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SEMIPARAMETRIC LIKELIHOOD RATIO INFERENCE

By S. A. Murphy1 and A. W. van der Vaart

Pennsylvania State University and Free University Amsterdam

Likelihood ratio tests and related confidence intervals for a real pa-
rameter in the presence of an infinite dimensional nuisance parameter
are considered. In all cases, the estimator of the real parameter has an
asymptotic normal distribution. However, the estimator of the nuisance pa-
rameter may not be asymptotically Gaussian or may converge to the true
parameter value at a slower rate than the square root of the sample size.
Nevertheless the likelihood ratio statistic is shown to possess an asymp-
totic chi-squared distribution. The examples considered are tests concern-
ing survival probabilities based on doubly censored data, a test for presence
of heterogeneity in the gamma frailty model, a test for significance of the
regression coefficient in Cox’s regression model for current status data and
a test for a ratio of hazards rates in an exponential mixture model. In
both of the last examples the rate of convergence of the estimator of the
nuisance parameter is less than the square root of the sample size.

1. Introduction. In the past decade considerable progress has been made
with the study of maximum likelihood estimators in infinite dimensional sta-
tistical models, sometimes called nonparametric maximum likelihood estima-
tors (NPMLE) or semiparametric maximum likelihood estimators. See, for
instance, Gill (1989) or van der Vaart (1994a) for reviews of work in this direc-
tion and Gu and Zhang (1993), Huang (1996), Murphy (1995a), Van der Laan
(1993), van der Vaart (1994c, 1996), Gill, van der Laan and Wijers (1995),
Huang and Wellner (1995) and Wijers (1995) for more recent results. Most
of this work is directed at proving the asymptotic normality and efficiency
of the maximum likelihood estimator of smooth parameters of the model. In
contrast, very little progress has been made toward a general likelihood ratio
theory for semiparametric models. Here the term ‘semiparametric model’ is
used in a loose sense as a model which is not finite dimensional (as in classi-
cal statistics), nor fully nonparametric [cf. Bickel, Klaassen, Ritov and Wellner
(1993), pages 1–2]. In this paper we give a general approach for the asymp-
totic analysis of hypothesis tests and associated confidence regions based on
the (semiparametric) likelihood ratio test.

The results of this paper can be viewed as a step in filling the large gap be-
tween classical parametric likelihood ratio theory and empirical likelihood as
considered by Thomas and Grunkemeier (1975), Owen (1988), Qin and Law-
less (1994) and Murphy (1995b) among others. These authors are concerned
with the situation where the model for the data is fully nonparametric, in the
sense that it contains every possible probability distribution on the sample
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space, or is restrained by finitely many constraints [as in Qin and Lawless
(1994) if r > p]. Each time the “likelihood” is taken as the product

∏
iP�Xi�

of the masses given to the observational points, referred to as the empirical
likelihood. Qin (1993) and Qin and Wong (1996) extend the above theory to
specific semiparametric models. However, in all of the above cases, the likeli-
hood ratio statistic reduces to a function of a vector statistic (often a Lagrange
multiplier), simplifying the asymptotic analysis greatly. General semiparamet-
ric models, of the type we consider in this paper, appear to require a different
approach. For example, this simplification will not occur in the mixture model
considered by Roeder, Carroll and Lindsay (1996) in which they invert a like-
lihood ratio test to form a confidence interval for a regression coefficient.

In the classical parametric case likelihood ratio confidence regions are gen-
erally preferred over Wald-type confidence regions, except perhaps from a
computational perspective. Advantages mentioned by many authors are small
sample coverage probabilities closer to the nominal values, the possibility of
asymmetric confidence regions and regions that are transformation respect-
ing [Hall and La Scala (1990)]. Although we do not give a proof in this paper,
many of these advantages may be expected to carry over to the semiparamet-
ric situation. This appears to be particularly the case when the small sample
distribution of the estimator is highly skewed. A concrete example in the non-
parametric setting is in the construction of confidence intervals for a survival
probability based on the Kaplan–Meier estimator. The Wald confidence inter-
val for a survival probability performs poorly and much work has been done on
finding a transformation of the estimator which has an approximate normal
distribution for small samples [Andersen et al. (1993)]. In this case inversion
of the likelihood ratio test as in Thomas and Grunkemeier (1975), Li (1995)
and Murphy (1995b) illustrate how the resulting confidence intervals perform
as well as confidence intervals based on widely accepted “best” transforma-
tions of the estimator. In their comparison of empirical likelihood confidence
intervals with bootstrap confidence intervals, Hall and La Scala argue, that
in situations in which both methods can be applied, the empirical likelihood
confidence intervals are to be preferred to bootstrap confidence intervals. They
state that “the power of the bootstrap resides in the fact that it can be applied
to very complex problems and this feature is not available for empirical like-
lihoods.” Usually inference for semiparametric models is a complex problem;
however, as we shall demonstrate, likelihood ratio inference will, in general,
be available.

The traditional advantage of a Wald confidence interval, ease of computa-
tion, does not appear to be valid any more due to the computational difficulty
of estimating asymptotic variances. In general the asymptotic variance of in-
finite dimensional maximum likelihood estimators is not given by a closed
formula, or even an expectation of a known function, but can only be char-
acterized as the variance of the efficient influence function. The latter is the
solution of an infinite dimensional minimization problem and its computation
may require the inversion of an infinite dimensional operator. Even in a dis-
cretized form, for instance at observed data points, the inversion may still
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involve inverting a matrix of high dimension. This is true, for instance, in
the semiparametric frailty model considered by Nielsen, Gill, Andersen and
Sorensen (1992) and Murphy (1995a), where estimators for the standard error
of the estimated frailty variance are found by inverting a matrix which is of
the same dimension as the data.

Furthermore, in cases where the efficient influence function can be written
down relatively explicitly, the estimation of its variance may involve nonpara-
metric smoothing. This means that the researcher must deal with the difficult
choice of a smoothing parameter. This is the case in estimating the regression
coefficient in Cox’s regression model subject to current status type censoring,
considered by Huang (1996), where the efficient influence function depends on
a ratio of conditional means.

For the above reasons setting Wald-type tests and associated confidence
regions in semiparametric models may be computationally harder than in
the classical situation, where one can use a plug-in estimator based on an
expression for the Fisher information or the observed information. Therefore,
due to the expected gain in quality, likelihood ratio based inference appears
doubly attractive in semiparametric settings.

The definition of a likelihood ratio statistic requires the definition of a like-
lihood function. In classical parametric models this is the density of the ob-
servations, while empirical likelihood theory uses the product

∏
P�Xi�. We

do not offer a general definition of an infinite dimensional likelihood function
in this paper. In some examples the observations have a well-defined density
and a likelihood is defined much as in the classical situation. In other ex-
amples one uses the empirical likelihood (which, however, is maximized only
over the model). Mixtures of these situations occur as well in the literature
and in some missing data situations a “partial likelihood” appears appropri-
ate. Some of these possibilities are illustrated in our four examples. With this
formulation a semiparametric likelihood estimator is not necessarily discrete
(although it can often be taken to be discrete) and it is often not supported on
the observed data. Restricting the estimator to a null hypothesis may intro-
duce new support points.

We consider the situation that the observations X1; : : : ;Xn are a random
sample from a distribution Pψ indexed by a parameter ψ that is known to
belong to a set 9. Given a parameter (map) θx 9 → R and a definition of
a likelihood lik�ψ;X� for one observation, the likelihood ratio statistic for
testing the null hypothesis θ�ψ� = θ0 is given by

lrtn�θ0� = 2
(

sup
ψ∈9

n∑
i=1

ln lik�ψ;Xi� − sup
ψ∈9;θ�ψ�=θ0

n∑
i=1

ln lik�ψ;Xi�
)

= 2nPn ln lik�ψ̂� − 2nPn ln lik�ψ̂0�:
Here Pn is the empirical distribution of the data and ψ̂ and ψ̂0 are the maxi-
mum likelihood estimators under the full model and the null hypothesis, re-
spectively. In the first example ψ is a distribution function F and θ�ψ� = F�t0�
is its value at a fixed point. In the remaining three examples the parameter
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ψ takes the form ψ = �θ;3� or ψ = �θ;F� for an unknown cumulative hazard
function 3 or distribution function F and θ�ψ� = θ.

For simplicity we restrict ourselves to one-dimensional parameters θ. Then
we wish to prove that under the null hypothesis the sequence lrtn�θ0� con-
verges in distribution to a χ2-distribution on one degree of freedom. Having
proved this for every value of θ0, the region �θx lrtn�θ� ≤ z2

α/2� is the associated
confidence region of asymptotic level 1− α.

The organization of the paper is as follows. In Section 2 we present four
rather different examples for which we discuss the meaning of the likelihood
and state theorems on the likelihood ratio test. The examples include the
double censoring model considered in Chang (1990), regression for current
status data considered by Huang (1996), the gamma frailty model of Murphy
(1994, 1995a) and a mixture model studied by van der Vaart (1996). Section 3
starts with a discussion of the finite dimensional situation to gain intuition
and next gives a general approach to prove the asymptotic validity of the
semiparametric likelihood ratio test. The basic scheme given by Theorem 3.1
leaves some nontrivial work for special examples. However, our impression
is that it works in the situations where also the asymptotic normality of the
maximum likelihood estimator of the parameter of interest can be proved. The
last sections contain detailed treatments of our four examples.

2. Examples and results. This section contains four examples. For each
example we give the definition of the likelihood and state a theorem on the
likelihood ratio statistics. Proofs are given in Sections 4–7.

Example (Doubly censored data). Doubly censored data arise when event
times are subject to both right and left censoring. The event time T is observed
only if it falls between the left and right censoring times, L and R. Otherwise
all that is observed is L and that T ≤ L in the case of a left censoring or
R and that T > R in the case of a right censoring. It is assumed that T
is independent of �L;R� and that L ≤ R. Thus the observations are n i.i.d.
copies of X = �U;D�, where U = L and D = 1 if T ≤ L, U = T and D = 2 if
L < T ≤ R and U = R and D = 3 if T > R. If GL and GR are the marginal
distributions of L ≤ R and F the distribution of T, then, with lowercase
symbols denoting densities, the density of X is given by

pF�X� = �F�U�gL�U��I�D=1��f�U��GL −GR��U−��I�D=2�

× ��1−F�U��gR�U��I�D=3�:

When F is completely unknown, the above density is not suitable for use as a
likelihood. Instead we use the empirical likelihood PF�X�, which is obtained
by replacing the densities gL, f and gR by the point probabilities GL�U�,
F�U� and GR�U�. For inference about F we can drop the terms involving GL

and GR and define the likelihood to be

lik�F;X� = �F�U��I�D=1� 1F�U�I�D=2��1−F�U��I�D=3�:
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We maximize the above “likelihood” over discrete distribution functions with
steps at the U’s. The parameter of interest will be θ�F� = Fg =

∫
gdF for

some known function g of bounded variation. Of particular interest is g�t� =
1�t > t0�, which leads to a confidence set for 1 − F�t0�, the probability of
survival longer than t0. The concavity in F of the density in X along with
the continuity of θ in F implies that the confidence set will be a confidence
interval (see the Appendix).

We shall prove the following theorem. (Note that denotes convergence in
distribution throughout this paper.)

Theorem 2.1. Suppose that �GL−GR��u−� = P�L < u ≤ R� is positive on
the convex hull �σ; τ� ⊂ �0;∞� of the support of F0. Furthermore, assume that
F0, GL and GR are continuous, with GL�τ� = 1 and GR�σ−� = 0. Let g be a
left continuous function of bounded variation which, on �σ; τ�, is not F0-almost
everywhere equal to a constant. If F0g = θ0, then the likelihood ratio statistic
for testing that Fg = θ0 satisfies lrtn�θ0� χ2

1 under F0.

The asymptotic consistency and normality of the unrestricted maximum
likelihood estimator in this model was proved under stronger conditions by
Chang and Yang (1987), Chang (1990) and under weaker conditions by Gu
and Zhang (1993).

Example (Cox regression for current status data). In current status data,
n subjects are examined each at a random observation time and at this time
it is observed whether the event time has occurred or not. The event time T is
assumed to be independent of the observation time Y given the covariate Z.
Then the observations are n i.i.d. copies ofX = �Y;δ;Z�, where δ = 1 ifT ≤ Y
and zero otherwise. Suppose that the hazard function ofT givenZ = z is given
by Cox’s regression model: the hazard at time t is eθzλ�t�. Then the cumulative
hazard at time t of T given Z = z is of the form eθz

∫ t
0 λ�s�ds = eθz3�t� and

the density is given by

pθ;3�X� =
(
1− exp�− exp�θZ�3�Y��

)δ( exp�− exp�θZ�3�Y��
)1−δ

fY;Z�Y;Z�:
The parameter of interest is the regression parameter θ; the nuisance param-
eter 3 is assumed completely unknown. A test of regression would be a test
of H0x θ = 0.

The likelihood lik�θ;3;X� is taken equal to the density, but with the term
fY;Z�Y;Z� omitted. To estimate θ and 3 we maximize the likelihood over θ
in a bounded parameter set 2 ⊂ R and over 3 ranging over all nondecreasing
cadlag functions taking values in �0;M�, for a known M.

We shall prove the following theorem.

