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( )ASYMPTOTIC COMPARISON OF PARTIAL
CROSS-VALIDATION, GCV AND RANDOMIZED

GCV IN NONPARAMETRIC REGRESSION

BY DIDIER A. GIRARD

CNRS and Universite Joseph Fourier´
When using nonparametric estimates of the mean curve, surface or

image underlying noisy observations, the selection of ‘‘smoothing parame-
ters’’ is generally crucial. This paper gives a theoretical comparison of the

Ž .performances of generalized cross-validation GCV and of its fast random-
Ž .ized version RGCV , as selection criteria. This is mainly done by studying

the asymptotic distribution of the excess error for each selector, that is,
Ž .the difference between the data-driven resulting average squared error

Ž .ASE and the best possible ASE. We show here that, by using randomiza-
tion, this distribution is dilated, as compared to that for CV or GCV, only
by a factor always lower than 1 � 1�n , where n is the number ofR R
primary randomized trace estimates one uses in RGCV. We include in the

Ž .compared selectors, the partial cross-validation PCV approach where
only a fraction of all the possible ‘‘leave-one-out’’ validation tests are
evaluated; so that PCV is a common practice to reduce the computational
cost in many contexts. In this paper, PCV will in fact appear as quite
inefficient as compared to RGCV from this computational point of view.

ŽMoreover, we show that a precise comparison and interpretation of the
. Ž .gain of using n � 2 is possible in terms of equivalent in distributionR

excess errors, if PCV uses a certain percentage of the test points greater
than 50%. The obtained comparisons will be seen as quite reassuring on
what is ‘‘sacrificed’’ in using randomized selectors. We give rigorous
results mainly for the kernel regression setting as in the previous detailed
study by Hardle, Hall and Marron of standard selectors, except that we do¨
not restrict this one to an equidistant design.

1. Introduction. Let us first consider the problem of recovering a
‘‘smooth’’ function m from noisy data which satisfy the model

1.1 y � m x � � , i � 1, . . . , n ,Ž . Ž .i i i

� � Ž .where x � 0, 1 , i � 1, . . . , n, are known design points and � are indepen-i i
dent and identically distributed observation errors with mean zero and

2 �1ŽŽ . .variance � . To fix ideas, assume that x � F i � 0.5 �n , f � F�, wherei
ŽF is some known distribution function i.e., the design points are equispaced

� �.percentiles from the density f on 0, 1 . Then a very simple example of
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Ž .explicit curve-estimate for m x is the kernel estimate
n1 x � x j

1.2 m x � K y ,Ž . Ž .ˆ Ýh jž /nhf x hŽ . j�1

Ž .where h is the smoothing parameter bandwidth and K is a smooth ‘‘bell-
Ž . Ž .shaped’’ symmetric function which satisfies HK x dx � 1. Note that 1.2 is

not satisfactory for x near the boundary unless m is smoothly periodic, in
Ž . � Ž .case of which one considers a circulant version of 1.2 see Rice 1984 ,

Ž .�Eubank and Wang 1994 . In the following, A will denote a generic smoother,h
Ž .that is, the matrix often called the hat matrix satisfying m � A y, whereˆ h h

Ž Ž . Ž ..T Ž .m � m x , . . . , m x . For the above kernel estimate, the i, j th entryˆ ˆ ˆh h 1 h n
� � Ž Ž .. ŽŽ . .of A is A � 1�nhf x K x � x �h . Other popular examples ofh h i, j i i j

efficient function-estimators m are smoothing splines or ‘‘Lowess’’ estimatesˆ h
Ž .local weighted least squares .

ŽIt is well known that the selection of h is crucial much more than that of
.K . A commonly used measure of performance for an estimate m is theˆ h

average squared error
2 2�1 �1 � �1.3 � h � n m x � m x u x � n A y � m ,Ž . Ž . Ž . Ž . Ž .ˆÝ uh i i i h

Ž . Ž Ž ..or its expectation M h � E � h . Here, u is a fixed weight function intro-
duced, as is classical in asymptotic study, to eliminate the boundary effect: u

Ž .will be assumed to be supported on a subinterval of 0, 1 ; in the periodic case
mentioned above, u may be taken to be identically 1. In the following, the

Ž Ž . .diagonal matrix diag u x , i � 1, . . . , n will be denoted by U and thei
T Ž .weighted inner product x Uy resp. its associated weighted l norm will be2

² : ² : Ž � � � � .interchangeably denoted by x, y or x, y resp. � or � . TheU u U u
Žoptimal parameter may then be defined either as the minimizer of � which

ˆ . Ž . Žwill be denoted by h or as the minimizer of M denoted by h . For0 0
ˆ ˆsimplification of notations, the dependence of �, M, h , h , h , etc., on n is0 0 CV

.suppressed.
Many data-driven procedures, like cross-validation, share the property of

Žbeing asymptotically optimal, which ‘‘typically’’ i.e., under ‘‘enough’’ regular-
ity assumptions, as those of Section 2 for the simple one-dimensional kernel

.setting above; other settings are outlined in Remark 3.2 means that, for the
ˆ Žbandwidth, say h , given by such a procedure X in short, for the selectorX

ˆ ˆ ˆ.h , the ratio h �h comes close to 1 as the sample size n increases. OfX X 0
ˆcourse, the estimation of h or of h is only a means to the end of estimating0 0

the unknown mean function m. As is mentioned in Hall and Johnstone
ˆ ˆŽ .1992 , to compare two selectors h and h , for the same kernel K, one1 2

ˆ ˆŽ Ž .. Ž Ž .. �natural way is to attempt to compare the risks E � h and E � h note1 2
ˆ ˆ ˆŽ Ž .. Ž . �that E � h is not M h since h is a function of y . It can be shown that1 1 1

ˆ ˆŽ Ž .. Ž Ž ..the dominant term in the risk difference E � h � E � h is typically1 2
ˆ ˆ 2 ˆ ˆ 2Ž . Ž .proportional to E h � h � E h � h . So we will mainly focus in this1 0 2 0

ˆ ˆpaper on the asymptotic distribution of h � h for each considered selectorX 0
ˆ Ž . Žh , similarly as in the work by Hardle, Hall and Marron 1988 abbreviated¨X
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. Ž . �as HHM henceforth , which completed first results by Rice 1984 see Hall
Ž . �and Marron 1987 for the related density estimation setting ; note that we

Ž .will essentially use the notations of HHM and of Hall and Johnstone 1992 .
Let us recall that, if � 2 were known, a basic method for choosing h is to

Ž .form the following unbiased estimate of M h :

�1 � � 2 2 �11.4 CL h � n I � A y � 2� n tr UA ,Ž . Ž . Ž . uh h

ˆ Ž .and to select h so as to minimize the criterion CL h . An early study of thisCL
Ž .selector is Mallows 1973 .

