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ASYMPTOTIC DISTRIBUTION OF THE REDUCED RANK
REGRESSION ESTIMATOR UNDER GENERAL CONDITIONS

By T. W. ANDERSON

Stanford University

In the regression model Y = n + BX + Z with Z unobserved, £Z = 0
and £ZZ =3 ,,, the least squares estimator of B is B = Sy xSx%. If the
rank of B is known to be % less than the dimensions of Y and X, the
reduced rank regression estimator of B, say ﬁk, depends on the first %
canonical variates of Y and X. The asymptotic distribution of B, is
obtained and compared with the asymptotic distribution of B. The advan-
tage of B & 1s characterized.

1. Introduction. Reduced rank regression, introduced by Anderson
(1951a), has been applied in many disciplines, including econometrics, time
series analysis and signal processing. See, for example, Johansen (1995) for
use of reduced rank regression in estimation of cointegration in economic
time series, Tsay and Tiao (1985), and Ahn and Reinsel (1988) for applica-
tions in stationary processes and Stoica and Viberg (1996) for utilization in
signal processing. In general the estimated reduced rank regression is a
better estimator in a regression model than the unrestricted estimator. This
paper shows exactly in what sense the reduced rank estimator is better.

A general model for the dependence of a vector of p dependent variables Y,
on a vector of ¢ independent variables X, is

(1.1) Y, -n+BX, +Z,,

where the unobservable disturbance or error Z , is distributed independently
of X, with £Z, =0 and £Z,Z/, = % ,,. If the rank of B is %, only & <
min( p, q) linear combinations of the components of X suffice to predict or
“explain” Y. These linear combinations are the canonical variates of X
(defined below). The model where %k < min(p, q) is called a reduced rank
regression. The independent variables may be nonstochastic or stochastic.
On the basis of a sample (y;,x,), ..., (yy,Xy) an estimator of B is desired.
Anderson (1951a) found the maximum likelihood estimator of B of preas-
signed rank 2 when x,,...,x, are considered nonstochastic and z,,...,zy
are independently distributed according to N(0, % ,,). If (Y., X' ) have a joint
normal distribution with mean vector £(Y,,X!) = (iy, Wx) and covariance
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matrix

12) 2| Ty - X - ) =
' X, ~ Bx R P

then the density of (Y/,X' ) is

n (y)‘(l’-y) Syy EYX”
(1.3) x/[\rx ) | 2xy 2xx
= nlylny + B(x — nx), 2zz]n(xlny, Txx),
where
(1.4) B =2y 3k,
(1.5) Y7 =2yy — BEyyB =3yy — Xy Sy Sxy.

The maximum likelihood estimator of B of rank % in model (1.3), (1.4) and
(1.5) is the same as the maximum likelihood estimator in model (1.1) with
X,,...,Xy nonstochastic. We call this estimator the reduced rank regression
estimator. This estimator can be defined in terms of the canonical variates.
One form is Bk SYXF Fl, where Sy is the sample covariance between Y
and X and F consists of the coefficients of the first £ canonical variates of X;
other forms are given in (2.13) below.
_ The major objective of this paper is to obtain the asymptotic distribution of
B, for x,,...,x, nonstochastic and for x,,...,x, observations on a random
vector with &X = py and &X — p)X — p) = X4y under the assumption
that X, and Z, are independent. In fact, the conditions for the asymptotic
normal distribution of the reduced rank regression estimator are the same as
for the asymptotic distribution of the ordinary last squares estimator of B. A
second aim of this paper is to relate the asymptotic distribution of B to the
asymptotic distribution of R, A and I, the sample canonical correlatlons and
coefficients of the canonical variables. In asymptotics B & 1s a simple function
of the sample covariance matrix of Y and X expressed in terms of the
canonical variables. A

The asymptotic distribution of B, has been obtained by Ryan, Hubert,
Carter, Sprague and Parrott (1992), Schmidli (1996), Stoica and Viberg
(1996) and Reinsel and Velu (1998) by use of the expected Fisher information
on the assumption that Z , is normally distributed. These studies are summa-
rized and compared to the results of this paper in Section 5.