Theorem 2.2. Let θ0 be an interior point of 2. Let Y have a Lebesgue den-
sity which is continuous and positive on its support �σ; τ� for which 30�σ−� > 0
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and 30�τ� < M, and zero otherwise. Let 30 be differentiable on this interval
with derivative bounded away from zero. Let Z be bounded and E var�Z�Y� >
0. Finally assume that the function h∗∗ given by (5.1) has a version which is
differentiable with a bounded derivative on �σ; τ�. Then the likelihood ratio
statistic for testing H0x θ = θ0 satisfies lrtn�θ0� χ2

1 under �θ0; 30�.

The asymptotic normality of the maximum likelihood estimator for θ in
this model is considered by Huang (1996). The maximum likelihood estimator
for the cumulative hazard function converges at an O�n−1/3� rate in an L2-
norm. Under the hypothesis H0x θ = 0 this model reduces to the “case 1
interval censoring” considered by Groeneboom (1987), who obtains the limit
distribution of F̂0�t� for the distribution function corresponding to 3̂0 (with
an n−1/3-standardization). See Groeneboom and Wellner (1992).

Example (Gamma frailty). In the frailty model, subjects occur in groups
such as twins or litters. To allow for a positive intragroup correlation in the
subjects’s event times, subjects in the same group are assumed to share the
same frailty Z. In the one-sample problem, we observe n i.i.d. groups where
for a given group the observations are J and �Tj ∧ Cj;Dj� for j = 1; : : : ; J,
where Tj is the event time associated with the jth subject in the group, Cj
is censoring time, Dj = 1 if Tj ≤ Cj and J is the random group size. The
unobserved frailty Z is assumed independent of J and to follow a gamma
distribution with mean 1 and variance θ. Given J, �Cj; j = 1; : : : ; J� is
assumed independent of both Z and �Tj; j = 1; : : : ; J�. Given Z and J, the
�Tj; j = 1; : : : ; J� are independent, with hazards Zλ�·�; j = 1; : : : ; J.

Put N�t� =∑jI�Tj∧Cj ≤ t; Dj = 1� and Y�t� =∑jI�Tj∧Cj ≥ t�. So the
observation for a group is X = �N;Y�. For our statistical inference we shall
only use the values of this counting process on a given finite interval �0; τ�.
Since the censoring is independent and noninformative of the Z, we have that
given Z = z, the intensity of N at time t is zY�t�λ�t� and the conditional
density is proportional to

p3�X�Z = z� =
∏
t≤τ
�zY�t�λ�t��1N�t� exp

{
−z

∫ τ
0
Yd3

}
;

where 3�·� =
∫ ·

0 λ�s�ds. [See Andersen et al. (1993), pages 138–150, and
Nielsen, Gill, Andersen and Sorensen (1992).] To form the marginal density
for a group multiply by the gamma density of Z and integrate over z to get

pθ;3�X� =
∏
t≤τ��1+ θN�t−��Y�t�λ�t��1N�t�
�1+ θ

∫ τ
0 Y�t�d3�t��1/θ+N�τ�

:

When 3 is unknown, the associated likelihood has no maximizer. A convenient
extension is

lik�θ;3;X� =
∏
t≤τ

(
�1+ θN�t−��Y�t�13�t�

)1N�t�
(
1+ θ

∫ τ
0 Y�t�d3�t�

)1/θ+N�τ� :(2.1)
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This is not the only possible extension [see Andersen et al. (1993) and Murphy
(1995a)]. We are particularly interested in an hypothesis test of zero intra-
group correlation, that is, H0x θ = 0.

The likelihood is also well-defined for negative θ close to zero, even though
θ can then not be introduced through a gamma variable as previously. We
define the likelihood ratio statistic and the maximum likelihood estimators
relative to the parameter set consisting of θ ranging over the interval �−ε;M�
for a small ε > 0; and 3 ranging over all finite nondecreasing functions on
�0; τ�.

Theorem 2.3. Assume that θ0 ∈ �0;M� and that 30 is continuous, strictly
increasing and finite on �0; τ�. Furthermore, assume that J has finite support,
P0�

⋃J
j=1�Cj ≥ τ�� > 0, and that the distribution of �Cj; j = 1; : : : ; J� has at

most a finite number of discontinuities. Then the likelihood ratio statistic for
testing H0x θ = θ0 satisfies lrtn�θ0� χ2

1 under �θ0; 30�.

The maximum likelihood estimator �θ̂; 3̂� for this model was shown to be
asymptotically consistent and normal by Murphy (1994, 1995a) under slightly
more general conditions.

Example (Mixture model). This is another version of the frailty model.
The group size is 2. As before, we allow for intragroup correlation in the
event times by assuming that the pair share the same unobserved frailty
Z. Given Z, the two event times T1 and T2 are assumed to be independent
and exponentially distributed with hazard rates Z and θZ, respectively. In
contrast to the gamma frailty model, the distribution F of Z is a completely
unknown distribution on �0;∞�. The observations are n i.i.d. copies of X =
�T1;T2� from the density

pθ;F�X� =
∫
z exp�−zT1� θz exp�−θzT2�dF�z�:

We use this as the likelihood lik�θ;F;X� and are interested in a confidence
set for the ratio θ of the hazards and testing that this ratio equals 1.

Theorem 2.4. Suppose that
∫
�z2 + z−6:5�dF0�z� <∞. Then the likelihood

ratio statistic for testing H0x θ = θ0 satisfies lrtn�θ0� χ2
1 under �θ0;F0�.

The maximum likelihood estimator for θ was shown to be asymptotically
normal by van der Vaart (1996). The maximum likelihood estimator for the
distribution function F is known to be consistent from Kiefer and Wolfowitz
(1956). Van der Vaart (1991) proved that the information for estimating F�t�
is zero, so that the rate of convergence of the best estimators is less than the
square root of n. A reasonable conjecture is that the optimal rate is n−α for
some α > 0.



1478 S. A. MURPHY AND A. W. VAN DER VAART

3. Intuition. In the case that the parameter ψ is Euclidean a classical ap-
proach to derive the asymptotic χ2-distribution of the likelihood ratio statistic
is to expand the difference

2nPn
[
lnpψ̂ − lnpψ̂0

]

in a two-term Taylor expansion around ψ̂. The linear term vanishes and al-
gebraic manipulations involving the joint normal limit distribution of ψ̂− ψ0
and ψ̂0−ψ0 yield the result. A more insightful derivation can be based on the
approximation

ψ̂− ψ̂0 =
(
i−1
ψ0
θ̇0

θ̇T0 i
−1
ψ0
θ̇0

+ ε
)
�θ̂− θ0�;(3.1)

where θ̇T0 i
−1
ψ0
θ̇0 is the asymptotic variance of

√
n�θ̂− θ0�; iψ is the information

matrix, θ̇0 is the derivative of θ�ψ� with respect to ψ; and ε converges to zero
in probability. If ψ̂ is multivariate normal and θ is linear, then ε = 0. More
concretely, if ψ = �θ;η� and θ�ψ� = θ, then

�θ̂; η̂�T − �θ0; η̂0�T =
(
1;−i−1

η0η0
iη0θ0

+ ε
)T�θ̂− θ0�;(3.2)

where the information matrix iψ is partitioned into

iψ0
=
(
iθ0θ0

iθ0η0

iη0θ0
iη0η0

)
:

Under regularity conditions both (3.1) and (3.2) can be justified by Taylor
series arguments or by analogy to the case of a multivariate normal observa-
tion [cf. Cox and Hinkley (1974), pages 308, 323]. If, as in Cox and Hinkley
(1974), we neglect the error term ε, then we can replace ψ̂0 in the likelihood
ratio statistic by a constant times θ̂− θ0, and next perform a two-term Taylor
expansion in the one-dimensional parameter θ̂ − θ0. This yields the approxi-
mation

2nPn
[
lnpθ̂η̂ − lnpθ0; η̂+�i−1

η0η0
iη0θ0

�T�θ̂−θ0�
]
≈ −n�θ̂− θ0�2 Pn ῭�·y θ̂; η̂�;

where ῭�·y t; η̂� is the second derivative of the map t→ lnpt; η̂+�i−1
η0η0

iη0θ0
�T�θ̂−t�.

The first derivative of this function at θ̂ can be expressed in the score functions,
� ˙̀θ; ˙̀η�, for �θ;η� as

˙̀�·y θ̂; ψ̂� = ˙̀θ̂ − �i−1
η0η0

iη0θ0
�T ˙̀η̂:

By the usual identities the expectation of the second derivative should be mi-
nus the expectation of the square of the first derivative and, under regularity
conditions,

−Pn ῭�·y θ̂; ψ̂� →P Pθ0η0

( ˙̀
θ0
− �i−1

η0η0
iη0θ0
�T ˙̀η0

)2 = iθ0θ0
− iθ0η0

i−1
η0η0

iη0θ0
:
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This is exactly the �1;1�-element of the inverse of iψ0
, which is the inverse

of the asymptotic variance of
√
n�θ̂ − θ0�. The chi-squared limit distribution

follows.
We might expect that, at least to the first order, the difference between the

full and null maximum likelihood estimator in our semiparametric setting
satisfies a generalization of (3.2). Then the difference is finite dimensional
(the dimension of θ), and a standard Taylor expansion in θ can be used to
prove the asymptotic chi-squared distribution. For example, Murphy [(1995b),
equation (6) and the appendix] proves a result of this type for a likelihood ratio
test based on the binomial likelihood for right-censored data. There, θ is the
probability of survival past time t0 and ψ is the cumulative hazard function
3, so that θ = θ�3� = ∏s≤t0�1− d3�s��. For t ≤ t0,

3̂�t� − 3̂0�t� =
∫ t

0θ0/�Y�s� + λθ0�d3̂�s�
var�√n�θ̂− θ0�� + ε

�θ̂− θ0�;

where Y�s� is the number of individuals who have not failed or been cen-
sored up to time s, divided by the sample size and both λ and ε converge in
probability to zero.

When ψ can be estimated at a square root n rate, then an analog to i−1
ψ exists

and (3.2) can be extended appropriately. This approach can be used in both
the gamma frailty and the double censoring examples. On the other hand,
in many semiparametric models, including our current status and mixture
examples, the nuisance parameter is not estimable at square root n rate. Then
an extension of (3.2) requires more care. Note for instance that (3.2) implies
that the difference η̂ − η̂0 is of order O�n−1/2�, often much smaller than the
differences η̂−η0 and η̂0−η0 (depending on the distance). In any case the two-
step proof focusing first on the difference η̂ − η̂0 and next on expanding the
log likelihood requires careful choice of a norm in which the error ε is shown
to converge to zero, since semiparametric likelihoods often contain ill-behaved
terms.

In view of these potential difficulties our approach to proving the chi-
squared limit distribution of semiparametric likelihood ratio statistics will
be motivated by the approximation (3.2), but not based on it. Fundamental is
the observation that the submodel t→ pt;η0−�i−1

η0η0
iη0θ0

�T�t−θ0� is least favorable
at �θ0; η0� when estimating θ in the presence of the nuisance parameter η,
in the sense that of all submodels t → pt;ηt this submodel has the smallest
information about t. This information is precisely the asymptotic variance of√
n�θ̂ − θ0�. Thus �1;−i−1

η0η0
iη0θ0
� is the least favorable direction of approach

to �θ0; η0� when estimating θ in the presence of the unknown η. Approxima-
tion (3.2) shows that η̂ approaches η̂0 approximately along the least favorable
direction.

The derivative of the logarithm of the least favorable submodel with respect
to t at zero is called the efficient score function and takes the form

˜̀
θ0
= ˙̀θ0

− �i−1
η0η0

iη0θ0
�T ˙̀η0

:
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The sequence θ̂ is asymptotically linear in this function in that
√
n�θ̂− θ0� =

√
nPn

[ ˜̀
θ0

]
/
(
iθ0θ0
− iθ0η0

i−1
η0η0

iη0θ0

)
+ oP�1�:

The efficient score function can also be seen to be equal to ˙̀θ0
− cT ˙̀η0

for the
vector c that minimizes Pθ0η0

� ˙̀θ0
− cT ˙̀η0

�2.
The notion of a “least favorable submodel” has been extended to semipara-

metric models. Given a semiparametric model of the type �pθ;ηx θ ∈ 2;η ∈ H �,
the score function for θ is defined, as usual, as the partial derivative with re-
spect to θ of the log density. The efficient score function for θ is defined as

˜̀
θ = ˙̀θ −5 ˙̀θ;

where5`minimizes the squared distancePθη�`−k�2 over all functions k in the
closed linear span of the score functions for η. The inverse of the variance of
˜̀
θ is the Cramér–Rao bound for estimating θ in the presence of η. A submodel
t→ pt;ηt with ηθ = η is defined to be least favorable at �θ;η� if

˜̀
θ =

∂

∂t

∣∣∣∣
t=θ

lnpt; ηt :

Since a projection 5` on the closed linear span of the nuisance scores is not
necessarily a nuisance score itself, least favorable submodels may not always
exist. (Problems seem to arise in particular at the maximum likelihood es-
timator �θ̂; η̂�, which may happen to be “on the boundary of the parameter
set.”) However, in all our examples a least favorable submodel exists or can
be approximated sufficiently closely.