Let us define

tr UA Ý u x �f xŽ . Ž .h i i�1 �11.5 t h � � n h K 0 ,Ž . Ž . Ž .
tr U Ý u xŽ .i

Ž .where the second expression holds for the above curve-estimate 1.2 . Gener-
Ž .alized cross-validation GCV is a member of a family of criteria that can be

written as the product of the weighted sum of squared residuals by a
Ž Ž ..correction factor � t h :X

�1 � � 21.6 G h � n I � A y � � t h ,Ž . Ž . Ž . Ž .Ž .uX h X

Ž . Ž . Ž 2 .where � is a penalization function satisfying � t � 1 � 2 t � O t , withX X
�

� bounded on a neighborhood of 0. A list of usual penalizations � isX X
Ž . Ž .�2presented in HHM. GCV, which is defined by � t � 1 � t , is one ofGCV

Ž . Ž . Ž .the most popular; see Craven and Wahba 1979 , Rice 1984 , Li 1985, 1986 ,
Ž . Ž .Wahba 1985 for theoretical results, Kohn, Ansley and Tharm 1991 ,

Ž .Thompson, Brown, Kay and Titterington 1991 for quite extensive experi-
mentations. It is important to note that, when u � 1, this family G is, in fact,

Ž �1 .different from the ‘‘classical’’ one, which would use � n tr A as correc-X h
Ž .tion factor. As we shall see, the use of 1.5 as trace-term is more natural and,

first of all, it restores the asymptotic optimality, which is not obtained in
Ž �1 . �general with � n tr A in the weighted setting as was noticed by Hardle¨X h

Ž .�and Marron 1985a .
�In the case of equally spaced data f � 1, in case of which tr UA �tr U �h

�1 Ž . Ž .�n tr A for the particular fixed bandwidth curve estimate 1.2 , it hash
been shown that all these selectors are asymptotically optimal under weak
regularity condition on m and K, and, of much more importance, they all are

ˆ�asymptotically equivalent up to second order let h denote a generic one of
ˆ ˆŽ . Ž .�these GCV-like selectors 1.5 � 1.6 , in the sense that the difference h � h0
Žhas a limit distribution independent of the particular � one uses and

ˆ ˆ . � Ž . �identical to that of h � h Rice 1984 , HHM . We will first see that easyCL 0
generalizations of the proofs of HHM yield a straightforward extension of the

Ž .result of HHM to nonequidistant designs Theorem 2.1 provided the trace-
Ž .term 1.5 is used.
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Ž .The popular ‘‘leave-one-out’’ approach or ordinary cross-validation yields
the criterion

�1 � �1 � 2CV h � n D I � A y ,Ž . Ž . uh h1.7Ž .
� �D � diag 1 � A , i � 1, . . . , nŽ .h h i , i

when one uses a natural definition for the estimate of m using n � 1
� Ž . �observations e.g., Hastie and Tibshirani 1990 , Section 3.4.3 . It is easy to

Ž . �see that, for the curve estimate 1.2 , around the optimal h see the proof of0
Ž . �2.6 in the Appendix for a related statement on the derivative CV� ,

�1 � � 2CV h �n I � A yŽ . Ž . uh

2Ý u x �f x �Ž . Ž .i i i�1 �1 �2 �2� 1 � 2n h K 0 � O n h .Ž . Ž .p2Ý u x �Ž .i i

1.8Ž .

Ž .However, the right-hand term cannot be replaced, in general, by 1 � 2 t h
Ž �2 �2 .� O n h . One exception is, of course, the particular case f � 1, and thisp

observation was used by HHM to treat CV similarly as a member of the G
ˆfamily. Anyway, we will see that, as in the equidistant case, the selector hCV

ˆremains asymptotically equivalent to the above G-selectors h up to second
order in the sense of the following Theorem 2.1, Section 2.

ˆThe main purpose of this paper is to study how far from h are the0
bandwidths produced by the fast randomized versions of CL or of G, which

Ž .are defined by if n , defined below, is equal to 1 the general formulasR

�1 � � 2 2 �1² :RCL h � n I � A y � 2� n w, A w ,Ž . Ž . u uh h

² :w, A w uhR 2�1 � �G h � n I � A y � � ,Ž . Ž . uX h X ž /² :w, w u

where w is a simulated unitary ‘‘white noise’’ vector w of size n, that is, such
that its components are iid with mean 0 and variance 1. These criteria have

Ž . Ž .been introduced in Girard 1989 in the unweighted case as fast Monte
Carlo-type approximations to the exact ones, for all the contexts where
computing tr UA is not an easy task; typical examples are smoothing splinesh
or penalized least squares procedures, additive modeling by backfitting,

Ž .iterative image restorations, etc.; see Girard 1995 for references to various
applications. Such a randomized version can always be computed at a cost
similar to the cost of one ‘‘fit’’ and with no additional programming effort,
since one only has to rerun computation of the function estimate with the
original data replaced by a simulated noise w which ‘‘mimics’’ � up the factor

Ž . � R Ž .�� . We also denote by RCL h resp. G h the averaged randomized criteriaX
² : � ² : ² : �obtained when w, A w resp. w, A w � w, w is replaced by a Monteu u uh h
Ž . nR ² k k: � Ž . nR ² k k:Carlo average 1�n Ý w , A w resp. 1�n Ý w , A w �u uR k�1 h R k�1 h

² k k: � Ž .w , w . Here n is intended to be a fixed small number e.g., 10 . Noteu R
² :that we could as well use tr U instead of w, w in these ratios. We shall seeu
Ž .that the asymptotic behavior is identical but is a function of n . However,R
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�the first definition above has some advantages for finite sample sizes Girard
ˆŽ .�1989, 1995 . We will denote by a generic h , the minimizer of such aR

R Ž .criterion G h .X
Ž .Of course, for the kernel estimate 1.2 , the randomized versions do not

Žoffer any computational gain. We only consider this setting and its multidi-
.mensional versions because the theory is very well developed for this very

simple estimate. Note that, however, we do not restrict this study to an
Ž .equally spaced design contrary to HHM because, otherwise, A wouldh

Ž .always have a Toeplitz structure constant down its diagonals and so one
could wrongly suspect that these Monte Carlo approximations are taking
advantage of this too particular structure. We hope to make clear that,
having in mind that many nonparametric curve, surface or image estimates
are more or less asymptotically equivalent to certain kernel estimates, one
may easily conjecture that the theoretical comparisons which follow also hold

Ž .for such nonparametric procedures see Remarks 3.1 and 3.2 .
In this article, we shall show that the algebraic rates of convergence to

ˆ ˆ ˆ ˆ Žzero of the errors h � h and h � h are identical, even with n � 1 n isR 0 0 R R
.the number of simulations used in the randomized version . Of more impor-

ˆ ˆtance for our comparisons, the asymptotic variance of h � h is always lessR 0
ˆ ˆthan two times the one of h � h . In fact, the increase of variability is only by0

�1 Ž .a factor of the form 1 � n C, with 0 � C � 1 this is stated in Theorem 3.1 .R
Ž .For example, for a Gaussian kernel and u � � 1, then C � 0.6. A first result

Ž .of this type was announced in Girard 1992 for a more idealized setting,
namely, a tapered Fourier series estimate from continuous time observation

Žperturbed by a Gaussian white noise process this context can be thought of
.as a continuous limit of the equidistant design case .