2. Canonical correlations and variables. To express and develop the
results it is convenient to review the canonical correlations and variables.
More details are given in Anderson [(1984), Chapter 12] and Anderson (1999),
for example. The equations defining the canonical correlations and variates
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(in the population) are

—-p p3

(2.1) P<yy YX (a) -0,

2xy —pExx |\
where p satisfies

—pX 2
(2.2) Payy YX | _ 0,

2xy —pxx

and
(23) (X'EYY(X = 1, ‘Y’EXX"Y = 1
The number of positive canonical correlations is the rank of 3y, which is
the rank of B. The canonical correlations are ordered p; > -+ > p, > —p, >

-+ > —p,; with ¢ — p additional roots of 0 if ¢ > p. We shall assume that the
rank of X,y is £ and p; > -+ > p,; then the solution of (2.1) and (2.3) for
such a value of p is unique except for multiplication by — 1. To eliminate this
indeterminacy we shall require that «;, > 0, i = 1,..., k. [Since the matrix
A=(ag,...,a p) is nonsingular, the components of Y can be numbered in
such a way that the ith component of «; is nonzero.]

From (2.1) we obtain y = (1/p)33%2xya, a = (1/p)23% 2 vxv,

(2.4) p’Yyya =Syy3xxYyya = BiyyBa,
(2.5) P*2xx¥Y = Txy vy xy Y-
The solutions of (2.1) corresponding to p,,..., p, can be assembled as A =

(ay,...,a,) and (vy,...,v,). If ¢ > p, there are ¢ — p additional solutions
(Ypi15--+5Y,) to (2.1) with p=0. Let I'=(y,,...,v,) and let R =
diag( py,..., p,), R = (R, 0). Then the solutions can be chosen to satisfy
(A’ 0) Syy Zyx (A 0) _ A2y A AT

0 I'"J{2xy Zyy)\O T "YSyyA T'IxT

x5

This is the covariance matrix of the canonical variates U = AY and V = I"X.
The unbiased sample means and covariances are y, X and

Syy Syx 1 X Y.~ ¥
(2.7) ( T E‘l X, — X

SXY SXX

(2.6)

(yclz - yrax,a - i/)’

where n = N — 1. The sample equations corresponding to (2.1) and (2.3)
defining the population canonical correlations and variates are

(2.8) (_rSYY Syx )(a) —o,

Sxy —rSxx |\ €

(2.9) aSyya=1, c'Syxc = 1.



1144 T. W. ANDERSON

The solutions with a;; > 0,7 = 1,...,p,and ry > ry > -+ > r, > 0 define the
estimators A = (a,,...,a,), I' = (¢,,...,¢,), R = diag(r,,...,r,). These are
uniquely defined except that if ¢ > p, ¢, ,...,¢, satisfy €¢'Sxye; =0, j =
1,..., p, and some other (¢ — p)(q — p — 1) arbitrary conditions. From (2.8)
and (2.9) we obtain ¢ = (1/7)S5%xSxya, a = (1/r)Sy%Syxe¢,

(2.10) SyxSxxSxya =r2?Syya,

(2.11) SxySyySyxe = r?Syxe.

) Let A} =(ay,...,a,), lA“1A=A(c1,...,cAk), R, = diag(r,,...,r,) and &, =
A, — R V2 =8;FSyxI''R7'A, — R?)" /2 The least squares estimator
of B in model (1.1) is

(2.12) B = 3, ,Sik;

this is the unrestricted maximum likelihood estimator under normality of the
Z ’s. The maximum likelihood estimator of B of rank %, found by Anderson
(1951a), is

(2.13) B,=8S,,0,&,B=8,,A,R, I =8,

where S, is the sample covariance matrix of the residual z =y — Bx. A
column of ®, satisfies

(2.14) SyxSxkSxyd =18,;b,  $Syub-=1,
t =r2/(1 —r2); ¢ differs from the corresponding a only with respect to the
normalization.