In the case that the parameter ψ does not factorize naturally into a param-
eter of interest θ and a nuisance parameter, an efficient score function can be
defined and calculated more elegantly in the following manner. (We use this
in the example of doubly censored data with ψ = F the distribution function
and θ = Fg.) Assume that score functions for the full model can be written in
the form

∂

∂t

∣∣∣∣
t=0

lnpψt�x� = `ψh�x�;

where h is a “direction” in which ψt approaches ψ, running through some
Hilbert space H, and `ψx H → L2�Pψ� the “score operator.” [In the example
of doubly censored data H is the set of all functions in L2�F� with mean Fh
zero.] Furthermore, assume that the parameter θx 9→ R is differentiable in
the sense that, for some θ̇0 ∈H,

∂

∂t

∣∣∣∣
t=0
θ�ψt� = �θ̇0; h�ψ:

Then the Cramér–Rao bound for estimating θ�ψ� equals

sup
h

�θ̇0; h�2ψ
Pψ�`ψh�2

:(3.3)



SEMIPARAMETRIC LIKELIHOOD RATIOS 1481

This supremum can be given a more concrete form by introducing the adjoint
operator `∗ψx L2�Pψ� →H, which is characterized by the requirement

Pψ�`ψh�g = �`ψh;g�Pψ = �h; `
∗
ψg�ψ for every h ∈H; g ∈ L2�Pψ�:

With this notation the efficient influence function for θ is defined as the ele-
ment g0 of the closure of `ψH such that

`∗ψg0 = θ̇0:

If g0 can be written in the form `ψh0 for some h0 ∈H (it cannot always), and
the “information operator” `∗ψ`ψ is invertible, this readily yields the represen-
tation

g0 = `ψh0; h0 = �`∗ψ`ψ�−1θ̇0:(3.4)

In this formulation the variance of the efficient influence function g0 is the
Cramér–Rao bound for estimating θ; the inverse of this variance could be
defined as the information about θ. Thus g0 corresponds to ˜̀θ/ var ˜̀θ in the
case that ψ = �θ;η� is partitioned. The direction h0 is the least favorable
direction in H; the derivative of the logarithm of a least favorable submodel
t→ pψt , in t at t = 0 is equal to `ψh with

h =
�`∗ψ`ψ�−1θ̇0

�θ̇0; �`∗ψ`ψ�−1θ̇0�ψ
:

Note the similarity to (3.1). The Cramér–Rao bound for the submodel in the
least favorable direction gives the supremum in (3.3).

3.1. A general theorem. In this section we discuss our approach toward
obtaining the asymptotic distribution of the likelihood ratio statistic, which is
partly motivated by the preceding discussion. Of course, for any ψ̃ and any
ψ̃0 ∈ 90 = �ψx θ�ψ� = θ0�,

lrtn�θ0� = 2nPn
(
ln lik�ψ̂� − ln lik�ψ̂0�

)
{
≥ 2nPn

(
ln lik�ψ̃� − ln lik�ψ̂0�

)
;

≤ 2nPn
(
ln lik�ψ̂� − ln lik�ψ̃0�

)
:

If both the upper and lower bounds converge to a chi-squared distribution on
one degree of freedom, then this also holds for the likelihood ratio statistic.
We use (3.2) as motivation to define suitable perturbations ψ̃ and ψ̃0 of ψ̂ and
ψ̂0. We define ψ̃0 by perturbing ψ̂ in a least favorable direction [so that in view
of (3.2) it can be expected to resemble ψ̂0]; we define ψ̃ by perturbing ψ̂0 in a
least favorable direction [so that in view of (3.2) it can be expected to resemble
ψ̂]. Thus, the perturbations are constructed as elements of submodels that are
approximately least favorable.

The following theorem gives a general framework for our approach. Denote
Pψ0

by P0. We assume that as n tends to infinity, the maximum likelihood
estimator θ̂ = θ�ψ̂� satisfies

√
n�θ̂− θ0� =

√
nPn ˜̀/Ĩ+ oP�1�; Ĩ = P0 ˜̀2;(3.5)
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for a mean zero function ˜̀ with finite and positive variance Ĩ under P0. In
all our examples the maximum likelihood estimator is asymptotically efficient
and ˜̀/Ĩ is the efficient influence function for estimating θ.

Furthermore, we assume that there exist “approximately least favorable
submodels.” For every t and ψ suppose that there exists a curve t→ ct�ψ� in
9 indexed by the parameter of interest t, and passing through ψ at t = θ�ψ�.
Technically this means that

θ�ct�ψ�� = t and ct�ψ��t=θ�ψ� = ψ:(3.6)

(The proof below uses these curves only for t close to θ0 and for ψ = ψ̂ or
ψ = ψ̂0.) The curve t→ ct�ψ� should be approximately least favorable in that
the submodel

t→ `�xy t;ψ� = ln lik�ct�ψ�; x�(3.7)

should be twice continuously differentiable for every x, with derivatives ˙̀ and
῭ satisfying

− Pn ῭�·y θ̃; ψ̃� →P P0 ˜̀2 for any random θ̃→P θ0; ψ̃→P ψ0;(3.8)

√
nPn� ˙̀�·y θ0; ψ̂0� − ˜̀� →P 0:(3.9)

The idea is to construct the submodel such that the first derivative ˙̀�·; θ0; ψ0�
is equal to the efficient score function ˜̀, whence the expectation of its second
derivative should be minus the efficient information for θ.

The preceding conditions presume a topology on the set 9, and we assume
that the maximum likelihood estimators are consistent with respect to this
topology.

Theorem 3.1. Suppose that the maps t→ `�xy t;ψ� are twice continuously
differentiable and satisfy (3.5)–(3.9), and suppose that ψ̂ and ψ̂0 are consistent.
Then lrtn�θ0� χ2

1.

Proof. Since, by (3.6), ψ̂ = cθ̂�ψ̂�,

lrtn�θ0� = 2nPn
[

ln lik�ψ̂� − ln lik�ψ̂0�
]

≤ 2nPn
[

ln lik�cθ̂�ψ̂�� − ln lik�cθ0
�ψ̂��

]

= 2nPn
[
− ˙̀�·y θ̂; ψ̂��θ0 − θ̂� − 1/2 ῭�·y θ̃; ψ̂��θ0 − θ̂�2

]
;

for some θ̃ between θ0 and θ̂. Here the linear term vanishes, because t →
Pn ln lik�ct�ψ̂�� is maximized at t = θ̂. An application of (3.8) and (3.5) shows
that the right-hand side converges in distribution to a chi-squared distribu-
tion.
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Since, by (3.6), ψ̂0 = cθ0
�ψ̂0�,

lrtn�θ0� = 2nPn
[

ln lik�ψ̂� − ln lik�ψ̂0�
]

≥ 2nPn
[

ln lik�cθ̂�ψ̂0�� − ln lik�cθ0
�ψ̂0��

]

= 2nPn
[ ˙̀�·y θ0; ψ̂0�

]
�θ̂− θ0� + nPn

[ ῭�·y θ̃; ψ̂0��θ0 − θ̂�2
]
;

for some θ̃ between θ0 and θ̂. Apply (3.9) to get that the first term on the right
is equal to 2

√
n�θ̂ − θ0�

√
nPn ˜̀ + oP�1� and apply (3.8) to get that the second

term is −P0 ˜̀2n�θ̂− θ0�2 + oP�1�. An application of (3.5) shows that the right-
hand side converges in distribution to a chi-squared distribution.

The combination of the preceding two paragraphs yields the theorem. 2

We note that it is sufficient that the conditions of the theorem are true “with
probability tending to 1.” Similarly, it suffices that the “paths” �ct�ψ̂�x t ∈ U�
and �ct�ψ̂0�x t ∈ U� belong to the parameter set with probability tending to 1
for a fixed neighborhood U of θ0 (not depending on n). We keep this in mind
when discussing our examples.

Example (Doubly censored data). The theorems are applied with the sub-
model ct�ψ� = Ft�θ;F�, where

Ft�θ;F� = F+ �θ− t�
∫ ·
�g∗ −Fg∗�dF/�−IF�;

IF =
∫
g�g∗ −Fg∗�dF:

(3.10)

(Note that θ = Fg by definition.) The function g∗ is the least favorable direc-
tion in theF-space at the true distributionF0 for estimatingFg and is defined
by (4.1). It will be shown to be bounded and of bounded variation. The expres-
sion IF0

is the inverse of the information Ĩ and is positive. The expression
Ft�θ;F� does not truly define a probability distribution for every t− θ and F,
although it always has total (signed) mass 1. However, in view of the bound-
edness of g∗, if t−θ, Fgg∗−F0gg

∗, Fg∗−F0g
∗ and Fg−F0g are sufficiently

close to zero, then Ft�θ;η� has a positive density 1+�θ− t��g∗−Fg∗�/IF with
respect to F and hence defines a probability distribution.

Example (Cox regression for current status data). The theorems are ap-
plied with ct�ψ� = �t; 3t�θ;3��, where

3t�θ;3� = 3+ �θ− t�φ�3�h∗∗ ◦3−1
0 ◦3:(3.11)

Here the function 30h
∗∗ is the least favorable direction for estimating θ in the

3-space at the true parameter �θ0; 30� and is defined by (5.1), and φx �0;M� →
�0;∞� is a fixed function such that φ�y� = y on the interval �30�σ�; 30�τ��,
such that the function y → φ�y�/y is Lipschitz and such that φ�y� ≤ c�y ∧
�M−y�� for a sufficiently large constant c specified below [and depending on
�θ0; 30� only]. [By our assumption that �30�σ�; 30�τ�� ⊂ �0;M� such a func-
tion exists.] The function 3t�θ;3� is essentially 3 plus a perturbation in the
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least favorable direction, but its definition is somewhat complicated in order
to ensure that 3t�θ;3� really defines a cumulative hazard function within
our parameter space, at least for t that are sufficiently close to θ. First, the
construction using h∗∗ ◦3−1

0 ◦3, rather than h∗∗ [taken from Huang (1996)],
ensures that the perturbation that is added to 3 is absolutely continuous with
respect to 3; otherwise 3t�θ;3� would not be a nondecreasing function. Sec-
ond, the function φ “truncates” the values of the perturbed hazard function to
�0;M�.

A precise proof that 3t�θ;3� is a parameter is as follows. Since the function
φ is bounded and Lipschitz and by assumption, h∗∗ ◦ 3−1

0 is bounded and
Lipschitz, so is their product and hence, for u ≤ v and �θ− t� < ε,

3t�θ;3��v� − 3t�θ;3��u� ≥
(
3�v� − 3�u�

)(
1− ε�φh∗∗ ◦3−1

0 �Lipschitz
)
:

For sufficiently small ε the right-hand side is nonnegative. Next, for �θ−t� < ε,

3t�θ;3� ≤ 3+ εφ�3��h∗∗�∞:

This is certainly bounded above by M (on �0; τ�) if φ�y� ≤ �M− y�/�ε�h∗∗�∞�
for all 0 ≤ y ≤M. Finally, 3t�θ;3� can be seen to be nonnegative on �σ; τ� by
the condition that φ�y� ≤ cy.

Example (Gamma frailty). The theorems are applied with ct�ψ� =
�t; 3t�θ;3��, where

3t�θ;3� = 3+ �θ− t�
∫ ·
k∗ d3:(3.12)

The function k∗ is the least favorable direction in the 3-space at the true
parameter �θ0; 30� and is defined by (6.1). This function will be shown to be
bounded, so that the density 1+�θ−t�k∗ of 3t�θ;η� with respect to 3 is positive
for sufficiently small �θ − t�. In that case 3t�θ;η� defines a nondecreasing
function and is a true parameter of the model.

Example (Mixture model). The theorems are applied with ct�ψ� =
�t;Ft�θ;F��, where

Ft�θ;F��B� = F
(
B

(
1+ θ− t

2θ

)−1)
:(3.13)

This will be shown to be an exact least favorable submodel at F and is well
defined whenever �θ− t� < 2θ.

Having defined suitable submodels, we next need to check the technical
conditions of Theorem 3.1. Regarding condition (3.8), we note that

῭�·y t;ψ� = ∂
2lik�ct�ψ��/∂t2

lik�ct�ψ��
− ˙̀2�·y t;ψ�:
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In one of our four examples we use paths such that the maps t → lik�ct�
are linear in which case the first term on the right-hand side is zero. In the
other examples the first term has the form �∂2pt/∂t2�/pt, which is a mean
zero function under pt and can be shown to give a negligible contribution:

Pn
∂2lik�ct�ψ��/∂t2

lik�ct�ψ��

∣∣∣∣
t=θ̃
→P 0 for every θ̃→P θ0:(3.14)

This could be proved by classical arguments or with the help of the mod-
ern Glivenko–Cantelli theorem: if the functions are contained in a Glivenko–
Cantelli class, the empirical measure can be replaced by the true measure.

Conditions (3.8) and (3.9) can often be checked with help of the following
lemma, which uses concepts from the theory of empirical processes. See, for
instance, van der Vaart and Wellner (1996) for a review and methods to check
the conditions.

Lemma 3.2. Suppose that there exist neighborhoods U of θ0 and V of ψ0
such that the class of functions

{ ˙̀�·y t;ψ�x t ∈ U; ψ ∈ V
}

is P0-Donsker with

square-integrable envelope function. Furthermore, suppose that ˙̀�xy t;ψ� →
˜̀�x� for P0-almost every x, as t → θ0 and ψ → ψ0. Then for all random
sequences θ̃n and ψ̃n that converge in probability to θ0 and ψ0 we have

Pn ˙̀2
(
·y θ̃n; ψ̃n

)
→P P0 ˜̀2;

√
n�Pn −P0�

( ˙̀�·y θ̃n; ψ̃n� − ˜̀
)
→P 0:

Proof. Assume without loss of generality that θ̃n and ψ̃n take their values
in U and V, respectively.