To gain insight into the value of this increase of variance, it is useful to
also compare with common partial cross-validation criteria which enjoy a
more ‘‘principled’’ motivation. For example, in the one-dimensional setting of
Ž .1.1 , to define, say, PCV , only the points with index i multiple of k arek
successively left-out and compared to the corresponding leave-one-out func-
tion estimate. The computational cost is then divided by k compared to full
CV when direct implementation is used. We shall show that the algebraic

ˆ ˆrate of convergence to zero of h � h is still the same, but the increase ofPCV 0k
Ž . �variance is now by a factor comprised between k � 1 �2 and k a precise

Ž . ŽŽ . .expression for this factor is k 1 � C � k � 1 �2 C, where C is the same
�constant as above . In all the cases, this means that randomized GCV using

Ž . Ž .only n � 1 resp. 2 simulation s already has a better theoretical justifica-R
Ž . Ž .tion than PCV with k � 3 resp. 2 , which needs 33.33% resp. 50% of allk

the possible ‘‘leave-one-out validation’’ tests. We shall also see in Section 4
Ž .that the results on PCV also hold for ‘‘rational’’ k � 1, 2 , that is, when onek

considers more than 50% of the points. So that, even more precise compar-
Ž .isons and interpretations of the gain of using n � 2 are given in Section 4.R

2. Some ‘‘asymptotic background’’ for the standard selectors. For
clarity, we shall state our main results throughout this paper for the very
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simple one-dimensional, known regular deterministic design, setting
Ž . Ž . 2 Ž .1.1 � 1.2 , with second-order kernel, that is, satisfying H x K x dx � 0. We
shall require the following classical assumptions:

1. The errors � are iid with mean 0, variance � 2 and all other momentsi
finite.

2. K is symmetric, compactly supported and has a Holder continuous second¨
derivative.

2� �3. m is C 0, 1 .
2� � Ž .4. f is C 0, 1 and f x � c � 0 on the support of u, which is assumed

1� �C 0, 1 .

As is usual in asymptotic studies of kernel estimate, the minimization of
the various selection criteria is assumed to be restricted to an interval

� �1�� �� � Ž .H � n , n for any small constant � � 0, so that h in H satisfiesn n
h � 0 and nh � 	. Now, by standard Riemann sum approximations and

� Ž . Ž .�Taylor expansions e.g., Eubank 1988 , Hardle and Marron 1985b , it can¨
be shown that, uniformly over H ,n

h4
�1 �1 �1 �1 4M h � n h C � C � o n h � h ,Ž . Ž .1 24

2
22 2 2 �1C � � u K , C � x K mf 
 f u ,Ž .Ž .H H H H1 2 ž /2.1Ž .

2.2 � h � M h � o M h ,Ž . Ž . Ž . Ž .Ž .P

�1�5 1�5 ˆŽ .and so h � C n with C � C �C and h �h � 1 in probability.0 0 0 1 2 0 0
For later reference, note also that

M
 h � C n�2�5, C � 5C �C3 .Ž .0 3 3 1 0

� Ž .�It is also known Hardle and Marron 1985b that, uniformly over H ,¨ n

�1 � � 2 �1 � � 2n I � A y � n � � M hŽ . Ž .u uh

� 2� 2 n�1 h�1K 0 u � o M h .Ž . Ž .Ž .H P

2.3Ž .

Ž . Ž Ž .. Ž .Thus, since t h � O M h , we have, by Taylor’s expansion of � in 1.6 ,

�1 � � 2 2 �1 �1G h � n � � M h � 2� n h K 0 uŽ . Ž . Ž .u H
2.4Ž .

� 2 t h � 2 uf � o M h .Ž . Ž .Ž .H P

Ž . Ž .This shows that t h defined by 1.5 is a trace-term which produces, in this
Ž . Ž �1 � � 2 .setting, a criterion uniformly close to M h up to n � , and thus all of Gu

ˆ ˆgive a bandwidth h satisfying h�h � 1 in probability, also called an0
‘‘asymptotically optimal’’ bandwidth.
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Of more importance for our purpose, the asymptotic stochastic behavior of
ˆ ˆall of h � h can be described as follows. Let us define the centered processes0

�1 � � 2D h � � h � M h , � h � CL h � n � � � h .Ž . Ž . Ž . Ž . Ž . Ž .u

ˆ ˆ� Ž .�As in HHM see also Rice 1984 , a main intermediate result is that h � h0
Žis correctly described by the two linearized equations where � denotes here

.differentiation with respect to h

ˆ �7�10�M
 h h � h � D� h � o n ,Ž . Ž . Ž .Ž .0 0 0 0 P

ˆ �7�102.5 � M
 h h � h � D� h � � � h � o n ,Ž . Ž . Ž . Ž . Ž .Ž .0 0 0 0 P

7�10 Ž . 7�10 Ž .where both n D� h and n � � h weakly converge to normal variables.0 0
Ž .To obtain 2.5 for all the members of the G family, an important step in

� �1�5 �1�5 �HHM was to prove that, uniformly over an , bn ,

2.6 G� h � �� h � � � h � o n�7�10 .Ž . Ž . Ž . Ž . Ž .P

Ž .It is easy to extend 2.6 to nonequidistant designs provided the trace-term
Ž .1.5 is used, and we show in the Appendix that this also holds for CV� in

Žplace of G�. Then the main result of HHM can easily be extended see the
. ŽAppendix to nonequidistant designs, and to the ordinary CV criterion the

.‘‘kernel’’ L is defined in the Appendix .