Another motivation of the estimator B » is that B » 18 the matrix B, of rank
k that minimizes

N
(2.15) El [Y. - ¥ - Bi(X. - X)]'S;;[Y. - § - B,(X, — %)

= tr(Syy — B;Sxy — SyxB}, + B,SxxB})S;;.
See Izenman (1975), Brillinger (1975) and Reinsel and Velu (1998) for other
forms of this criterion and further discussions. The procedure of maximizing
the normal likelihood shows that B, minimizes

[Ea[Y, - F - B(X, D) [Y. - § ~ B,(X, - D)

(2.16) S42]

=[(Syy — BySxy — SyxB;, + B, SxxB;)S;}|.
The B, that minimizes the trace criterion is identical to the B, that mini-
mizes the generalized variance.

The distribution of nSyy,nSyx, nSxx is the same as the distribution of
oYY Yt Y X yr X X! when py =0, py =0 and (Y',X') is nor-

a“a? «

mally distributed. In any case, the limiting distribution of Vn (Syy —
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Syy), Vi Syx — Tyx), Vi (Sxx — 2 xx) does not depend on (y, Wy ). Hence
we shall consider the model as Y, = BX, + Z_, with

(2.17) [S” S”} =% i }[Y’,x;]

SXY SXX

and £Y, =0, £X_ = 0.

3. Asymptotic distribution of the reduced rank regression when
the independent variables are stochastic. We want to find the asymp-
totic distribution of B SYXF F Note that the fact that the number of
columns of T, is the rank of B 1mp11es that the rank of B is known to the
statistician. The transformation to canonical variables U, = AY,, V, = I"X,
and W, = AZ  transforms Y, = BX_ + Z, to

(3.1) U, =¥V, +W,
2UU AEYY 2'VV l—‘,E'XX 2UV AEYXF R 2VW
Sww = AEZZA ~ R’ and W= A’B(F’) =R. Also Sy, = A/SYYA

Syv = ASyxT, va Sy, ¥ =8,,S;, = AB(I")"! (the unrestricted
estimator of W) and the restricted estimator

(3-2) ‘i'k = SUVHlH,D
where H, = I'; 'T', satisfies
(3.3) SvuSybSyvH, = Sy H R, H'S,vH, =1,.

The limiting distribution of Vn (¥, — W) will be found (Theorem 1 below)
and transformed back to the original coordinates (Corollary 1).

Define S}y, = Vn(Syy — L), Siy = Vn(Syy — R), Shy = Vn(Syy —
Hf = Vn(H, — I;,) and R* = [yn R — R), 0], where I, = (I,,0) is ¢ X k
Then substitution of these quantities into (3.3) yields

_ 1 _ B T L
RRI;) + o |StuRIy, + RSpy 1, — RSy RI, + R’RHT]
(3.4) ) 1
= I(k)R21 + W[S I(k)R + 2L, R, RY + H*RZ] 0, W)

or equivalently,
St yRI,, + RS}, 1, — RS;,RIL,, — S§y1,R3
=21, R R} + H{R} - RRHY} + 0,(1).
In terms of partitions into submatrices of 2 and ¢ — k& rows, (3.5) is
Sﬂ\;lUlRl + Rlsﬂl}lvl - Rlsﬂf}lUlRl - Sﬂ\;IVlR%
S>\k/2UlR1 - S>{F/2VlR21

(3.5)

(3.6)
9R,R% + Hi,R? — R2HY,

+0,(1),
Hj R} ?
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where HY = (H%{, H;). From (3.6) we obtain

(3.7) Hj R, +0,(1) = St7 — SIVR, =S¥y = (Siy).-
From the second part of (3.3) we obtain

1 1
from which we obtain
(3.9) Hi + Hf, = —SHy +0,(1).