By Theorem 4.6 of Giné and Zinn (1986) or Lemma 2.10.14 of van der
Vaart and Wellner (1996) the class of squares f2 of functions f ranging over a
Donsker class with square integrable envelope is Glivenko–Cantelli. It follows
that

sup
t∈U;ψ∈V

∣∣�Pn −P0� ˙̀2�·y t;ψ�
∣∣→P 0:

Thus in the first statement the empirical measure may be replaced by the true
underlying measure. By assumption ˜̀�x� = ˙̀�xy θ0; ψ0� almost surely under
P0. Next the result follows by the dominated convergence theorem.

For the second statement define a stochastic process

Gn =
{√
n�Pn −P0�

( ˙̀�·y t;ψ� − ˜̀
)
x t ∈ U; ψ ∈ V

}
:

The Donsker assumption (and the square integrability of the envelope func-
tion) entails that the sequence Gn is asymptotically uniformly continuous in
probability, that is, for every ε > 0,

lim
δ↓0

lim sup
n→∞

P∗
(

sup
ρ��t;ψ�; �t′;ψ′��<δ

∣∣Gn�t;ψ� −Gn�t′; ψ′�
∣∣ > ε

)
= 0;
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where ρ is the semimetric given by its square

ρ2(�t;ψ�; �t′; ψ′�
)
= P0

( ˙̀�·y t;ψ� − ˙̀�·y t′; ψ′�
)2
:

By dominated convergence and consistency of �θ̃n; ψ̃n� we have

ρ2(�θ̃; ψ̃�; �θ0; ψ0�
)
→P 0:

Conclude that the sequence Gn�θ̃n; ψ̃n� −Gn�θ0; ψ0� converges in probability
to zero. This is the second assertion of the lemma. 2

Once (3.14) is verified and if the preceding lemma is applicable, the condi-
tions of Theorem 3.1 effectively reduce to the condition

√
nP0 ˙̀�·y θ0; ψ̂0� →P 0:(3.15)

Whereas the conditions of the lemma can be viewed as regularity conditions,
this is a structural condition. An “unbiasedness” condition of this type may
be expected in view of results of Klaassen (1987), who shows that if θ can
be estimated efficiently, then there must exist (consistent) estimators ˆ̀ of the
efficient score function such that

√
nP0 ˆ̀ →P 0. The preceding display requires

that the plug-in estimator ˙̀�·y θ0; ψ̂0� has the latter property.
A similar condition (with ψ̂ instead of ψ̂0) also shows up in proofs of the

asymptotic normality of the maximum likelihood estimator θ̂. [See, e.g., Huang
(1996) or van der Vaart (1996).]

At first, condition (3.15) appears to require a rate of convergence of ψ̂0.
This is not true, as in many cases ˙̀�·y t;ψ� is of a special form. For instance,
in semiparametric models in which the density is convex linear in the nui-
sance parameter, the efficient score function for θ is unbiased in the sense
that Pθη ˜̀θ�θ;η0� = 0 for any θ, η and η0. In our mixture model example we
construct the submodel t → ct�ψ� in such a way that the derivative is ex-
actly the efficient score function, and the unbiasedness condition is trivially
satisfied.

In the worst situation (3.15) should not require more than an oP�n−1/4�-rate
for the nuisance parameter. For instance, if ψ = �θ;η� and ˜̀�·y θ0; ψ̂0� is the
efficient score function, then the expression in (3.15) is equal to
√
n�P0 −Pψ̂0

� ˜̀�·y θ0; ψ̂0� ≈ −
√
nPψ̂0

˜̀�·y θ0; ψ̂0�`η̂0
�η̂− η0� +

√
nO

(
�η̂− η0�2

)
:

Here the first term should vanish, because the efficient score function for θ is
orthogonal to all scores for the nuisance parameter.

4. Doubly censored data. The path defined by dFt = �1+ th�dF for a
bounded function with Fh = 0 yields a score function of the form

`Fh�u;d� =
∫
�0; u� hdF

F�u� I�d = 1� + h�u�I�d = 2� +
∫
�u;∞� hdF

1−F�u� I�d = 3�:



SEMIPARAMETRIC LIKELIHOOD RATIOS 1487

For g and h bounded, we have that PF`F�h�`F�g� = �`F�h�; `F�g��PF =
�h; `∗`Fg�F = F�h`∗`F�g��. So we may use Fubini’s theorem to derive the
adjoint operator `∗x L2�PF� → L2�F�,

`∗g�s� =
∫
�s;∞�

g�u;1�dGL�u� + g�s;2��GL −GR��s−� +
∫
�0; s�

g�u;3�dGR�u�:

Thus the information operator takes the form

`∗`Fh�s� =
∫
�s;∞�

∫
�0; z� hdF

F�z� dGL�z� + h�s��GL −GR��s−�

+
∫
�0; s�

∫
�y; τ� hdF

1−F�y� dGR�y�:

Since the function g used to define the null hypothesis Fg = θ0 is assumed
to be bounded and of bounded variation, part (i) of Lemma A.2 shows that the
function

g∗ = �`∗`F0
�−1g(4.1)

is well defined, bounded and of bounded variation. We use this function to
define the (approximately) least favorable submodel (3.10).

In Lemma A.3, we prove consistency of F̂0 and that

�F̂− F̂0��h� = F0
(
h�g∗ −F0g

∗�
)
�θ̂− θ0�/F0

(
g�g∗ −F0g

∗�
)
+ oP�n−1/2�

uniformly for uniformly bounded h of uniformly bounded variation. Since
the asymptotic variance of

√
n�θ̂ − θ0� is F0�g�g∗ − F0g

∗��, this confirms
the intuition expressed in Section 3. In the verification of Lemma A.3(ii) we
show that �F̂ − F0�∞ = OP�n−1/2� and �F̂0 − F0�∞ = OP�n−1/2� and that
�θ̂− θ0� = Pn`F0

�g∗ −F0g
∗� + oP�n−1/2� so ˜̀/Ĩ = `F0

�g∗ −F0g
∗�.

Recalling (3.7) and (3.10), we have

˙̀�u;dy t;F� = `F�g∗ −Fg∗��u;d�/IF
1+ �t−Fg�`F�g∗ −Fg∗��u;d�/IF

; IF = Fg�g∗ −Fg∗�:

Given a bounded, monotone function h the function `Fh is composed of three
bounded and monotone functions, with the same uniform bound. Since g∗

is bounded and of bounded variation, it follows that the class of functions
`Fg

∗ with F ranging over all distributions on �σ; τ� consists of uniformly
bounded functions of uniformly bounded variation, hence is a Donsker class.
For �F − F0�∞ sufficiently small we have that IF is close to IF0

, Fg is
close to F0g and Fg∗ is close to F0g

∗. Given Donsker classes F1; : : : ;Fk

and a Lipschitz function φx Rk → R, a uniformly bounded class of functions
x→ φ

(
f1�x�; : : : ; fk�x�

)
y fi ∈ Fi; i = 1; : : : ; k, is Donsker by Theorem 2.10.6

of van der Vaart and Wellner (1996). It follows that the class of functions
˙̀�u;dy t;F� with t sufficiently close to θ0 = F0g and �F − F0�∞ sufficiently
small is Donsker. As �t;F� → �θ0;F0� these functions converge a.s.-PF0

to
˜̀ = ˙̀�·y θ0;F0�. Thus the conditions of Lemma 3.2 are satisfied. Note that
(3.14) is trivially satisfied, since the derivative of ˙̀�u;dy t;F� with respect to
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t is −� ˙̀�u;dy t;F��2. For the application of our Theorem 3.1 it suffices to show
that
√
nP0`F̂0

�g∗ − F̂0g
∗� = √n�P0 −PF̂0

�`F̂0
g∗ = √n�F0 − F̂0�`∗`F̂0

g∗→P 0:

Since �F̂0−F0�g = 0 the absolute value of this expression is equal to, in view
of the definition of g∗ and that the support of F̂0 is contained in �σ; τ�,
√
n
∣∣�F0 − F̂0�

(
`∗`F̂0

g∗ − `∗`F0
g∗
)∣∣ ≤ 2

√
n�F̂0 −F0�∞

∥∥`∗`F̂0
g∗ − `∗`F0

g∗
∥∥

BV;

where �� · ��BV is the sum of the supremum and total variation norms. The first
term on the right-hand side is bounded in probability; the second converges
to zero in probability by Lemma A.2(ii).

5. Regression for current status data. In this model the score function
for θ takes the form

`θ�θ;3��x� = z3�y�Q�xy θ;3�;
for the function Q�xy θ;3� given by

Q�xy θ;3� = eθz
[
δ

exp�− exp�θz�3�y��
1− exp�− exp�θz�3�y�� − �1− δ�

]
:

Inserting into the log likelihood a submodel t → 3t such that h�y� =
−∂/∂t�t=0 3t�y� exists for every y, and differentiating at t = 0 we obtain a
score function for 3 of the form

`3�θ;3�h�x� = h�y�Q�xy θ;3�:
For every nondecreasing, nonnegative function h the submodel 3t = 3+ th is
well defined for t ≥ 0 and yields a (one-sided) derivative h at t = 0. Thus the
preceding display gives a (one-sided) score for 3 at least for all h of this type.
The linear span of these functions contains `3h for all bounded functions h of
bounded variation. The efficient score function for θ is defined as `θ− `3h∗ for
h∗ minimizing the distance Pθ3�`θ− `3h�2. In view of the similar structure of
the scores for θ and 3 this is a weighted least squares problem with weight
function Q�y; δ; zy θ;3�. The solution at the true parameters is given by

h∗�Y� = 30�Y�h∗∗�Y� = 30�Y�
Eθ030

(
ZQ2�Xy θ0; 30��Y

)

Eθ030

(
Q2�Xy θ0; 30��Y

) :(5.1)

As the formula shows (and as follows from the nature of the minimization
problem) the function h∗∗ is unique only up to null sets for the distribution of
Y. However, it is an assumption that (under the true parameters) there exists
a version of the conditional expectation that is differentiable with bounded
derivative. Following Huang (1996) this version is used to define the least
favorable submodels (3.11). By the assumption that P0 var�Z�Y� > 0, the
efficient score function ˜̀ = `θ�θ0; 30� − `3�θ0; 30�h∗, the difference between
the θ-score and its projection, is nonzero, whence the efficient information Ĩ
for θ is positive [at �θ0; 30�].
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The consistency of �θ̂; 3̂� and 3̂0 can be proved by a standard consistency
proof, where we may start from the inequality Pn ln�lik�ψ̂� + lik�ψ0�� ≥
Pn ln 2lik�ψ0�, rather than from the more obvious inequality Pn ln lik�ψ̂� ≥
Pn ln lik�ψ0�. (The latter inequality implies the first by the concavity of ln.)
See, for instance, the consistency proof in Huang and Wellner (1995), or
also the Appendix. The identifiability of the parameters is ensured by the
assumption that P0 var�Z�Y� > 0. More precisely, it can be shown under our
conditions that on a set of probability 1, 3̂ and 3̂0 converge to 30 uniformly
on the interval �σ + ε; τ − ε�, for every ε > 0. Of course, the estimators
and the true distribution are not identifiable outside the interval �σ; τ�. The
consistency of the estimators at σ and τ seems dubious, even though this is
used by Huang (1996) in some of his proofs. In the Appendix, we show that
the asymptotic normality and efficiency (3.5) of θ̂ remains valid even without
the uniform consistency on �σ; τ�. We also show that both

∫ τ
σ �3̂ − 30�2�y�dy

[as asserted by Huang (1996)] and
∫ τ
σ �3̂0 − 30�2�y�dy converge to zero at the

rate OP�n−2/3�. We shall use this to verify condition (3.15).
In view of (3.11), we have

˙̀�xy t; 3; θ� =
[
z− φ�3��y�

3t�θ;3��y�
h∗∗ ◦3−1

0 ◦3�y�
]
3t�θ;3��y�Q

(
xy t; 3t�θ;3�

)
:

For �t; 3; θ� tending to �θ0; 30; θ0� this function converges almost everywhere
to its value at �θ0; 30; θ0�, which, by construction, is the efficient score func-
tion ˜̀ for θ at �θ0; 30�. Furthermore, the class of functions ˙̀�xy t; 3; θ� with
�t; θ� varying over a small neighborhood of �θ0; θ0� and with 3 ranging over
all nondecreasing cadlag functions with range in �0;M� can be seen to be a
Donsker class by repeated application of preservation properties for Donsker
classes [cf. van der Vaart and Wellner (1996), Chapter 2.11]. Note here that,
since the function u→ ue−u/�1− e−u� is bounded and Lipschitz on �0;∞�, we
can write

3�y�Q�xy t; 3� = ψ
(
etz; 3�y�

)

for a function ψ that is bounded and Lipschitz in its two arguments. Thus,
since the classes of functions z→ etz and y→ 3�y� are Donsker, so is the class
of functions x → 3�y�Q�xy t; 3�. Next, since the function φ�y�/y is bounded
and Lipschitz, and h∗ ◦3−1

0 is assumed bounded and Lipschitz,

φ�3�
3t�θ;3�

= φ�3�/3
1+ �θ− t�φ�3�/3h∗∗ ◦3−1

0 ◦3
= χ�θ− t; 3�

for a function χ that is bounded and Lipschitz on an appropriate domain. Next,
the product of the two classes of functions in the preceding displays, which
are both uniformly bounded and Donsker, is Donsker, and so on.