ŽTHEOREM 2.1. Under 1�4 i.e., under the assumptions of HHM except that
the deterministic design may be nonequidistant, its density f being C 2 and

ˆ.bounded from below on the support of u , we have, for any GCV-like selector h
Ž . Ž .defined by 1.5 � 1.6 ,

3�10 ˆ ˆ 2C n h � h � N 0, B � V ,Ž .ž /3 0 2

1
2 2ˆ ˆn � h � � h � B � V � ,Ž . Ž .Ž .0 2 12C3

3�10 ˆ 2C n h � h � N 0, B � V ,Ž .Ž .3 0 0 1

1
2 2ˆn � h � � h � B � V � ,Ž . Ž .Ž .0 0 1 12C3

where
2

22 2 2 2 �1 2B � 4C � x K mf 
 f u ,Ž .Ž .H H0 ž /
8 24 2V � � K � K � K � L u ,Ž .H H1 3C0

8 24 2V � � K � L u .Ž .H H2 3C0
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ˆ ˆThese asymptotic distributions also hold for h in place of h. Furthermore,CL
they also hold for the ordinary CV selector since

3�10 ˆ ˆ ˆ ˆn h � h � o 1 , n � h � � h � o 1 .Ž . Ž .Ž .Ž .ž /CV P CV P

REMARK 2.1. As far as we know, this is the first time that, for a smoothing
operator not constant down its main diagonal, GCV-like criteria are stated to

Žbe asymptotically equivalent up to second order to full CV see Section 4 for
. �partial CV criteria , without any further condition on u notice that Hardle¨

Ž . Ž � � .�2 Ž .1990 has studied other criteria obtained by replacing 1 � A in 1.7h i, i
Ž� � .by � A : these too are asymptotically equivalent up to second order toh i, i

CV but, although they use penalizing functions, they are not GCV-like
inasmuch as they cannot be expressed as function of only the weighted

�residual sum of squares and some trace-term . We believe that this second-
Ž . Žorder equivalence is not specific to the particular estimate 1.2 see Remark

.3.2 below . Since GCV has not, in fact, a so ‘‘principled’’ motivation as CV,
this equivalence is quite reassuring and is of practical importance for all
those numerous problems for which one presently can afford GCV but not CV;

Ž .typical examples are thin-plate or interaction smoothing spline estimates
� Ž . Ž . Ž .�Gu, Bates, Chen and Wahba 1989 , Hutchinson 1990 , Gu 1993 or regu-

� Ž .�larized reconstructions in computerized tomography Girard 1987 .

Ž .3. Randomized criteria. We have seen that the process � h can be
considered as the exact ‘‘intrinsic’’ error or CL. Simple algebraic manipula-
tions show that

�1 ² : 2 �1² :� h � �2n � , A � � � tr UA � 2n � , I � A mŽ . Ž .Ž .u uh h h3.1Ž .
� e � , h � e m, � , h ,Ž . Ž .1 2

say. On the other hand, the intrinsic error of the randomized version of CL,
R Ž . Ž . Ž . �1 � � 2 Ž .� h � � h � RCL h � n � � � h , can be easily seen to satisfyuRCL

nR1R k3.2 � h � e � , h � e m, � , h � e �* , h ,Ž . Ž . Ž . Ž . Ž .Ý1 2 1nR k�1

where �*k � � w k are mutually independent, independent from � and well
� 2 �satisfy all the conditions assumed on � condition 1 with same � . Compar-

Ž . Ž . Ž .ing 3.1 and 3.2 , this means that the worst i.e., for n � 1 additionalR
‘‘randomization error’’ is already similar to one of the two components of the

Ž .intrinsic error of CL. Since, in the process of proving 2.3 , both the two
Ž . Žcomponents of � were shown uniformly negligible as compared to M h a

.sketch of the proof is given in the Appendix , this immediately implies the
�asymptotic optimality of RCL, like in the ridge regression setting Girard

Ž . �1991 , Section 2 . In fact, in our kernel setting here, the asymptotic optimal-
ity of the R G ’s is also immediate; indeed, a similar Taylor argument showsX

Ž . R Ž . Ž .that, even with n � 1, 2.4 also holds with G h in place of G h andR
R Ž . ² : ² : R Ž . ² : Ž .t h � w, A w � w, w or t h � w, A w �tr U in place of t h ,u u uh h

R Ž .which states that G � RCL is uniformly o M over H .P n
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Of more importance for our purpose, we shall prove in the Appendix the
Ž .analog of 2.5 that one could expect, that is,

ˆ R �7�103.3 � M
 h h � h � D� h � � � h � o n ,Ž . Ž . Ž . Ž . Ž .Ž .0 R 0 0 0 P

ˆ ˆso that h � h is asymptotically proportional to the centered variableR 0
R ˆ ˆŽ . Ž .� � h , with the same deterministic proportionality factor as for h � h . To0 0
obtain such an equivalence, for a given n , between all the members of theR
R Ž 1 nR .G family the same sequence w , . . . , w being used in every one , an

Ž .important step is to prove the following analog of 2.6 :

3.4 R G� h � �� h �R� � h � o n�7�10Ž . Ž . Ž . Ž . Ž .P

� �1�5 �1�5 � Ž .uniformly over an , bn . Then, using 3.2 , we easily obtain that the
limit distributions of Theorem 2.1 are modified in a very simple way when
using randomized versions.

THEOREM 3.1. Under the assumptions of Theorem 2.1, assumptions on the
mutually independent w’s identical to that on ��1 � and assuming these w’s

R ˆindependent from �, we have, for the G selectors h ,X R

1
3�10 2ˆ ˆC n h � h � N 0, B � 1 � V ,ž /3 R 0 2ž /ž /nR

1 1
2 2ˆ ˆn � h � � h � B � 1 � V � ,Ž . Ž .R 0 2 1ž /ž /2C n3 R

where B and V are defined in Theorem 2.1. This also holds for the RCL2
selector.

One may now combine Theorems 2.1 and 3.1 to express what is ‘‘sacrificed’’
when using a fast randomized version, in terms of relative risk regret:

ˆ ˆE � h � � h 1 VŽ . Ž .R 0 2
3.5 � 1 � C , C � � 1,Ž . 2ˆ ˆ n B � VE � h � � hŽ . RŽ . 20

where E denotes here the asymptotic expectation. We point out that, in the
Ž .case u � 1 which requires periodicity of m and f , one can easily verify that

C is a constant only function of K ; for example, C � 0.6 is obtained when K
is the Gaussian density.