From (3.2) and the definition W} = vVn (¥, — W), we obtain
¥ =Sy LI,, + RHIT, + RI, HY +0,(1)
(R, (HY + HY) + S} R,HY

(3.10) - Sy o)
S*ll >‘X}<V1\2/
- S*21 0 + op(l),

where the partitioning is into 2 and p — k£ rows and k£ and g — & columns.
The last equality follows from (3.7), (3.9) and S}, — RS¥ = Sk .

The max1mum likelihood estimator of B unrestricted with respect to rank
is B = SYXS xx> the unrestricted estlmator in terms of canonical variables is
W =8,,S;) and ¥* = /n (¥ - W) = . The effect of the rank restric-
tion is to replace the lower right-hand corner of S§y, by 0.

To characterize the asymptotic distribution of W, and B,, we use the
notation vecA = vec(a,,...,a,) =(a},...,a,) and A® B =(q¢;;B) and
the property vec ABC = (C’ ® A)vec B, Which implies vecxy' = vec xly' =
(y ® x)vecl =y ® x. Then

N 1 i (WO
vec W = vec — AL ASU A AR
| B £
(3.11) ViV e W,
- O(Zl VDEZ) ® ‘V(';(l))

Since V, and W, are assumed to be independent, we obtain
& vec Wi (vec P )/
I, ® (I, - R?) 0

(3.12) - I, - R2 0}

0 I, ,®

q-

= diag(I, — R?,...,I, — R%, I, - R%,0,...,I, — R%,0),
P p k 1 k
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where there are k& blocks of I, — R? and ¢ — & blocks of diag(I, — R}, 0). The
rank of (3.12) is kp + (¢ — k)k = k(p + q — k).

THEOREM 1. Let (W,,v)), a=1,...,n, be observations on the random
vector (U, V') with mean 0 and covariance matrix (2 6). Let W =3, XY,
Syy=n"'Xi_ju,,Syy=n"'TL_u,v,, Sy, =n"'TL_ v, distribution
of veeyn ( ‘Ifk \I' ), where ‘I’k is deﬁned by (3.2), is normal wzth mean 0 and

covariance matrix (3.12).

For the least squares estimator ¥ we have
si s,
st si|
Since the four submatrices on the right-hand side of (3.13) are uncorrelated

[S35) = (1/ VN)LL_ W V], they are independent in the limiting normal
dlstrlbution. Then W} and

(3.13) \/;(‘if—\lf)=lif*=[

S 0 0
are asymptotically independent with

& vec(\i’* - \if,:‘)[vec(\if* - ‘i’k)],

N S
o1 [0 401

In the original coordinate system we obtain
vec(B,, — B) = vec[(A’)fl(\ifk - \I')F’]
(3.16) = [r ® (&) "]vec(¥, - W)
- [(rl, Iy) ® 35,(A1,A,)(T, RZ)’l]vec(\irk ~w).
From (3.12) and (3.16) we obtain
& vec n(ﬁk — B)[vec(ﬁk - B)],
= () e 3,,A@1, -R?) |
(3.17) +[T,T @ 3,,A,(1, - RY) A3, |
=[N ®3,,] + [Fzré ® 3,,A(I, - Rzl)_lAIEZZ]
=23x ® X, — (Fo1; ® 2,,A,A,3,,).
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If we define A =X,4xI', =3,, A RI—-R?%») ! and I =T, then B = AII.
We have
1

(318) A(A/EZZIA)_ AN = EZZ - EzzA2A22zz,
(3.19) I(I'S 4 1) "I = T, T = 334 — LT,
Thus (3.17) can be written
& VecB’,’;(vecBZ)’ >3 ®3,, - [2)}}( - H(H’EXXH)_llT]

(3.20) -1
@[3, - A(NZ4A) A
CoROLLARY 1. Let (y,,x), a=1,...,n, be observations on the random
vector (Y',X') with mean 0 and covariance matrix (1.2). Let B = 3,y %%,
Syy=n"'Z4_1¥a Ve, Syy=n"'Y"_,x.y.,, Syx=n'YX"_,x,x,. Let the
columns of F satisfy (2.9), (2.11) and ¥,; > 0. Suppose that Y — BX Z is
independent of X. Then the limiting distribution of vec B”< =Vn Vec(Bk B),

with B SYXF Fl, is normal with mean 0 and covariance matrix (3.17) or
(3.20).