Thus, the assumptions of Lemma 3.2 are valid, whence the assumptions of
Theorem 3.1 have been verified, except for (3.14) and (3.15). For the first of



1490 S. A. MURPHY AND A. W. VAN DER VAART

these two conditions we compute that

∂2lik
(
t; 3t�θ;3�

)
/∂t2

lik
(
t; 3t�θ;3�

) = Q
(
·y t; 3t�θ;3��

×
[
z23t�θ;3� − 2φ�3�h∗∗ ◦3−1

0 ◦3

− etz
(
z3t�θ;3� −φ�3�h∗∗ ◦3−1

0 ◦3
)2]
:

By the same arguments as before these functions are in a Donsker class,
hence certainly in a Glivenko–Cantelli class. Thus the empirical measure Pn
in (3.14) can be replaced by the true measure P0. As �t; θ;3� converges to
�θ0; θ0; 30� the functions in the preceding display converge almost everywhere
to �∂2pt; 3t�θ0; 30�/∂t

2�/pt; 3t�θ0; 30� evaluated at t = θ0. This has mean zero. We
can conclude the proof of (3.14) by the dominated convergence theorem.

Abbreviating ˙̀�·y θ0; 3; θ0� to ˙̀�3�, we can rewrite the expectation in (3.15)
in the form

P0 ˙̀�3̂0� = �P0 −Pθ0; 3̂0
� ˙̀�30� + �P0 −Pθ0; 3̂0

�
( ˙̀�3̂0� − ˙̀�30�

)
:(5.2)

We shall show that both terms on the right-hand side are of the order
OP�n−2/3� and hence certainly oP�n−1/2�. Since ˙̀�30� is the efficient score
function for θ and hence is orthogonal to every 3-score, the first term can be
rewritten as

P0 ˙̀�30�
[
�p0 − pθ0; 3̂0

�/p0 − `3�θ0; 30��30 − 3̂0�
]
:

The second term in square brackets is exactly the linear approximation in
30 − 3̂0 of the first. Taking the Taylor expansion one term further shows that
the term in square brackets is bounded by a multiple of �30 − 3̂0�2 and hence
the display is bounded by a multiple of P0�30 − 3̂0�2. The second term in
(5.2) can be bounded similarly, since both 3→ pθ0; 3

and 3→ ˙̀�θ0; 3; θ0� are
uniformly Lipschitz functions.

6. Gamma frailty. The natural log of (2.1) is given by

ln lik�θ;3;X� =
∫ τ

0
ln
(
1+ θN�u−�

)
dN�u�

−
(
1+ θN�τ�

)
θ−1 ln

(
1+ θ

∫ τ
0
Yd3

)

+
∫ τ

0
ln
(
Y�u�13�u�

)
dN�u�;

where if θ = 0, θ−1 ln�1 + θ
∫ τ

0 Yd3� is set to its limit,
∫ τ

0 Yd3. The score
function for θ is

`θ�θ;3� =
∫ τ

0

N�u−�
1+ θN�u−� dN�u�

− θ−1
∫ τ

0
Yd3

1+ θN�τ�
1+ θ

∫ τ
0 Yd3

+ θ−2 ln
(

1+ θ
∫ τ

0
Yd3

)
;
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where, in the case that θ = 0 the last two terms above are replaced by their
limit,

−N�τ�
∫ τ

0
Yd3+ 1

2

(∫ τ
0
Yd3

)2

:

The path defined by d3t = �1 + th2�d3 for a bounded function, h2, yields a
score function for 3 of the form,

`3�θ;3�
[∫ ·

h2 d31

]
=
∫ τ

0
h2 dN−

1+ θN�τ�
1+ θ

∫ τ
0 Yd3

∫ τ
0
Yh2 d31:

Also define three second derivatives. The second derivative `θθ�θ;3� is ob-
tained by simply differentiating `θ�θ;3� with respect to θ. For bounded h2 and
g2, the remaining second derivatives are defined as

`θ3�θ;3�
[∫ ·

h2 d31

]
= −

( ∫ τ
0 Yh2 d31

1+ θ
∫ τ

0 Yd3

)

×
(
N�τ� − 1+ θN�τ�

1+ θ
∫ τ

0 Yd3

∫ τ
0
Yd3

)

`33�θ;3�
[∫ ·

h2 d31;
∫ ·
g2d32

]
= 1+ θN�τ�
�1+ θ

∫ τ
0 Yd3�2

∫ ·
h2Yd31

∫ ·
g2Yd32

− 1+ θN�τ�
1+ θ

∫ τ
0 Yd3

∫ τ
0
h2g2Yd32:

Finally, letting BV�0; τ� denote the functions hx �0; τ� → R which are bounded
and of bounded variation, equipped with the norm �� · ��BV = �� · ��∞ + �� · ��var,
define operators σ33x BV�0; τ� → BV�0; τ� and σ = �σ1; σ2�x R × BV�0; τ� →
R× BV�0; τ� by

σ33�h2��u� = P0

[
−Y�u�θ0

1+ θ0N�τ�
�1+ θ0

∫ τ
0 Yd30�2

∫ ·
h2Yd30

]

+ h2�u�P0

[
Y�u� 1+ θN�τ�

1+ θ
∫ τ

0 Yd30

]
;

σ1�h1; h2� = −h1P0`θθ�θ0; 30� −P0`θ3�θ0; 30�
[∫ ·

h2 d30

]

σ2�h1; h2��u� = h1P0

[
Y�u�

1+ θ0
∫ τ

0 Yd30

(
N�τ� − 1+ θ0N�τ�

1+ θ0
∫ τ

0 Yd30

∫ τ
0
Yd30

)]

+ σ33�h2�:

These operators arise in the proof of asymptotic normality of the maximum
likelihood estimators given in Murphy (1995a). They also appear in informa-
tion calculations in this model. Indeed the operator σ33 is the information



1492 S. A. MURPHY AND A. W. VAN DER VAART

operator `∗3`3 connected to the nuisance parameter 3; that is,

�g2; σ33�h2��3 =
〈
`3�θ0; 30�

[∫ ·
g2 d30

]
; `3�θ0; 30�

[∫ ·
h2d30

]〉

P0

:

This follows from the identity
∫ τ

0
g2σ33�h�d30 = −P0`33�θ0; 30�

[∫ ·
h2 d30;

∫ ·
g2 d30

]

= P0`3�θ0; 30�
[∫ ·

h2 d30

]
`3�θ0; 30�

[∫ ·
g2 d30

]
:

Similarly, the operator σ is the information operator `∗ψ`ψ�ψ0� for the full pa-
rameter ψ = �θ;3� of the model, for which the score function can be written as
`ψ�ψ��h1; h2� and is defined as h1`θ�θ;3� + `3�θ;3��

∫ ·
h2 d3�. The parameter

of interest θ�ψ� = θ has derivative θ̇0 = �1;0�, since

d

dt

∣∣∣∣
t=0
θ�θ+ th1; 3t� = h1 =

〈
�h1; h2�; �1;0�

〉
R×3:

Thus by the general theory [see (3.4)] we can find the influence function for
estimating θ, letting σ̃ = �σ̃1; σ̃2� be the inverse of σ , as

`ψ�ψ0��`∗ψ`ψ�ψ0��−1�1;0� = σ̃1�1;0�`θ�θ0; 30� + `3�θ0; 30�
[∫ ·

σ̃2�1;0�d30

]
:

The following lemma shows that this function is well defined. Denote the
subset of BV�0; τ�, with norm bounded above by p, by BVp�0; τ�.

Lemma 6.1. Under the conditions of Theorem 2.3 the following hold:

(i) σ33x BV�0; τ� → BV�0; τ� is continuously invertible with inverse σ̃33;
(ii) σ x R×BV�0; τ�→R×BV�0; τ� is continuously invertible with inverse σ̃ ;

(iii)
√
n�3̂− 30�∞ is OP�1�;

(iv)
√
n�3̂0�·� − 30�·�� Z�·� on l∞�BVp�0; τ��, where Z is a tight Gauss-

ian process with mean zero and covariance process covar�Z�h2�;Z�g2�� =∫ τ
0 g2σ̃33�h2�d30;

(v)
√
n�θ̂−θ0� = σ̃1�1;0�Pn�`θ�θ0; 30�−`3�θ0; 30��

∫ ·
k∗d30��+oP�1�, where

k∗�u� = −σ̃1�1;0�−1σ̃2�1;0��u�:(6.1)

Proof. Under assumptions (i)–(iii) of Theorem 2.3 the conditions of Mur-
phy (1994, 1995a) are satisfied, implying that (ii), (iii) and (v) hold. Items (i)
and (iv) can be proved by following virtually identical steps to those in Murphy
(1994, 1995a). 2

The continuous invertibility in (i) and (ii) imply that σ̃1�1;0� > 0. From (v)
we have that ˜̀ of (3.5) is equal to `θ�θ0; 30� − `3�θ0; 30��

∫ ·
k∗ d30� and Ĩ is

equal to σ̃1�1;0�−1.
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The least favorable submodels are given by (3.12). The continuous invert-
ibility of σ implies that the function k∗ is uniformly bounded on �0; τ�. Thus
these submodels define true cumulative hazard functions for θ̂ and t suffi-
ciently close to θ0.

Recalling (3.7) and (3.12), we see that

˙̀�·y t; θ;3� = `θ
(
t; 3t�θ;3�

)
− `3

(
t; 3t�θ;3�

)[∫ ·
k∗ d3

]

῭�·y t; θ;3� = `θθ
(
t; 3t�θ;3�

)
− 2`θ3

(
t; 3t�θ;3�

)[∫ ·
k∗ d3

]

+ `33
(
t; 3t�θ;3�

)[∫ ·
k∗ d3;

∫ ·
k∗ d3

]
:

To verify (3.8), note that

−P0

[
`θθ�θ0; 30�−2`θ3�θ0; 30�

[∫ ·
k∗ d30

]
+ `33�θ0; 30�

[∫ ·
k∗ d30;

∫ ·
k∗ d30

]]

= σ1�1;−k∗� +
∫
σ2�1;−k∗��u��−k∗�u��d30

= σ̃1�1;0�−1
(
σ1�σ−1�1;0�� +

∫
σ2�σ−1�1;0���u��−k∗�u��d30

)

= σ̃1�1;0�−1�1+ 0�:
Recall that Y is nonincreasing and bounded and N is nondecreasing and
bounded. This implies that the derivatives `θ�θ;3�, `3�θ;3��

∫
h2 d31�,

`θθ�θ;3�, `θ3�θ;3��
∫
h2 d31� and `33�θ;3��

∫
h2 d31;

∫
g2 d32� are contin-

uous in �θ;3;31; 32�, uniformly in �N;Y�, with respect to the Euclidean
topology on θ ∈ �−ε;M� and the uniform norm on the cumulative hazard
functions, which range over all cumulative hazard functions in BVp�0; τ� for
some p <∞. Thus, (3.8) is verified.

The remaining condition (3.9) takes the form
√
nPn

[
˙̀�·y θ0; θ0; 3̂0� − `θ�θ0; 30� + `3�θ0; 30�

[∫ ·
k∗ d30

]]

converges to zero in probability. To see this, substitute in for ˙̀ and add and
subtract −`θ3�θ0; 30��3̂0 − 30� + `33�θ0; 30��

∫ ·
k∗ d30; 3̂0 − 30� to get

√
nPn

[
`θ�θ0; 30� − `θ�θ0; 3̂0� − `θ3�θ0; 30�

[
3̂0 − 30

]]
(6.2)

+√nPn
[
−`3�θ0; 3̂0�

[∫ ·
k∗ d3̂0

]
+ `3�θ0; 30�

[∫ ·
k∗ d30

]

+ `33�θ0; 30�
[∫ ·

k∗ d30; 3̂0 − 30

]](6.3)

−√nPn
[
−`θ3�θ0; 30�

[
3̂0 − 30

]
+ `33�θ0; 30�

[∫ ·
k∗d30; 3̂0 − 30

]]
:(6.4)
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We show that each of the three terms converges in probability to zero. Via
tedious algebraic arguments, we get that, for θ0 6= 0, (6.2) is equal to

√
nPn

[
θ−2

0

{
ln
[
1+ θ0

∫ τ
0 Yd�3̂0 − 30�

1+ θ0
∫ τ

0 Yd30

]
− θ0

∫ τ
0 Yd�3̂0 − 30�

1+ θ0
∫ τ

0 Yd30

}]

+√nPn
[

1+ θ0N�τ�
�1+ θ0

∫ τ
0 Yd30�2

�
∫ τ

0 Yd�3̂0 − 30��2

1+ θ0
∫ τ

0 Yd3̂0

]
:

If θ0 = 0, then (6.2) is
√
n2Pn�

∫ τ
0 Yd�3̂0−30��2. Using more tedious arguments,

we have that (6.3) is equal to

√
nPn

[
θ0

1+ θ0N�τ�
�1+ θ0

∫ τ
0 Yd30��1+ θ0

∫ τ
0 Yd3̂0�

×
[∫ τ

0
Yd�3̂0 − 30�

∫ τ
0
Yk∗ d�3̂0 − 30�

− θ0

∫ τ
0
Yk∗ d30

�
∫ τ

0 Yk
∗ d�3̂0 − 30��2

1+ θ0
∫ τ

0 Yd3̂0

]]
:

Recall that the total variation norms of both Y and k∗ are bounded by con-
stants and that N�τ� is also bounded by a constant. So both (6.2) and (6.3)
are OP�1�

√
n�3̂0 − 3�2∞.