Ž . Ž . �REMARK 3.1. Note that the decompositions 2.6 and 3.4 are exact the
Ž �7�10. �terms o n vanish for, respectively, CL and RCL. This implies, evenP

for finite n, for example for Gaussian �, that, at any h, the standard error of
Ž . Ž .CL� h � �� h is at worst ‘‘widened’’ by a factor 1 � 1�n by randomiza-' R

tion. So n � 10, say, may be claimed as a sufficient simulation size forR
Ž . Žpractice, as was discussed in Girard 1995 . In that paper, heuristics suggest

that this also holds for RGCV, the randomized version of GCV, for any
.reasonable problem for which exact GCV is a relevant method. The first part
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of Theorem 3.1 says that such a guaranty of an ‘‘at worst 5% additional error’’
when using ten simulations is well propagated, asymptotically, on the stan-

ˆ ˆdard error of h � h , while the second part says that the maximal inflation0
then becomes 10% when considering the distribution of the excess error

ˆ ˆŽ . Ž .� h � � h . Of course, these approximations may be inaccurate for small n.0
Ž .Further work including simulation studies would be useful to understand

when this may happen. However, this theoretical ‘‘at worst 10% inflation’’
result is rather well in agreement with the simulation studies of which we

Ž . Žare aware: for example, in Girard 1989 , with n � 10, the admittedlyR
ˆ ˆ. Ž . Ž .rough estimate of the distribution of the inefficiencies � h �� h � 1 wasR 0

ˆ ˆŽ . Ž .almost indistinguishable from that of � h �� h � 1 for n � 50 or 500 and0
various designs. Note that such a quite attractive behavior is in contrast with
common Monte Carlo practices: for example, when using the classical boot-
strap method to compute standard error of a given statistic, the required
number of replications of the data set is typically of the order of n to have a

�Ž . �5% accuracy, as is discussed in Efron 1987 , Section 9 .

Ž .REMARK 3.2. a As was the case in HHM, our theorems may be easily
extended to higher-order kernels; see HHM for the kind of modifications of
assumptions, rates and constants involved.

Ž .b Extensions to multidimensional settings could be stated; for detailed
constants for the related multidimensional density estimation problem, see

�Ž . �Hall and Marron 1987 , Remark 2.1 . But it should be pointed out that such
a multidimensional generalization to the regression problem requires some
care in the case of a deterministic regular design: as was already noticed by

�several authors, a ‘‘workable’’ asymptotic mean square error formula like
Ž .�2.1 may not exist in too high dimensions for ‘‘natural’’ multidimensional
kernel estimates because, briefly said, the quadrature error in approximating

Ž .the expectation of m x by a convolution integral may dominate the re-ˆ h
Ž 2 .quired usual Taylor approximation typically a constant multiple of h of the

Ž .bias; see, for example, Azari and Muller 1992 . Notice, however, that this
does not happen, for example, in dimension 2 for certain asymptotically

Ž .regular designs and the GM Gasser�Muller kernel estimate of order 2, as
�Ž . �studied by Herrmann, Wand, Engel and Gasser 1995 , Section 2 . For the

setting of that paper, it can be verified that the proofs of Theorems 2.1 and
3.1 work, the results of these theorems hold with a single modification in the

� Ž . Ž .rates the power 3�10 is replaced everywhere by d � 2 � 8 � 2 d with
�d � 2 and with modifications in the constants which are obtained by compu-

�tations which are now standard in the field. It may be interesting to note
that, as expected from the convolution form of the GM estimate, in the

2 ŽŽ . .2 �1expression of C , B and V , the term mf 
 f is now replaced by f times0 2
a linear combination of squared second-order partial derivatives of m, not

�of mf.
Ž .c Among other possible settings, let us finally mention that a result of the

Ž . Ž .form 3.5 can also be shown when discontinuities jumps or cups are allowed
Ž . �in m in the setting of Section 2, as is discussed in Kneip 1994 with, again,
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only changes in the constant B2 and V which can be computed similarly as2
Ž .�in Van Es 1992 . Such a robustness property with respect to lack of

smoothness of m is quite reassuring for the reliability of the randomized
versions.

Of course, it is not within the scope of this paper to list all the settings
Ž .with possibly random designs where a limit distribution, with some rate of
convergence, has been derived or conjectured for the excess error of the CL
Ž .or GCV selector. The essential point is that, in fact, by considering the

� Ž .nature of the arguments above and in the Appendix especially 3.2 and
Ž .� Ž .3.3 , one can now conjecture that a result of the form 3.5 also holds for all

Žthese settings they include many other nonparametric function estimates,
.like smoothing spline or penalized least squares estimates .

REMARK 3.3. The assumption var � � � 2 has a specific role in this study.i
Indeed, it is known that, while CV remains asymptotically optimal under
heteroskedasticity, GCV needs a modification which requires knowledge of all
the var � ’s or estimates for them, up to a multiply. If they are known, simplei

� Ž .�extension of the results here could be made see Girard 1995 , but this is
rarely the case. In fact, fast randomized versions for such contexts would be
of great interest and so deserve further study.

REMARK 3.4. It might be worth studying possible variance reduction
techniques for the primary randomized trace-estimate one uses here. In

Ž .Girard 1993 , a simple correlated sampling technique greatly improved the
accuracy of the trace-estimate for a particular image smoothing problem. Of
course, such developments are useful in practice only for ‘‘hard’’ data analysis

Žproblems in the sense that exact cross-validation already has quite a lot of
. �Ž .variability where one cannot easily afford, say, n � 10; see Girard 1995 ,R
�Section 5.1 for such an example. We will not develop this topic further here,

since very different instances of variance reduction techniques could be
elaborated.

4. Comparison with partial cross-validation. The points which are
successively left out and compared to the corresponding leave-one-out func-
tion-estimate may be chosen as only a subset of the n observations. To fix
the idea, consider a strategy which uses only the odd points in the one-

Ž .dimensional setting of 1.1 . The resulting partial cross-validation is then
concisely defined by

�1 � �1 � 24.1 PCV h � 2n D I � A y ,Ž . Ž . Ž . Uodd h h odd

Ž .where U � diag 1, 0, 1, 0, . . . U. Note that only one-half of the diagonalodd
Ž .elements of A are required. So the computation cost of PCV h is one-halfh odd
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that of full CV when, either computing all the diagonal elements has the
dominant cost, or one uses a direct implementation which successively com-
putes the leave-one-out estimates, as is typically the case when the function-
estimate procedure is an iterative one.