Note that B = AII' = AM'(IIM 'Y for arbitrary nonsingular M; however,
(3.18) and (3.19) are invariant with respect to the transformation A - AM
and II - IIM 1. Thus (3.20) holds for any factorization B = AII'.

It is 1nterest1ng that the limiting distribution of B} only depends on
Vn'S,xSxk = (A)"'8% S LI and hence holds under the same conditions as
the asymptotic normality of the least squares estimator B. However, B is a
function of Fl, and the asymptotic distribution of F requires some proper-
ties of the normal distribution of Z.

From (3.6) we have
Ri(p} = p?) = S*VUp, + o5tV = pist ;= 8507 + 0, (1),

i#+j,i=1,...,q,j=1,..., k.

The second-order moments of A}, i # j, depend on the second-order moments
of terms like v,u;, w,u; and v,v;; under normality &(v,u;,)” =&viu
& vzé"u =1, for example. On the other hand, the limiting d1str1but1on of

(1 /Vn \/_ )X _ W V! depends only on W, and V, (Z, and X_) being
1ndependent The covariances of A}; are valid for (Y, X) normally dlstrlbuted
and p; > -+ > p,; they depend on the second-order moments of the sample
covariance matrices (hence, on the fourth-order moments of the observed
variables). However, the limiting distribution of vecB* = YN(B — B) is
N(0,3%% ® 3,,), irrespective of whether Y and X are normal.

Note that H3; is S}“,%; R+ 0, (1) and asymptotically does not depend on

S¥ w; although H¥, does depend on St , it enters \Ifk only through Hj,
Hi = —S%y + 0, (1) Thus the limiting distribution of ¥ and hence of B*
does not depend on S% w. In particular, the distributions of Theorem 1 and
Corollary 1 are valid for S’{},W = 0, which is equivalent to replacing Sy or
S,, by Zww or %,,, respectively.

(3.21)
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4. Asymptotic distribution when the independent variables are
nonstochastic. Now suppose that X, =x_, @ = 1,..., n, is nonstochastic.
We assume that

1 n
(41) ; Z Xax/a_)EXX.
The model is

(4.2) Y, -Bx, +7Z,,

where £Z,=0and £Z,Z, = % ,,.
We shall find a suitable canonical form by replacing (2.1) and (2.3) by

(4.3) —p(2zz + B,SXXBI) BSyx [a] _o,
SxxB —pSxx LY
(4.4) a’(EZZ + BSXXB’)OL = 1, ‘Y’SXXY = 1.

Solving the second vector equation in (4.3) for py = B'a and substituting in
the first gives

(45) BSXXB,O‘ = pz(EZZ + BSXXB,)a

This equation and (4.4) imply «'Y,,a =1 — p%, 0= p2/(1 — p?) and ¢ =
a(l — p?)"1/2 The solutions to (4.3) and (4.4) and «;; > 0, p, > - > p;,
define «y,...,@;,v;,...,Y,. The other columns of A, = (ay,...,a,) and
I, = (vy,...,7v,) can be defined so

(4-6) 2WW = AnEZZAn = Ip - R%za
(4.7) Syy =1,8SxxT, =1,
(4.8) A BS, I, =R, =A,B(I) ',

where U =AY, v, =1I,x,, W= A Z Where convenient, the subscript » is

used to emphas1ze that the matrlces of transformed parameters depend on n
through Sy . We write the model for U in terms of v and W as

(4.9) U=WVv+W,

where R, = A B(I'’)~! has been replaced by W.
The unrestricted maximum likelihood estimators of B and X ,, are given
by (2.12) and

1 n
(410)  Sz=— Z (v. — Bx,)(y. — Bx,) = Syy — BS;;B.

o

The estimators of A, I', and R? are formed from the solution of (2.9), (2.10)
and (2.11) as in Section 3.
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When we transform from Y, x and Z to U, v and W, the estimators of ¥
and Xy are

(411) ‘I’ SUVSVV SUV?