All that is left is to prove that (6.4) converges to zero in probability. This
term is equal to

√
n
∫ τ

0 hn�u�d�3̂0 − 30��u�, where hn is the function

hn�u� = Pn
[

1+ θ0N�τ�
1+ θ0

∫ τ
0 Yd30

�k∗�u� − θ0
∫ τ

0 Yk
∗ d30

1+ θ0
∫ τ

0 Yd30
�

− Y�u�
1+ θ0

∫ τ
0 Yd30

(
N�τ� −

∫ τ
0
Yd30

1+ θ0N�τ�
1+ θ0

∫ τ
0 Yd30

)]
:

Note that the expectation of hn is −σ2�1;−k∗�, which is −σ̃1�1;0�−1 ×
σ2�σ−1�1;0�� = 0: Apply Rao’s (1963) strong law of large numbers to get that
�hn�∞ converges almost surely to zero. Also note that the total variation norm
of hn is uniformly bounded in n by a constant. PutZn�h� =

√
n
∫ τ

0 hd�3̂0−30�,
for h ∈ BVp�0; τ�. Then (iv) implies that Zn is asymptotically uniformly ρ2-
equicontinuous in probability [see, e.g., van der Vaart and Wellner (1996)],
where ρ2�h;g�2 =

∫ τ
0 �h�u� −g�u��σ−1

33�h−g��u�d30�u�. Note that ρ2�hn; hn�
converges to zero in probability. This combined with the asymptotically uni-
form equicontinuity of Zn implies that Zn�hn� converges in probability to
zero.

7. A mixture model. The score function for θ, the derivative of the log
density with respect to θ, is given by

`θ�θ;F��u; v� =
∫
�θ−1 − zv�z2e−z�u+θv� dF�z�∫

z2e−z�u+θv� dF�z� :
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In this model the statistic T1 + θT2 is sufficient for F. The conditional score
function ˜̀θ�θ;F� is defined as

˜̀
θ�θ;F��u; v� = `θ�θ;F��u; v� −Eθ

(
`θ�θ;F��T1;T2��T1 + θT2 = u+ θv

)

=
∫
�1/2��u− θv�z3e−z�u+θv� dF�z�∫

θz2e−z�u+θv� dF�z� :

By an easy calculation we see that, withFt�θ;F� the submodel given by (3.13),

˜̀
θ�θ;F��u; v� =

∂

∂t

∣∣∣∣
t=θ

lnpt;Ft�θ;F��u; v�:

The conditional expectation Eθ�`θ�θ;F��T1;T2��T1+θT2 = u+θv� minimizes
the distance to `θ�θ;F��u; v� over all functions of u+ θv. Since all score func-
tions for F are functions of u + θv, and this function is a score function for
some submodel, it must be the closest F-score. This, in addition to the preced-
ing equations, implies that the path t → Ft�θ;F� indexes a least favorable
submodel for θ.

The maximum likelihood estimators θ̂, F̂ and F̂0 can be shown to be con-
sistent (for the Euclidean topology and the weak topology) by the method of
Wald [cf. Kiefer and Wolfowitz (1956)]. The asymptotic efficiency (3.5) of θ̂ is
shown by van der Vaart (1996) [with ˜̀ = ˜̀θ�θ0;F0�].

Recalling (3.7) and (3.13), we see that

˙̀�u; vy t; θ;F� =
∫ ˙̀�u; vy t; θ;F�z� z2 exp�−z�3θ− t��2θ�−1�u+ tv��dF�z�∫

z2 exp�−z�3θ− t��2θ�−1�u+ tv��dF�z� ;

where

˙̀�u; vy t; θ;F�z� = �θ− t�
(
3t−1�3θ− t�−1 + zvθ−1)+ z�2θ�−1�u− θv�:

Lemma 7.1 shows that these functions belong to a Donsker class for �t; θ;F�
varying over a sufficiently small neighborhood of �θ0; θ0;F0�. Furthermore,
for �t; θ;F� → �θ0; θ0;F0� these functions converge for every �u; v� to
˜̀
θ�θ0;F0��u; v�. The function ˙̀�u; vy θ0; θ0; F̂0� equals the efficient score func-

tion ˜̀θ�θ0; F̂0��u; v�. From the representation of the efficient score function
as a conditional score, we see that Pθ0F0

˜̀
θ�θ0;F� = 0 for every θ0, F0 and

F; this verifies (3.15). In view of Lemma 3.2 all conditions of Theorem 3.1
are satisfied, except possibly (3.14), which takes the following form: as
�t; θ;F� → �θ0; θ0;F0�,

Pn
∂2pt;Ft�θ;F�/∂t

2

pt;Ft�θ;F�
→P 0:(7.1)

The second partial derivative in this expression can be written in the form
∫
R�u; vy t; θ�z� z2 exp�−z�3θ− t��2θ�−1�u+ tv��dF�z�;
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for

R�u; vy t; θ�z� = 3t− 6θ
2θ2

+ z
(

3�t− θ�
4θ2

�u+ tv��t− 3θ� + �t− 3θ�2
8θ3

�5t− 3θ�v

+ 3
�t− θ�

8θ3
�t− 3θ��u− v�3θ− 2t��

)

+ z2t
�t− 3θ�2

16θ4
�u− v�3θ− 2t�

)2
:

By the lemma below the functions in (7.1) are contained in a P0–Glivenko–
Cantelli class. This implies that it suffices to prove (7.1) with the empirical
measure replaced by the true measure P0. If �t; θ;F� → �θ0; θ0;F0�, then the
functions in (7.1) converge for every �u; v� to the function

∫
�−3�2θ0�−1 + zv+ z2�u− θ0v�2�4θ0�−1� z2 exp�−z�u+ θ0v��dF0�z�∫

z2 exp�−z�u+ θ0v��dF0�z�
:

This function has mean zero under P0. An application of the dominated con-
vergence theorem concludes the proof.

Lemma 7.1. Suppose that
∫
�z2+z−6:5�dF0 <∞. Then there exists a neigh-

borhood V of F0 for the weak topology such that the class of functions

�u; v� 7→
∫
�a1+a2zu+a3zv+a4z

2u2+a5z
2uv+a6z

2v2� z2 e−z�b1u+b2v� dF�z�∫
z2 e−z�b1u+b2v� dF�z� ;

where �a1; : : : ; a5� ranges over a bounded subset of R5, �b1; b2� ranges over a
compact subset of �0;∞�2 and F ranges over V , is Pθ0;F0

-Donsker with square-
integrable envelope.

Proof. By applying Lemma L.23 of Pfanzagl (1990) repeatedly, it follows
that there exist constants and a weak neighborhood V of F0 such that

sup
F∈V

∫
zm+2e−zs dF�z�∫
z2e−zs dF�z� ≤

{
Cms

−m� log s�m; if s ≤ 1
2 ;

Cm; if s ≥ 1
2 :

(7.2)

Since a symmetric convex hull of Donsker classes is Donsker [see, e.g., van
der Vaart and Wellner (1996), Example 2.10.7 and Theorem 2.10.3], it suffices
to prove for all nonnegative integers k and l with k + l ≤ 2 that the class of
functions

ukvl
∫
zk+l+2 exp�−z�b1u+ b2v��dF�z�∫
z2 exp�−z�b1u+ b2v��dF�z�

;

with F ranging over V and b = �b1; b2� over a compact subset of �0;∞�2, is
Donsker. For fixed b let Fb be the class of these functions with only F varying.

Since b is bounded away from zero, the function

ukvl

�b1u+ b2v�k+l
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is uniformly bounded in u, v and b. The functions in Fb are the product of this
function and the function hF�b1u+ b2v� for

hF�s� = sm
∫
zm+2e−zs dF�z�∫
z2e−zs dF�z� ; m = k+ l:

Let Qb be the distribution of b1T1+ b2T2 under P0. Then it is not hard to see
that the bracketing numbers of Fb satisfy, for some constant C,

N��
(
ε;Fb;L2�P0�

)
≤N��

(
Cε; �hFx F ∈ V �;L2�Qb�

)
:(7.3)

For a definition of bracketing numbers see, for example, van der Vaart and
Wellner [(1996), Definition 2.1.6] or Ossiander (1987). We shall bound the
right-hand side by application of Theorem 2.1 in van der Vaart (1994b). Let
Q denote less than or equal up to a multiplicative constant. In view of (7.2)
we have, for every 1/2 < α < 1,

∣∣hF�s�
∣∣ Q � log s�m; 0 < s < 1/2;

∣∣hF�s1� − hF�s2�
∣∣ Q �s1 − s2�α sup

s1≤s≤s2

∣∣h′F�s�
∣∣α� log s1�m�1−α�

Q �s1 − s2�α s−α1 � log s1�m+α; 0 < s1 < s2 ≤ 1/2:

Thus the restrictions of the functions hF to an interval �a; b� ⊂ �0;1/2� belong
to the space CαM�a; b� for M a multiple of a−α� log a�m+α. Similarly, again in
view of (7.2), we have

∣∣hF�s�
∣∣ Q sm; s ≥ 1/2;

∣∣hF�s1� − hF�s2�
∣∣ Q �s1 − s2�αsm2 ; 1/2 ≥ s1 < s2:

Thus the restrictions of the functions hF to an interval �a; b� ⊂ �1/2;∞� belong
to the space CαM�a; b� for M a multiple of bm. Theorem 2.1 of van der Vaart
(1994b) applied with the partition �0;∞� = ⋃

i�2−i;2−i+1�⋃i�i; i + 1� shows
that, for every V ≥ 1/α,

logN��
(
ε; �hFx F ∈ V �;L2�Qb�

)
≤KK�V+2�/2

b

(
1
ε

)V
;(7.4)

for a constant K depending only on α, V and Kb defined by

Kb =
∑
i

[
� log 2−i�2�m+α�22iαQb�2−i;2−i+1�

]V/�V+2� +
∑
i

[
i2mQb�i; i+ 1�

]V/�V+2�
:

By a straightforward calculation we see that Qb has a Lebesgue density which
is bounded above by θ0s�b1b2�−1F0z

2. Thus Qb�2−i;2−i+1� is bounded above
by a multiple of 2−2i. Furthermore Qb�i; i + 1� ≤ Qb�i;∞� is bounded above
by i−lF0z

−l for any l ≥ 0. Insert these upper bounds into the definition of Kb

to obtain that

KbQ
∑
i

[
i2�m+α�2−2i�1−α�]V/�V+2� +

∑
i

[
i2m−l

]V/�V+2�
;
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provided F0�z−l + z2� < ∞. Here the multiplicative constant depends on F0,
but is uniform in b ranging over our compact region.

For V sufficiently close to 2 this series converges for l > 2m + 2. Thus
we have proved the existence of V < 2 and constants Kb that are uniformly
bounded such that (7.4) holds. In view of (7.3) the same estimate is valid for
the bracketing numbers of Fb in L2�P0�.

Writing the elements of Fb in the form fF;b we see, using (7.2),

∣∣fF;b − fF;b′
∣∣ Q ukvl

[
sup
b

( � log�b1u+ b2v��
�b1u+ b2v�

)m+1

+ 1
]
�u+ v��b− b′�

Q
[
� log�u+ v��m+1 + �u+ v�ukvl

]
�b− b′�:

The function in square brackets, say G, on the far right is square integrable
under P0. We can now form brackets over the class of functions of interest⋃
b Fb by first choosing an ε-net over the set of all b. The number of points in

this net can be chosen smaller than �K/ε�2 for some constant K. For every
bi in the ε-net take a minimal number of brackets �li; j; ui; j� over Fbi

. Then
the brackets �li;j − εG;ui;j + εG� cover F = ∪bFb and have size bounded by
ε�1+2�G�P0;2�. The logarithm of the total number of brackets obtained in this
way is bounded by

2 log�K/ε� + sup
b

logN��
(
ε;Fb;L2�P0�

)
Q
(

1
ε

)V
:

This is an upper bound for N���ε′;F ;L2�P0��, where ε′ = ε�1 + 2�G�P0;2�.
Apply the theorem of Ossiander (1987) to conclude that F is Donsker. 2

APPENDIX

A.1. Convexity of the confidence set. In general, a confidence set ob-
tained by inverting the likelihood ratio test is not guaranteed to have a “nice”
shape. In simple cases it can be seen to be convex.

Lemma A.1. Suppose that ψ→ lik�ψ;x� is a concave function on a convex
subset 9 of a linear space. Furthermore suppose that for all ψ1, ψ2 in 9 the
map ε→ θ�εψ1+�1−ε�ψ2� is continuous on �0;1�. Then the confidence region
�θx lrtn�θ� ≤ z2

α/2� is convex.

Proof. Define a set A by A = �ψx Pn ln lik�ψ� ≥ z2
α/2 + Pn ln lik�ψ̂��. Since

the map ψ→ lik�ψ� is concave, the set A is convex. The confidence region is
composed of those θ for which there exists a ψ ∈ A for which θ�ψ� = θ. If θ1
and θ2 are in the confidence region, then there exist ψ1 and ψ2 both in A for
which θ�ψ1� = θ1 and θ�ψ2� = θ2. Let ε′ ∈ �0;1�. Consider θ�εψ1 + �1− ε�ψ2�,
which for ε = 0 is equal to θ2 and for ε = 1 is equal to θ1. The continuity in ε
implies that there exists an ε∗ for which θ�ε∗ψ1+�1−ε∗�ψ2� = ε′θ1+�1−ε′�θ2.
Since ε∗ψ1 + �1− ε∗�ψ2 is in A, the convex combination ε′θ1 + �1− ε′�θ2 is in
the confidence region. 2
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A.2. Double censoring: technical complements. In the following two
lemmas, BV�σ; τ� denotes the set of functions hx �σ; τ� → R that are bounded
and of bounded variation, equipped with the norm �� · ��BV = � · �∞ + � · �var.