As first sight, it seems natural to compare this bandwidth selector against
the minimizer of the corresponding partially averaged square error

�1 � � 24.2 � h � 2n A y � mŽ . Ž . Uodd h odd

Ž . Ž Ž ..or its expectation M h � E � h . It is easy to see that such partialodd odd
averaging incurs relatively negligible modification on M or its derivative,

Žprovided m and f are smooth enough. So the first step here is to show proof
.in the Appendix that this is also the case for the random �, so that

ˆ ˆ �3�10� �4.3 h � h � o n ,Ž . Ž .0 0 odd P

ˆwhere h denotes the minimizer of � .0 odd odd
ˆ ˆIt thus remains to study the stochastic behavior of h � h . ByPCV 0 oddodd

Žexactly similar arguments as in the above sections so the proof will be
.omitted , one can show that it is well characterized by the following lin-

earized equation:

ˆ ˆ 	 �7�104.4 � M
 h h � h � � h � o n ,Ž . Ž . Ž . Ž .ž /0 PCV 0 odd odd 0 Podd

Ž .where � is the corresponding partial version of 3.1 , that is, obtained withodd
U replaced by 2U .odd

Before we state our results on the efficiency of PCV , we now introduceodd
one example of more general ‘‘partial averaging’’ approaches for which analog
results also hold. Let l and k be two given integers such that 1 	 l 	 k. PCV l

k
is then defined as the average over only the points of index 1, 2, . . . , l among
the first k points, the points of index k � 1, k � 2, . . . , k � l among the

Ž 1second k points, and so on PCV then coincides with PCV defined in thek k
. lIntroduction . For n large enough, PCV can be called a partial CV usingk

Ž . l100 l�k % of the possible test points for the validation step. For PCV , thek
Ž . Ž .proof of the analog of 4.3 is identical see Appendix and, by exactly similar

Ž .proofs which differ only by a need of more complex notations , one obtains
Ž . Ž .the analog of 4.4 with a ‘‘�-term’’ defined by replacing 2U by k�l U ,odd k , l

with

U � diag u x , . . . , u x , 0, . . . , 0, u x , . . . , u x , 0, . . . , 0, . . . .Ž . Ž . Ž . Ž .Ž .k , l 1 l k�1 k�l

Ž .By an analysis of this new �-term see the Appendix , the following theo-
rem is then obtained.

THEOREM 4.1. Under the assumptions of Theorem 2.1 and assuming m
3 � �and f in C 0, 1 ,

33�10 2ˆ ˆC n h � h � N 0, 2 B � V ,Ž .ž /3 PCV 0 22odd

1 3
2 2ˆ ˆn � h � � h � 2 B � V � ,Ž .ž /PCV 0 2 1odd ž /2C 23
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where B, V are defined in Theorem 2.1. For any integers k � 2 and 1 	 l 	2
3 1l 2 2Ž . Žk � 1, this extends to PCV with 2 B � V replaced by k�l B � k�l �k 22 2

.1 V .2

Ž .The analog of 3.5 is thus

ˆ ˆlE � h � � hŽ . k 1 kž /PCV 0k � 1 � C � � 1 C ,Ž . ž /ˆ ˆ l 2 lE � h � � hŽ . Ž .04.5Ž .
V2

C � � 1.2B � V2

REMARK 4.1. The additional smoothness conditions on m and f are for
convenience but are not minimal; our goal here is not to give a detailed study

Ž .of the partial CV approach see Remarks 4.3 and 4.4 . The ‘‘periodicity’’ in the
subsampling is for notational convenience: it is easy to see that the above
asymptotic behavior of PCV l holds whatever locations the l distinct pointsk
may have in each neighborhood of size k; that is, in other words, it holds for

Ž .any one of the ‘‘100 l�k % partial CV’’ criteria which use such quasi-uniform
distribution of the test points.

REMARK 4.2. The claims of Remark 3.2 may be repeated here with only
Ž . Ž .3.5 replaced by 4.5 . But it must be pointed out that, because we have

Ž .restricted ourselves to deterministic designs, easy extensions of 4.5 to
�multidimensional designs are claimed only for rectangular designs as those

Ž .�considered in the simulation study of Herrmann et al. 1995 ; otherwise, the
construction of such a PCV l with ‘‘quasi-uniform’’ subsampling may actuallyk
be quite a headache.

REMARK 4.3. Our first goal here was to compare the randomization ap-
proach against the partial CV approach as two possible computational strate-
gies, for example, when an iterative procedure is used to compute the

� Ž .function-estimate see the discussion and rejoinder of Girard 1995 for
� Ž . Ž .references . From a comparison of result 3.5 and result 4.5 with l � 1, one

Žmay now argue that, in many nonparametric settings cf. Remarks 3.2 and
.4.2 , where we appeal to such partial CV criteria in order to alleviate the

Žcomputational burden of a direct implementation or in order the reduce the
� � .number of required A ’s , partial CV is, in fact, a very inefficient way ofh ii

reducing the cost, as compared to randomized GCV.

REMARK 4.4. We can now interpret the value of the possible inflation
factors caused by randomization, by comparing them with those caused by
partial CV criteria using more than 50% of the test points. Consider any

Ž . Ž .n � 1. Simply by finding the ratio k�l which equates 3.5 and 4.5 , oneR
Žobtains the following: in order to be as efficient in terms of asymptotic risk
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. lregret as randomized G or CL, the PCV strategy must use l, k satisfyingk

l n 1 � C�2Ž .R� .
k n 1 � C�2 � CŽ .R

In terms of percentage of points used in partial CV for the validation step, to
R Žbe as efficient as G or RCL, a partial CV strategy must then use 100� 1 �

�1 . Ž .n C� % of the points, where C� � C� 1 � C�2 . For example, for n � 10, ifR R
K is the Gaussian density and u � 1, this percentage is as much as 92.1%.
Note that the maximal value of C� is 2, and so the required percentage will

Ž �1 . Žalways be greater than 100� 1 � n 2 % i.e., greater than 83.33%, forR
.n � 10 .R

APPENDIX

Because all the studied selectors are asymptotically optimal procedures, to
derive the asymptotic distribution of the selected bandwidth, we can assume
without loss of generality that these procedures are redefined by restricting

� �1�5 �1�5 � �1�5the minimizations over an interval an , bn containing C n . For0
Ž . Ž .the unequally spaced design and kernel estimate 1.1 � 1.2 , the analogs of

the notations of HHM become

r h � n�1 h�1 � h4 , L x � �xK � xŽ . Ž . Ž .n

and

n1 x � x j
b x � K m x � m x ,Ž . Ž . Ž .Ýh jž /nhf x hŽ . j�1

n1 x � x j
c x � L m x � m x .Ž . Ž . Ž .Ýh jž /nhf x hŽ . j�1

Let also B denote the smoothing operator associated with the kernel L, soh
that

d
�1� � � �A � �h A � B .i , j i , jh h hdh

Ž . �1² Ž . :Also, as in HHM, let us define � h � 2 n � , I � A m �u1 h
�1² :2n �, A � .uh

Ž . Ž . 	Ž .PROOF OF 2.6 . First, as in HHM, the fact that �� h and � h are still1
Ž �3�5. � �1�5 �1�5 � Ž .O n uniformly over an , bn results from the extension of A.7P

of HHM to nonequidistant designs, which is proved in the following Lemma 1.
Next, the proof for G� is very similar to that in HHM for the equispaced case.

