0.025 0.026 0.022 0.027

0.6 50 y0.024 y0.027 0.296 0.300 0.015 0.017 0.022 0.016
100 0.003 y0.001 0.214 0.213 0.026 0.016 0.026 0.016
150 y0.001 y0.008 0.172 0.171 0.019 0.025 0.024 0.024

0.2 50 y0.030 y0.037 0.436 0.397 0.038 0.018 0.046 0.014
100 0.004 0.006 0.275 0.274 0.034 0.019 0.037 0.019
150 y0.010 y0.028 0.231 0.221 0.021 0.025 0.034 0.020

ˆThe statistic b estimates the log-transformed ratio of time-integrated attack
rates, resulting in bias with respect to the true ‘‘biological’’ parameter u . This
bias does not disappear in the large-sample limit, as Theorem 4.1 makes
clear.

We note a similar situation for estimated standard error. In particular, SE
ˆreasonably approximates the standard deviation of b for low-efficacy vaccines

but degrades with highly efficacious vaccines. With vaccine efficacy of 80%,
ˆSE greatly underestimates the true standard deviation of b. The correspond-

ing coverage rate of the 95% Wald-type confidence interval is generally good
for weak vaccines but falls for vaccines with higher efficacy. This is appar-

ˆently due to bias in b rather than non-Gaussian distributional shape since
the coverage is close to nominal in most cases.

Results using the random stopping rule are reported in Tables 3 and 4. We
ˆfind bias in b similar to that with fixed stopping time rule. However, with the

random stopping time, the Nelson]Aalen-type estimator of standard devia-
ˆtion of b is quite accurate. The Wald intervals for b are only inflated due to
ˆbias in b.

TABLE 2
Simulated data from 1000 trials with bimodal contact distribution and fixed-time stopping rule

( )u N s.f. bias model SD SE rejH rejI RejH RejIstop

1.0 50 0.64 y0.005 0.262 0.266 0.026 0.020 0.028 0.020
100 0.64 0.001 0.225 0.218 0.022 0.021 0.022 0.021
150 0.66 0.003 0.204 0.208 0.022 0.024 0.021 0.024

0.6 50 0.62 0.018 0.243 0.228 0.043 0.021 0.031 0.026
100 0.66 0.032 0.213 0.215 0.057 0.012 0.031 0.027
150 0.73 0.038 0.189 0.202 0.053 0.008 0.025 0.024

0.2 50 0.66 0.117 0.384 0.264 0.150 0.013 0.035 0.031
100 0.68 0.114 0.346 0.276 0.129 0.007 0.037 0.023
150 0.74 0.101 0.401 0.270 0.160 0.013 0.052 0.032
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TABLE 3
Simulated data from 1000 trials with uniform contact distribution and random stopping rule

( ) ( )u N bias model bias ` SD SE rejH rejI RejH RejIstop

1.0 50 y0.003 y0.003 0.289 0.284 0.039 0.030 0.039 0.030
100 0.011 0.011 0.207 0.200 0.032 0.027 0.032 0.027
150 y0.001 y0.001 0.157 0.163 0.019 0.017 0.019 0.017

0.6 50 y0.002 y0.005 0.300 0.294 0.033 0.026 0.033 0.026
100 y0.003 y0.001 0.207 0.206 0.018 0.023 0.018 0.023
150 y0.005 y0.012 0.169 0.168 0.023 0.020 0.032 0.020

0.2 50 y0.047 y0.053 0.419 0.393 0.048 0.023 0.048 0.008
100 0.002 y0.008 0.268 0.267 0.044 0.010 0.044 0.010
150 y0.004 y0.021 0.215 0.216 0.028 0.017 0.037 0.009

6. Conclusions and directions for further research. An important
open problem in the upcoming HIV vaccine trials will be to identify tractable
analytical models with stable and interpretable parameters. In this paper we
tried to capture the underlying complexity of the transmission mechanism in
a probability model with latent variables and assess the impact on estima-
tion. Our models do provide stable and interpretable parameters under some

Ž .conditions e.g., with suitably bounded contact heterogeneity , but not under
others. Limited information from the trials will be available to check these
homogeneity assumptions; hence developing practical criteria for using these
results will be difficult.

Our experience has suggested a class of simpler models for the aggregate
infection counting process that may be robust and stable even in the face of
extensive heterogeneity. Consider the aggregate intensity involving unob-
served latent variables and the process of averaging over these variables to
induce an intensity with respect to the observable filtration. In simpler frailty
models, the effect of the averaging is to induce a time dependence in the
relative risk function on a time scale defined by cumulative ‘‘baseline’’

TABLE 4
Simulated data from 1000 trials with bimodal contact distribution and random stopping rule

( )u N bias model SD SE rejH rejI RejH RejIstop

1.0 50 y0.001 0.290 0.284 0.038 0.033 0.038 0.033
100 0.001 0.206 0.200 0.028 0.024 0.028 0.024
150 0.003 0.167 0.163 0.028 0.024 0.028 0.024

0.6 50 0.067 0.290 0.291 0.036 0.018 0.019 0.018
100 0.087 0.199 0.205 0.054 0.007 0.019 0.019
150 0.061 0.166 0.167 0.053 0.008 0.022 0.021

0.2 50 0.216 0.355 0.358 0.133 0.003 0.038 0.009
100 0.279 0.245 0.245 0.225 0.002 0.033 0.015
150 0.228 0.197 0.201 0.249 0.002 0.032 0.015
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intensity. However, in our situation, the ‘‘baseline’’ intensity function is a
complicated function of the infection processes for the entire study cohort}see
Ž .41 of Section 4}and hence random. Rather than explicitly model this

Ž .random function as in Section 2 , we might consider an approximate model
for the intensity of the form

62 l t ; v s l t u v ; t , L t ,Ž . Ž . Ž . Ž .Ž .0 0

Ž .where v is the vaccinerplacebo group indicator, l t is a ‘‘baseline’’ intensity0
Ž .function with L t denoting its integral to time t and u is a deterministic0

relative-risk function to be estimated. Although similar in form to the usual
Ž .relative-risk regression model, l t is random and will fluctuate over repli-0

Ž .cate trials. Nevertheless, the ‘‘time-dependent covariate,’’ L t , can be stably0
Ž .estimated from data observed prior to t e.g., by the Nelson]Aalen estimator ,

and this suggests an adaptation of well-known partial likelihood techniques
for estimation of the fixed function u .

Our small simulation study suggests that the relative risk function u is
stable in the face of considerable variability in l . Developing a theoretical0

Ž .justification for the model in 62 together with more extensive simulation
studies under conditions of substantial heterogeneity would be useful.
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