Lemma A.2. Suppose that �GL−GR��s−� is bounded away from zero for s
in �σ; τ� containing the support of F and GL is continuous at σ :

(i) Then the operator `∗`Fx BV�σ; τ� → BV�σ; τ� is one-to-one, onto and
continuously invertible.

(ii) If Fn are distribution functions, with support contained in �σ; τ� such
that �Fn −F�∞ → 0, then `∗`Fn

→ `∗`F in operator norm, that is, `∗`Fn
h →

`∗`Fh in bounded variation norm on �σ; τ�, uniformly in uniformly bounded
functions h of uniformly bounded variation.

Proof. (i) The operator `∗`F can be written as the sum K1 +A +K2 of
three operators. The operator Ah = h�GL − GR� is continuously invertible
[with inverse A−1h = h/�GL − GR�] under the condition that GL − GR is
bounded away from zero. Since we can write `∗`F in the form A�A−1K1 +
I + A−1K2� it now suffices by Theorem 4.25 in Rudin (1973) to show that
A−1K1 +A−1K2 is compact and that K1 +A+K1 is one-to-one. The first is
true if both K1 and K2 are compact.

Consider K1. Given a uniformly bounded sequence hn of monotone func-
tions, the functions

gn =
∫
�σ;u� hn dF

F�u�
are a uniformly bounded sequence of monotone functions. By Helly’s theorem
there exists a subsequence and a monotone function g such that gn′�u� → g�u�
for every u. Then by dominated convergence

∫
�gn′ −g�dGL→ 0. This implies

that
∥∥∥∥K1hn′ −

∫
�·;∞�

gdGL

∥∥∥∥
∞
≤ sup

u

∫
�u;∞�

�gn′ − g�dGL→ 0;

∥∥∥∥K1hn′ −
∫
�·;∞�

gdGL

∥∥∥∥
var

= sup
∑∣∣∣∣

∫
�ti+1;∞�

�gn′ − g�dGL −
∫
�ti;∞�
�gn′ − g�dGL

∣∣∣∣

≤
∫
�gn′ − g�dGL→ 0:

It follows that any given sequence hn as before has a subsequence along which
K1hn′ converges in BV�σ; τ�. Since any uniformly bounded sequence hn of
uniformly bounded variation can be written as the difference of two sequences
of this type, it follows that K1 is compact.

The operator K2 can be shown to be compact in the same manner.
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To see that K1 +A +K2 is one-to-one, note first that both A−1/2K1A
−1/2

and A−1/2K2A
−1/2 are nonnegative definite operators on L2�F� in the Hilbert

space sense. Thus the spectrum of these operators is nonnegative and it follows
that the spectrum of A−1/2K1A

−1/2 + I + A−1/2K2A
−1/2 is contained in the

interval �1;∞�. Thus this operator is invertible as an operator on L2�F�. The
same is true for K1 + A + K2, so that the equation �K1 + A + K2�h = 0
(everywhere) for a bounded variation function h, implies that h = 0 almost
surely under F. Substitute in the definitions of K1 and K2 to see that Ah = 0,
whence h = 0 everywhere.

(ii) Since �Fn − F�∞ → 0, we have that Fnh − Fh → 0 uniformly in
uniformly bounded functions h of uniformly bounded variation. Thus for any
sequence hn of such functions we have that `Fn

hn − `Fhn → 0 pointwise in
�u;d�. By dominated convergence and the continuity of GL at σ ,

∫
�σ; τ�

∣∣`Fn
hn�·;1� − `Fhn�·;1�

∣∣dGL→ 0;

∫
�σ; τ�

∣∣`Fn
hn�·;3� − `Fhn�·;3�

∣∣dGR→ 0:

As in the proof of (i) this implies that `∗`Fn
hn − `∗`Fhn → 0 in bounded

variation norm. 2

Lemma A.3. Assume that, for all u such that F0�u� > 0 and F0�u−� < 1,

�GL −GR��u−� > 0;(A.1)

and suppose that g is left continuous, bounded and of bounded variation, and
is not identically zero almost surely under F0. Furthermore, assume that F0,
GL and GR are continuous.

(i) Then �F̂0 −F0�∞→ 0 almost surely under P0.

Under the more restrictive assumptions of Theorem 2.1, the following holds:

(ii) As n → ∞ the support of F̂0 belongs to �σ; τ� almost surely under P0
and

�F̂− F̂0�h =
F0�h�g∗ −F0g

∗���θ̂− θ0�
F0�g�g∗ −F0g

∗�� + oP�n−1/2�;

uniformly in h ∈ BV�σ; τ� of norm less than or equal to 1.

Proof. (i) To keep the proof of (i) simple, let θ0 = 0. The estimator of F
under the constraint, Fg = 0, is an F̂0 which maximizes Pn�lnpF�X��. There
exists a random variable λ̂ for which

Pn�`F̂0
h� − F̂0h = λ̂

∫
hgdF̂0(A.2)
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for all bounded functions h. Note that the form of the likelihood implies that a
maximum likelihood estimator F̂0 must have positive jumps at the observed
event times.

Since F0 is continuous, to verify (i), we need only show that F̂0�t� converges
to F0�t� for all t a.s. Define the processes

Q1
n�t� = Pn�1�d = 1�1�u ≤ t��; Q1�u� =

∫ u
0
F0 dGL;

Q2
n�t� = Pn�1�d = 2�1�u ≤ t��; Q2�u� =

∫ u
0
�GL −GR��v−�dF0�v�;

Q3
n�t� = Pn�1�d = 3�1�u ≤ t��; Q3�u� =

∫ u
0
�1−F0�dGR:

By the Glivenko–Cantelli theorem each of the sequences Qi
n converges uni-

formly to the corresponding function Qi, almost surely. Fix a sample point
within the set of probability 1 on which �Q2

n −Q2�∞ → 0, �Q3
n −Q3�∞ → 0

and �Q1
n −Q1�∞→ 0.

We first prove that all limit points of λ̂ are finite. Since F0g = 0 yet g
is not a.s. F0 zero, there exist ε > 0 such that the sets A = �g > ε� and
B = �g < −ε� have positive measure. For large n there exists at least one
observed event time in the set A [by (A.1)], say xn. Put h�u� = 1�u = t� in
(A.2) to get

1F̂0�t�
(

1−
∫ ∞
t−

1/F̂0 dQ
1
n −

∫ t−
−∞

1/�1− F̂0�dQ3
n + λ̂g�t�

)
= 1Q2

n�t�:(A.3)

Evaluate (A.3) at t = xn. Since 1F̂0�xn� > 0 and 1Q2
n�xn� > 0, we have that λ̂

cannot diverge to minus infinity. Likewise for large n there exists at least one
observed event time in the set B, say yn. Since 1F̂0�yn� > 0 and 1Q2

n�yn� > 0,
we have that λ̂ cannot diverge to infinity.

Let h�s� be 1�s ≤ t� for arbitrary nonnegative t. Write F̂0�hg� as
g+�t�F̂0�t� −

∫ t
−∞ F̂0�u�dg+�u�, where g+�u� = g�u+� so that g+ is right

continuous. From (A.2) we get

F̂0�t� + λ̂
(
g+�t�F̂0�t� −

∫ t
−∞

F̂0dg
+
)

=
3∑
i=1

Qi
n�t�+ F̂0�t�

∫ ∞
t

1/F̂0 dQ
1
n−�1− F̂0�t��

∫ t
−∞

1/�1− F̂0�dQ3
n:

(A.4)

Use Helly’s selection theorem to get a subsequence of n for which F̂0 converges
pointwise, say to F̃, and λ̂ converges to a finite value, say λ. From (A.3) we
see that Q2

n is absolutely continuous with respect to F̂0. This along with as-
sumption (A.1) implies that the convex hull of the support of F̃ contains the
support of F0. This allows us to use the dominated convergence theorem along
with the uniform convergence of the Qi

n’s, the fact that both F�t�/F�u� as a
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function of u > t and �1 −F�t��/�1 −F�u�� as a function of u ≤ t have total
variation bounded above by 1, to show that

F̃�t� + λ
(
g+�t�F̃�t� −

∫ t
−∞

F̃ dg+
)
=

3∑
i=1

Qi�t� + F̃�t�
∫ ∞
t

1/F̃dQ1

− �1− F̃�t��
∫ t
−∞

1/�1− F̃�dQ3:

We would like to write most of the terms in the above equality as integrals
with respect to F̃, but F̃, although nondecreasing, may not be right continuous.
Instead we consider F̃+, which is the right-hand limit of F̃. In the following
we derive an equation similar to the above but for F̃+.

Since the total mass of F̃ is bounded above by 1, F̃ has at most a countable
number of discontinuities and therefore F̃+ differs from F̃ at at most a count-
able number of points. Evaluate the above equality at t+h and let h decrease
to zero to get

F̃+�t� + λ
(
g+�t�F̃+�t� −

∫ t
−∞

F̃ dg+
)

=
3∑
i=1

Qi�t�+ F̃+�t�
∫ ∞
t

1/F̃+ dQ1−�1− F̃+�t��
∫ t
−∞

1/�1− F̃+�dQ3:

(A.5)

Now 1F̃+�t� satisfies

1F̃+�t��1+ λg�t�� + λ�F̃+�t� − F̃�t��1g+�t�

= 1F̃+�t�
∫ ∞
t

1/F̃+dQ1 + 1F̃+�t�
∫ t
−∞

1/�1− F̃+�dQ3:

Suppose that, at t, F̃+�t�− F̃�t� > 0. Then subtracting the equation in F̃ from
the equation in F̃+ we get

1+ λg+�t� =
∫ ∞
t

1/F̃+ dQ1 +
∫ t
−∞

1/�1− F̃+�dQ3:(A.6)

Combine the last two equations to get that if F̃+�t� − F̃�t� > 0, then

1g+�t�λ
(
−1F̃+�t� + F̃+�t� − F̃�t�

)
= 0:

Let J be the countable set of points t for which F̃+�t� − F̃�t� > 0. Then,
for arbitrary t, λ

∫ t
−∞ F̃ dg

+ = λ
∫ t
−∞ F̃

+ dg+ − λ
∫ t
−∞�F̃+ − F̃�1J dg+, which

by the above argument is equal to λ
∫ t
−∞ F̃

+ dg+−
∫ t
−∞ λ1g

+�u�1J�u�dF̃+�u�.
Equation (A.5) becomes

F̃+�t� +
∫ t
−∞

(
λg�u� + λ1g+�u�1J�u�

)
dF̃+�u� + λF̃+�−∞�g+�−∞�

=
3∑
i=1

Qi�t� + F̃+�t�
∫ ∞
t

1/F̃+ dQ1 − �1− F̃+�t��
∫ t
−∞

1/�1− F̃+�dQ3:
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For h�s� = 1�s ≤ t�, this implies
∫
h�1+ λg + λ1g+1J�dF̃+

=
∫ ∫ u

0 hdF̃
+

F̃+�u�
dQ1�u� +

∫
h�u��GL −GR��u−�dF0�u�

+
∫ ∫∞

u hdF̃+

1− F̃+�u�
dQ3�u�:

(A.7)

Indeed the above holds for all bounded h.
Use integration by parts to rewrite (A.7) as

∫
h�u��GL −GR��u−�dF0�u� =

∫
h�u�A�u�dF̃+�u�;(A.8)

where

A�u� = λg�u� + λ1g+�u�1J�u� + 1−
∫ ∞
u−

1/F̃+ dQ1 −
∫ u−

0
1/�1− F̃+�dQ3;

and h is bounded. Note that (A.1) and the above implies that F0 is abso-
lutely continuous with respect to F̃+. Put h equal to the indicator of the
set �ux A�u� < 0� to see that this set has F̃+ mass zero. Next use approx-
imating simple functions and the monotone convergence theorem to show
that (A.8) holds for all nonnegative h. For arbitrary t, put h�u� = 1�u ≤
t��GL −GR��u−�−1 so that F0�t� =

∫ t
−∞A�u�/�GL −GR��u−�dF̃+�u� for all

t ≥ 0. We see that a version of the Radon–Nikodym derivative is

�dF0/dF̃
+��u� = A�u�/�GL −GR��u−�:

Since g is a bounded function, we may put h�u� = g�u�/�GL − GR��u−� to
yield 0 =

∫
g�u�dF0�u� =

∫
g�u�A�u�/�GL −GR��u−�dF̃+�u�. In the follow-

ing we will need that (A.7) holds for h = �dF0/dF̃
+�; however, �dF0/dF̃

+�
is not necessarily bounded. Now the left-hand side of (A.7) evaluated at h =
�dF0/dF̃