Ž .So we only consider the proof for CV�. Differentiating the sum 1.7 term by
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term gives
d 2�1 �1 �1CV� h � n u x I � A y 1 � O n hŽ . Ž . Ž . Ž .Ž .Ý i h i½ 5dh

2 �1�1 �1 �2� n u x I � A y f x n h K 0Ž . Ž . Ž . Ž .Ž .Ý i h ii


 2 � O n�1 h�1Ž .Ž .
	 �1 �2 �1 � � 2 �7�10� �� h � � h � 2n h K 0 n � � o n ,Ž . Ž . Ž . Ž .u � f1 P

where the third term of this second approximation can be obtained similarly
Ž . �1 � � 2as 2.3 with weights u�f in place of u. Noting that n � may be alsou � f

2 Ž �7�10. Ž .replaced by � H u in this approximation up to o n , yields 2.6 for CV�.P
�

Ž . R Ž . �1 �Ž . � 2 ŽR Ž ..PROOF OF 3.4 . Let us recall that G h � n I � A y � � t h ,uh
R Ž . ² : ² : R Ž . ² :where t h � w, A w � w, w or t h � w, A w �tr U. Thus,u u uh h

R G� h � �� h � � 	 h 1 � O n�1 h�1Ž . Ž . Ž . Ž .Ž . Ž .1 P

2 R�1 �1 �1� �� � h � n � � � h t� h 2 � O n hŽ . Ž . Ž . Ž .Ž .Ž .u 1 P

R 2	 �1 �7�10� �� �� h � � h � 2 t� h n � � o n .Ž . Ž . Ž . Ž .u1 P

Ž . R Ž . �1 � � 2Approximation 3.4 is then obtained by observing that t� h n � mayu
Ž .Ž 2² : . Ž �7�10. R Ž .also be replaced by d�dh � w, A w , up to o n , since t� h �uh P

Ž �1 �2 .O n h . �P

PROOFS OF THEOREMS 2.1 AND 3.1. We assume here the conditions of
ŽTheorem 3.1 i.e., those of Theorem 2.1 when the statements do not concerne

.randomized terms . We will need the following lemmas.

LEMMA 1. Lemmas 1, 2, 3 and 5 of HHM still hold.

Ž . Ž . Ž . Ž .PROOF. Let D h � � h�2 D� h . It is easy to see that D � S h �1 1 1
Ž .S h , where2

�1² : 2 TS h � n A � , A � B � � � tr A U A � B ,Ž . Ž . Ž .Ž .u1 h h h h h h

�1² : �1² :S h � n A � , b � c � n A � B � , b .Ž . Ž .u u2 h h h h h h

Consider, for example,
�1² : 2 �1 TS h � n A � , A � � � n tr A UA .Ž . Ž .u11 h h h h

To show, for example, the second part of Lemma 1 of HHM, then, Theorem 2
Ž . Žof Whittle 1960 can still be applied, to give, for any integer l � 1 C is a

.generic constant here and in the following ,
2 l�1 �1�2 � �E r h h S h � S h�Ž . Ž . Ž .Ž .½ 5n 11 11

l
�2 l 2�l �2 l T T� �	 Cr h h n A UA � A UA ,Ž . Ý Ýn h h h� h�i j i j

i j
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� T � �2 �2 n Ž .�1 ŽŽ . . Ž . Ž .�1 ŽŽwhere A UA � n h Ý f x K x � x �h u x f x K x �h h i j l�1 l l i l l l
. . Ž .�2 l 2 l 2 lx �h . Now, since r h 	 n h , it remains to see that, as in HHM, thej n

2 Ž .sum Ý Ý contains at most a multiple of n h� for h� � h nonzero terms, andi j
that, uniformly over i, j,

T T �1 �2� � � �A UA � A UA 	 Cn h h � h� .h h h� h�i j i j

This stems from the fact that, because f is smooth and bounded from below,
Ž . Ž .A and d�dh A are still banded matrices with horizontal and verticalh h

�� � � �1 �1width bounded by Cnh and that it still holds that A 	 Cn h andh i j
��Ž . � � �1 �2d�dh A 	 Cn h .h i j

Ž . �1² : ŽFor the linear terms of S h such as n B �, b note that here we will2 h h
Ž .�2 l Ž l l . �4 l .use r h 	 n h h over H , it suffices to observe that the componentsn n

� � � � Ž 2 . Ž �1 .b and c are still O h � O n uniformly. The extension of the �n i h i
part of Lemma 1 of HHM is proved by similar bounds. Extension of Lemma 2
of HHM is obtained from the above extension of Lemma 1 using exactly the
same partitioning arguments as in HHM. Extension of Lemma 3 of HHM is
also derived from the extension of Lemma 2 of HHM using the same argu-

ˆ ˆ �ments as in HHM and using that h�h , h �h � 1. Lemma 5 of HHM which0 0 0
ˆ ˆŽ . Ž .�is required for the results on � h � � h resulted from an analog on D
 of0

� 1�2 Ž . � 2 l
�1 �5 �1�5Lemma 1 of HHM, namely, that sup E n D
 h 	 C. Ex-h�� an , bn �

tension of this bound to nonequidistant design may be derived as above. �

Ž . RFrom the expression 3.2 of � , it is now immediate to prove the following.

LEMMA 2. Lemma 2 of HHM holds with R� in place of � .

ˆ �1�5��� � Ž .LEMMA 3. For some � � 0, h � h � O n .R 0 P

PROOF. Similarly as for Lemma 3 of HHM, this results from Lemma 2
ˆand h �h � 1. �R 0

The following lemma generalizes and completes Lemma 4 of HHM.

LEMMA 4. Under the assumptions of Theorem 3.1,
2D� hŽ . �0 30

27�10 � � hŽ . � �n � N , ,0 0 34 4
R 0 2 2� 0� � hŽ . � � �0 34 4 R

2 2 2 2 2 2 Ž .with � � B � V , � � B � V , � � B � 1 � 1�n V , where B, V3 1 4 2 R R 2 1
and V are defined in Theorem 2.1.2

PROOF. Let us consider, for example, the first component and, as in the
Ž . Ž . Ž .proof of Lemma 1, the associated decomposition D h � S h � S h . The1 1 2

Ž .derivation of the asymptotic normal distribution for the linear term S h is2 0
Ž .very similar to that in HHM. So let us again consider the term nS h �1

² : ² : T Ž .�, Q � � E �, Q � , where Q � A U A � B is still a banded matrix ofh h h h h h



CROSS-VALIDATION, GCV AND RANDOMIZED GCV 331

Ž .width O nh . Note that, for any matrix Q, standard calculations show that
14 2 4 T 4 4 2 ˜² : Ž Ž . . Žvar �, Q� � � tr Q � � tr QQ � E � � 3� Ý Q . Let Q � Q �i i i i 2