1 2 A N
Sww = - ; ( —‘I'va)(ua—‘lfva)

(4.12) . .
=S,y — WS, W' =8, - ¥

= Syy — SyvSviSyy = Syy — SyvSyy.
Now H, = I''T"; satisfies
(4.13) SyuSutSyvH, = SyyH, R} = H R},
(4.14) 1, = H,S,, H, = H;H,.
Substitution for Sy, Sy, Hy, R? in (4.13) yields

(4.15) SivRI,, + RS}, I, — RS;, RI,,
' = 21, R,R% + HiR? - RRH? + 0,(1),

which is (3.5) with Sy I ;) R} omitted. As in Section 3, (4.15) implies

(4.16) Hj R, +0,(1) = (S§7).
Substitution in (4.14) yields
(4.17) Hi{ + H}; =0+ 0,(1).

Then again

. Siv SV
(4.18) B = [S*Zl

In (3.11) v, is nonstochastic and (3.12) holds.

The concluswns of Theorem 1 and Corollary 1 hold for \Ifk and Bk,
respectively, when the independent variables are nonstochastic.

The distribution of the roots and vectors of (2.14) have been given by
Anderson (1951b) for arbitrary multiplicities of the population roots when Z
is normally distributed and the independent variables are nonstochastic.

As in Section 3, the limiting distribution of H3, does not depend on Sjy
and HTI does not enter (asymptotically) W} Hence the limiting distribution
of B¥ is the same for 3y known as for 3 estimated.

1 +0,(1).

5. Discussion.

5.1. Asymptotic distribution of the reduced rank regression estimator un-
der normality. Ryan, Hubert, Carter, Sprague and Parrott (1992) let B =
ATIl' and n = 0 and assume X_ in (1.1) is nonstochastic and Z, is normally
distributed. They differentiate the log-likelihood function with respect to the
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elements of A, IT and X ,, to obtain the expected Fisher information matrix.
From this they derive the asymptotic covariance matrix of the maximum
likelihood estimators of A, I1, and % ,,, presumably as a generalized inverse.
Then the asymptotic covariance matrix of the estimator of B = AII' is the
asymptotic covariance matrix of AII' + AII'. This agrees with (3.20). The
authors do not comment on the indeterminacy in AII'.

Schmidli (1996) goes through the same steps, but with more care, and
reaches the same asymptotic covariance matrix of the estimator of B.

Stoica and Viberg (1996) have obtained an expression for the covariance of
the limiting distribution of Vn (B, — B) where the x’s are nonstochastic
satisfying (4.1) by assuming that the Y’s (or Z’s) are normally distributed and
calculating the Fisher information matrix. The expression is

&n vec(ﬁk — B)[Vec(ﬁk - B)]’ - [(l"1 L), (I,® EYXFl)]
rel, )
X {llq ® F;EXY][EXX ® 274
x[(IyeIL,),(I,® EYXFI)]}

ret,
X , )
I,@IN2yy
where [ ]* denotes the Moore—Penrose inverse. That (5.1) is equivalent to

(3.20) can be shown conveniently by transforming (5.1) to the canonical
variable framework as

[(I<k> ®1,),(I, & m(k))]

(5.1)

o )
I,® (T, - R}) 0 I,® Ry(L, - R}) 0
0 Ip*k 0
(52)°) Lo [R(L-R) 0]  LeRi(L-RY) 0
0 0 1, ,®R}(I, -R%) '
I, eI,
X = |5
1,0, R

the Moore—Penrose inverse can be calculated explicitly. The treatment of
Stoica and Viberg does not show that these covariances hold when the Z’s are
not normal or when the X’s are stochastic.