+� is finite and is equal to 1. Therefore by approximating �dF0/dF̃
+�

by simple functions and using the monotone convergence theorem we get
that PF0

�lF̃+h∗� = 1 or, equivalently, ln�PF0
�lF̃+h∗�� = 0 for h∗ = dF0/dF̃

+.
Since the natural logarithm is strictly concave, PF0

�ln `F̃+h∗� ≤ 0. However,
lF̃+h

∗ = pF0
/pF̃+ . However, PF0

�ln�pF0
/pF̃+� ≥ 0 with equality if and only

if pF0
/pF̃+ is equal to 1 with PF0

probability 1. So pF0
/pF̃+ is 1 with PF0

probability 1. This means that
∫

1�F̃+�u� 6= F0�u��F0�u�dGL�u� = 0, and∫
1�F̃+�u� 6= F0�u���1−F0�u��dGR�u� = 0. So, 1−

∫∞
u− 1/F̃+ dQ1−

∫ u−
0 1/�1−

F̃+�dQ3 = �GL − GR��u−� for all u. Since
∫

1��dF0/dF̃
+��u� 6= 1��GL −

GR��u−�dF0�u� = 0, we get
∫

1�λg�u� 6= 0��GL−GR��u−�dF0�u� = 0. Then
λ = 0 and �dF0/dF̃

+� is identically 1. So F̃+ is identically equal to F0. In
this case (A.6) yields a contradiction, implying that F̃ is right continuous and
identically equal to F0.
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(ii) Finally we prove (ii). Assumption (A.1) made on the interval �σ; τ� im-
plies that for large n the largest U will not have D = 3 and the smallest U will
not have D = 1. Recall that the support points of F̂0 are restricted to the U’s.
This, along with the additional assumptions that GL�τ� = 1 and GR�σ−� = 0,
implies that the convex hull of the support of F̂0 is at most �σ; τ� for large n,
PF0

-almost surely.
For a given function h ∈ BV�σ; τ� define

ĥ∗ = �`∗`F̂0
�−1h; ĝ∗ = �`∗`F̂0

�−1g:

Lemma A.2 shows that these functions are well defined and uniformly bounded
and of bounded variation. For t close to zero, define the submodel

dFt = dF̂0

(
1+ t

[
�ĥ∗ − F̂0ĥ

∗� − F̂0�ĥ∗g�
F̂0�ĝ∗g�

�ĝ∗ − F̂0ĝ
∗�
])
:

This satisfies the null hypothesis and differentiation with respect to t at zero
yields the equation

Pn`F̂0

(
�ĥ∗ − F̂0ĥ

∗� − F̂0�ĥ∗g�
F̂0�ĝ∗g�

�ĝ∗ − F̂0ĝ
∗�
)
= 0:

Because the information operator preserves expectations we have F̂0ĥ
∗ = F̂0h

for every h. So the preceding display can be rewritten as

F̂0h = Pn`F̂0
ĥ∗ − F̂0�ĥ∗g�

F̂0�ĝ∗g�
Pn`F̂0

ĝ∗:

Combine this with

F0h = F0`
∗`F̂0

ĥ∗ = PF0
`F̂0
ĥ∗

and

0 = F0g = PF0
`F̂0
ĝ∗

to find that

�F̂0 −F0�h = �Pn −PF0
�
(
`F̂0
ĥ∗ − F̂0�ĥ∗g�

F̂0�ĝ∗g�
`F̂0
ĝ∗
)
:

The functions on the right-hand side are in a Donsker class by Lemma A.2(ii).
Given consistency, asymptotic normality follows. Asymptotic equicontinuity of
the sequence of empirical processes implies that, for h∗ = �`∗`F0

�−1h,

�F̂0 −F0�h = �Pn −PF0
�
(
`F0
h∗ − F0�h∗g�

F0�g∗g�
`F0
g∗
)
+ oP�n−1/2�

uniformly for h ∈ BV�σ; τ� of norm less than or equal to 1.
In a similar fashion, using the submodel

dFt = dF̂
(
1+ t

[
�ĥ∗∗ − F̂ĥ∗∗�

])
;
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where h∗∗ = �`∗`F̂�−1h, we derive �F̂ − F0�h = �Pn − PF0
�`F0

h∗ + oP�n−1/2�
uniformly for h ∈ BV�σ; τ� of norm less than or equal to 1. Combining this
result with the corresponding result for F̂0, we have

�F̂− F̂0�h = �Pn −PF0
�
(
F0�h∗g�
F0�g∗g�

`F0
g∗
)
+ oP�n−1/2�

uniformly for h ∈ BV�σ; τ� of norm less than or equal to 1. 2

A.3. Current status data: technical complements. In this section, we
show that 3̂0 and 3̂ have a rate of convergence OP�n−1/3� with respect to
the L2-norm on �σ; τ�. Furthermore, we sketch the proof of the asymptotic
normality of θ̂. These results complement the arguments of Huang (1996).

We shall derive the rate of convergence of the estimators 3̂ and 3̂0 from
the rate of convergence of the density estimators pθ̂; 3̂ and pθ0; 3̂0

with respect
to the Hellinger distance. Rates for maximum likelihood estimators in the
Hellinger distance were expressed, in general, in the entropy of a model by
Birgé and Massart (1993) and Wong and Shen (1995). See van der Vaart and
Wellner [(1996), Section 3.4.1] for an exposition. We compute the relevant
entropy in the following lemma [cf. Huang (1996), Theorem 3.3].

Recall that we take the parameter set 9 for �θ;3� equal to the product of
a compact subset 2 of R and the set of all nondecreasing, cadlag functions
3x �0; τ� → �0;M�. Given the density p0 = pθ0; 30

, the relevant metric in our
entropy calculation is h0 given by

h2
0�pθ1; 31

; pθ2; 32
� =

∫ (√
pθ1; 31

+ pθ0; 30
−
√
pθ2; 32

+ pθ0; 30

)2
dµ:

This is the Hellinger distance between the densities pθ;3+pθ0; 30
. [See van der

Vaart and Wellner (1996), Theorem 3.4.4. The “ordinary” Hellinger distance
can be used as well, and will lead to an upper bound on the rate of convergence,
but may yield a suboptimal result. The addition of the term p0 helps to keep
the densities bounded away from zero.]

Lemma A.4. Under the conditions of Theorem 2.2, there exists a constant
C such that, for every ε > 0,

logN��
(
ε; �pθ;3; �θ;3� ∈ 9�; h0

)
≤ C

(
1
ε

)
:

Proof. First consider the class of densities for a fixed θ. We can write
pθ;3 +p0 = δφ1�3�y�; z� + �1− δ�φ0�3�y�; z� for functions φi that are mono-
tone in their first argument. Thus a bracket 31 ≤ 3 ≤ 32 for 3 leads, by
substitution, readily to a bracket for pθ;3 + p0. Since the partial derivatives
�∂/∂u�

√
φi�u; z� are uniformly bounded in �u; z; θ� (note that p0 is bounded

away from zero), there exists a constant D such that
∫ (
φ

1/2
i

(
31�y�; z

)
−φ1/2

i

(
32�y�; z

))2
dFY;Z�y; z� ≤ D

∫ τ
σ

(
31�y� − 32�y�

)2
dy:
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Thus, brackets for 3 of L2-size ε translate into brackets for pθ;3+p0 of h0-size
proportional to ε. By, for instance, Theorem 2.7.5 of van der Vaart and Wellner
(1996), we can cover the set of all 3 by expC�1/ε� brackets of size ε.

Next, we allow θ to vary freely as well. Since θ is finite-dimensional and
�∂/∂θ�pθ;3�x� is uniformly bounded in �θ;3; x�, this increases the entropy
only slightly (cf. the argument given at the end of the proof of Lemma 7.1). 2

In view of the preceding lemma and Theorem 3.4.4 of van der Vaart and
Wellner (1996) (see the conclusions after the theorem), the rates of convergence
of pθ̂;3̂ and pθ0;3̂0

in Hellinger distance to p0 are at least OP�n−1/3�. By the

following lemma this result implies rates for 3̂ and 3̂0 in the L2-norm. (It also
implies an upper bound for the rate of θ̂, but this is suboptimal.)

Lemma A.5. Under the conditions of Theorem 2.2, there exist constants
C;ε > 0 such that, for all 3 and all �θ− θ0� < ε,

∫ [
p

1/2
θ;3 − p

1/2
θ0; 30

]2
dµ ≥ C

∫ τ
σ
�3− 30�2�y�dy+C�θ− θ0�2:

Proof. The left-hand side of the lemma can be rewritten as

∫ �pθ;3 − pθ0; 30
�2

�p1/2
θ;3 + p

1/2
θ0; 30
�2
dµ:

Since pθ0; 30
is bounded away from zero, and the densities pθ;3 are uniformly

bounded, both by assumption, the denominator can be bounded above and
below by positive constants. Thus the Hellinger distance is equivalent to the
L2-distance between the densities. The latter is equal to

∫ [
exp�− exp�θz�3�y�� − exp�− exp�θ0z�30�y��

]2
dFY;Z�y; z�:

Let g�t� be the function exp�− exp�θz�3�y�� evaluated at θt = tθ+�1−t�θ0 and
3t = t3+�1−t�30, for fixed �y; z�. Then the integrand is equal to

(
g�1�−g�0�

)2,
and hence, by the mean value theorem, there exists 0 ≤ t = t�y; z� ≤ 1 such
that the preceding display is equal to

P0
(
exp�−3t�y� exp�θtz�� exp�θtz�

[
�3−30��y�

(
1+zt�θ−θ0�

)
+�θ−θ0�z30�y�

])2
:

Here the multiplicative factor exp�−3t�y� exp�θtz�� exp�θtz� is bounded away
from zero. By dropping this term we obtain, up to a constant, a lower bound
for the left-hand side of the lemma. Next, since the function Q�·y θ0; 30� is
bounded away from zero and infinity, we may add a factor Q2�·y θ0; 30� and
obtain the lower bound, up to a constant,

P0
(
`3�θ0; 30��3− 30��y�

(
1+ zt�θ− θ0�

)
+ �θ− θ0�`θ�θ0; 30�

)2
:



SEMIPARAMETRIC LIKELIHOOD RATIOS 1507

Here the function h = �1+zt�θ−θ0�� is uniformly close to 1 if θ is close to θ0.
Furthermore, for any function g,

(
P0`3�θ0; 30�g`θ�θ0; 30�

)2 =
(
P0`3�θ0; 30�g�`θ�θ0; 30� − ˜̀�

)2

≤ P0
(
`3�θ0; 30�g

)2 �I0 − Ĩ�;

by the Cauchy–Schwarz inequality. Since the efficient information Ĩ is positive,
the term I0 − Ĩ on the right-hand side can be written I0c for a constant
0 < c < 1. The lemma now follows by application of Lemma A.6. 2

Lemma A.6. Let h, g1 and g2 be measurable functions such that c1 ≤ h ≤ c2
and �Pg1g2�2 ≤ cPg2

1Pg
2
2 for a constant c < 1 and constants c1 < 1 < c2 close

to 1. Then

P�g1h+ g2�2 ≥ C�Pg2
1 +Pg2

2�;
for a constant C depending on c, c1 and c2 that approaches 1 − √c as c1 ↑ 1
and c2 ↓ 1.

Proof. We may first use the inequalities

�g1h+ g2�2 ≥ c1g
2
1h+ 2g1hg2 + c−1

2 g2
2h

= �g1 + g2�2h+ �c1 − 1�g2
1h+ �1− c−1

2 �g2
2h

≥ c1�g2
1 + 2g1g2 + g2

2� + �c1 − 1�c2g
2
1 + �c−1

2 − 1�g2
2:

Next, we integrate this with respect to P and use the inequality for Pg1g2 on
the second term to see that the left-hand side of the lemma is bounded below
by

c1

(
Pg2

1 − 2
√
cPg2

1Pg
2
2 +Pg2

2

)
+ �c1 − 1�c2Pg

2
1 + �c−1

2 − 1�c2Pg
2
2:

Finally, apply the inequality 2xy ≤ x2 + y2 on the second term. 2

Finally, we sketch a proof that the maximum likelihood estimator
for θ is asymptotically efficient. Since θ̂ maximizes the function t →
Pn ln lik�t; 3t�θ̂; 3̂�� over t, we have

Pn ˙̀�·y θ̂; 3̂; θ̂� = 0:

By the Donsker property of the class of functions ˙̀�·y t; 3; θ� and the consis-
tency of �θ̂; 3̂�, we have, with Gn =

√
n�Pn −P0�, the empirical process

Gn
( ˙̀�·y θ̂; 3̂; θ̂� − ˙̀�·y θ0; 30; θ0�

)
→P 0:

Combining these two equations, we see that

−√nP0 ˙̀�·y θ̂; 3̂; θ̂� = Gn ˙̀�·y θ0; 30; θ0� + oP�1�:
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By the same argument as used for the verification of (3.15), we can use the
OP�n−1/3�-rate of 3̂ in L2 to prove that

√
nP0 ˙̀�·y θ0; 3̂; θ0� →P 0:

We add this equation to the preceding display and next use the mean value
theorem on the left-hand side to obtain that, for some point θ̃ between θ̂ and
θ0 and κ̈�·y t; 3� = �∂/∂t� ˙̀�·y t; 3; t�,

−√n�θ̂− θ0�P0κ̈�·y θ̃; 3̂� = Gn ˙̀�·y θ0; 30; θ0� + oP�1�:
Here, P0κ̈�·y θ̃; 3̂� converges to −Ĩ. [Note that the identity Pθ;3 ˙̀�·y θ;3; θ� = 0
implies that P0κ̈�·y θ0; 30� = −P0`θ�θ0; 30� ˙̀�·y θ0; 30; θ0�.] Equation (3.5) fol-
lows, since ˙̀�·y θ0; 30; θ0� = ˜̀.
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