T ˜. Ž .Q � diag Q , i � 1, . . . , n , so that Q is symmetric and of zero diagonal. Iti i
˜� Ž .� ² :is known e.g., de Jong 1987 that �, Q� has an asymptotic normal

˜4 ˜2 2Ž .distribution under the simple condition tr Q � tr Q � 0.
Now, by Riemann sum approximation and first-order Taylor expansion of

u�f, we obtain that

u x x � xŽ .i i j �1 �2 �2� �Q � K � K � K � L � O n � O n h ,Ž . Ž . Ž .i , jh ž /nhf x hŽ .i
T �1 Ž .2 2uniformly over i and j. Thus, tr Q Q � h H K � K � K � L H u , and simi-h h

2 � �2larly for tr Q , and the third diagonal term Ý Q is relatively negligible.h i h i, i
˜4 �1Now it suffices to derive tr Q 	 Ch from the banded structure of Q , toh h

Ž .obtain the asymptotic normal distribution of S h . The limit distribution of1 0
Ž . Ž .D h is finally obtained by verifying that the covariance of S h and1 0 1 0
Ž . � Ž . Ž .�TS h is relatively negligible. The joint distribution of D� h , � � h can2 0 0 0

then be proved by similar modifications of the proof in HHM.
Finally, a simple way to derive the whole joint distribution is to consider

any linear combination

D� hŽ .0 nR
T 	 k� � hŽ .� �� , � , 
 � �D� h � � � 
 � � h � e �* , h .Ž . Ž . Ž .0 Ž .Ý0 0 1 0nR k�1R� � hŽ .0

� Ž . Ž .�TIndeed, from the joint distribution of D� h , � � h , and the fact that the0 0
third term in this expression is an average of n independent terms alreadyR
analyzed and is independent from the first two terms, we see that such a
Ž . 7�10nonzero combination, multiplied by n , is asymptotically distributed as

2 2 Ž .2 2 Žthe centered normal distribution of variance � � � � � 
 � � 2� � �3 4
. Ž 2 .
 � � 
 �n V , which yields the stated tridimensional normal law. �34 R 2

Ž . Ž .From the above lemmas, and from 2.6 and 3.4 , the proofs of the
Ž . Ž .linearized characterizations 2.5 and 3.3 , and of Theorems 2.1 and 3.1, use

very similar lines of proof as in HHM and so are omitted.

�PROOF OF THEOREM 4.1. We have first to prove the equivalence extension
ˆ lŽ .� Ž .of 4.3 between h and the minimizer of the partial loss � h �0 k

Ž . �1 � � 2k�l n A y � m . Only for notational simplicity, we consider the caseUh k , l

k � 2, l � 1, that is, � . For this, it suffices to prove the following.odd

LEMMA 5. We have

7�10 � 	 � � 	 �sup n M� h � M h � D� h � D h � o 1 .� 4Ž . Ž . Ž . Ž . Ž .odd odd P
�1�5 �1�5� �h� an , bn
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PROOF. Let
2n 1 x � x j2 2M x , h � b x � � K ,Ž . Ž .Ž . Ýh ž /nhf x hŽ .j�1

the mean square error at x. By standard Riemann sum approximation and
�1 �1 Ž . ŽŽ . Ž .using that n h Ý d�dx K x � x �h y is a kernel estimate of mf � withj j j
Ž 2 . Ž .Ž 4�5 Ž ..a bias still O h , one verifies that d�dx n M x, h is bounded uniformly

� �1�5 �1�5 �over x and h � an , bn . Thus, the difference between the normal-
4�5 Ž . 4�5 Ž .ized partial average n M h and full average n M h is well of theodd

order n�1, as is usual for the discretization of an integral. And this also holds
3�5 	 Ž . 3�5 Ž .for n M h � n M� h by a similar proof.odd

For the random term D� � D	 , it suffices to prove that there exists someodd
� � 0 and C such thatl

� 7�10 	 � 2 l � lsup E n D� h � D h 	 C nŽ . Ž .Ž .odd l
�1�5 �1�5� �h� an , bn

�and, next, to use a partitioning argument similarly as in HHM see also
Ž . �Hardle and Marron 1985b for another use of similar technique . The above¨

Ž .bound can be obtained again by using Theorem 2 of Whittle 1960 similarly
Ž . 	 Ž .as in the proof of Lemma 1 and, for the quadratic term in D� h � D h , byodd

using bounds of the form
T T �2 �2A UA � 2 A U A � O n h ,Ž .h h h odd hi j i j

uniformly over i and j, which results from a standard Riemann sum approxi-
�1 �1² :mation. For the linear terms such as �h n A �, b , we use theU� 2Uh h odd

second Whittle inequality along with the bound
T T �1 2A U b � 2 A U b � O n h ,Ž .h h h odd hi i

Ž .Ž �2 Ž ..uniformly over i, which holds because d�dx h b x is uniformly bounded.h
�

We finally need the following:

LEMMA 6. We have
	 37�10 2n � h � N 0, 2 B � V ,Ž . Ž .odd 0 22

where B and V are defined in Theorem 2.1.2

Ž . 	 Ž . Ž . Ž . Ž .PROOF. We can decompose h�2 � h � T h � T h , with T h �odd 1 2 1
�1²Ž . : 2 �1 Ž . Ž . �1²Žn A � B �, � � � n tr 2U A � B and T h � n b �2Uh h odd h h 2 hodd

. :c , � . As in the proof of Lemma 4, the derivation of the limit distribu-2Uh odd

Ž . Ž .tion of T h is easier than that of the quadratic term T h . The essential2 0 1 0
Ž .modification, as compared to full CV, is in the asymptotic variance of T h1 0

Ž . Ž .obtained simply by replacing U A � B by 2U A � B . Denoting by Qh h odd h h h
this latter matrix and by F the difference K � L, and, for notational simplic-
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ity, considering the equidistant case with u � 1, we can write

2TQ � Qh h
tr ž /2

2�1 �1 �1 �1ŽŽ . . ŽŽ . .2 1 n h F i � j �nh � 2n h F j � i �nh 1Ž .�i odd4 � j odd4� ÝÝ 2i j

1 i � j j � i
�2 �2 2 2� n h 4F � 4FÝ Ý Ý Ýž / ž /4 nh nhi odd j i j odd

i � j j � i
� 8F FÝ Ý ž / ž /nh nhi odd j odd

3
�1 2� h F . �H2

l � ŽŽ . .The analog of this result for PCV which will yield the factor k�l � 1 �2k
�in place of 3�2 can be obtained similarly; the modifications are only a matter

Ž .of notation and attention, after having replaced 2U by k�l U .odd k , l
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