Reinsel and Velu (1998) also parameterize B as B = AII' (my notation),
where A and II are p X k and normalized sothat A = % ,,®,,and Il = B'®,.
The estimator of A, say L, that Reinsel and Velu defines (page 41) satisfies

(5-3) SYXS)_QI(SXYEEZIL = LT,, L,EEZIL = Ik,
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but the estimator A = S,,®, defined in this paper satisfies (5.3) with 3,
replaced by S;;. Similarly, their estimator of II, say P, satisfies

A A Ay —1
(5.4) B'x;}S,«P-PT,, P(BY,B) P-1I,,

while Il = B' &, satisfies (5.4) with 3, replaced by S;.

The dlfference between the definitions of the pair L and P and the pair A
and I is that L and P are defined in terms of ¥,, known, while A and II
are defined in terms of S;;, the estimator of X,,. However, as shown in
Sections 3 and 4, the asymptotic distribution of the estimator LP’ for L. and
P defined by (5. 3) and (5.4) is the same as the asymptotic distribution of
B — AII. Reinsel and Velu [(1998), page 84] also obtain the expression (5.1)
as the covariance matrix of the limiting distribution of their estimator. [They
have provided the author with a direct verification that (5.1) is equivalent to
(3.20).]

Reinsel and Velu [(1998), page 45] also approach the asymptotic distribu-
tion of LP’ in an alternative way by finding the limiting distribution of L*
= Vn(@L — A) and P* = Vn (P — II). Although their limiting distribution of
L* and P* disagrees with Anderson (1999) because the variability in Sy
was neglected [e.g., in the first asymptotic covariance in Theorem 2.4 the
coefficient A? + A? (in their notation) should be A2 + A7 + A%A7], this ap-
proach leads to the correct limiting distribution of B i by the results of Section
4 (X nonstochastic). However, they only give an explicit expression for the
case of & = 1 [which agrees with (3.20)].

Velu, Reinsel and Wichern (1986) give the same asymptotic covariances for
L and P.

Lutkepohl (1993) repeats the incorrect asymptotic distribution of L and P
in Velu, Reinsel and Wichern and asserts that the asymptotic distribution of
LP’ is that of LII' + AP’, but does not explicitly calculate the covariance
matrix.

5.2. Further comments. As a measure of the accuracy of the estimator B,
we might consider lim, . ntr &B — B)2yx(B — BY Xy} For the estima-
tors B, and B, the measure is

lim ntr%‘(ﬁk - B)EXX(ﬁk )EYY lim & tr W ¥

n— o n—ow

(5.5) = %(Vec W )’ vec W}

Ma-

(1—p,)+k(p k),

Bl

(56) limntr&(B - B)Iyx(B - B) Xy} - 2 (1-p2) +q(p—k).

If it were known that the rank of B was % and that U = (U,,,...,U,,)
and VY =(V,_,...,V,.) were the canonical variables with positive canoni-
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cal correlations, the estimator would be
- 11 11 !
(5.7) G
0 0

The error in the upper left-hand corner of W is

-1 1

S%JIV(S\IZIV - E’l = (S%JIV - Rls%}v)(s%}Vy
-1
= S%ivlv (S%Ilv)
1 1 -1
(58) = WS;',‘V% I + WS”GI\})

_ %11
= —=Syv to,

Vn

1
)
The error in the other three submatrices in (5.8) would be zero. Of course,
this estimator is not feasible, but it shows what use could be made of prior
information.

Note that the number of elements in A and II is (p + q)k, but k2
restrictions can be imposed to eliminate the indeterminacy implied by AIl' =
AM'(IIM 1Y, resulting in (p + q¢ — k)k coordinates in B = AII'. This num-
ber, which is the number of elements in W;* not 0,(1), can be much smaller
than pgq, the number of elements in B.

Since the limiting distribution of ﬁz under general conditions is the same
as for normally distributed errors, confidence regions and test procedures for
B based on normal theory can also be used for nonnormal errors.

Acknowledgment. The author thanks Yasuo Amemiya and Tore
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