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FINITE SAMPLE NONPARAMETRIC INFERENCE
AND LARGE SAMPLE EFFICIENCY

BY JOSEPH P. ROMANO! AND MICHAEL WOLF?2
Stanford University and Universidad Carlos III de Madrid

Given a sample X{,..., X, from a distribution F, the problem of
constructing nonparametric confidence intervals for the mean w(F') is con-
sidered. Unlike bootstrap procedures or those based on normal approxima-
tions, we insist on any procedure being truly nonparametric in the sense
that the probability that the confidence interval contains u(F') based on a
sample of size n from F be at least 1 — « for all F and all n. Bahadur and
Savage proved it is impossible to find an effective (or bounded) confidence
interval for u(F) without some restrictions. Thus, we assume that F is
supported on a known compact set, which we take to be [0, 1]. In this set-
ting, an asymptotic efficiency result is obtained that gives a lower bound
on the size of any conservative interval. We then provide a construction
of an interval that meets our finite sample requirement on level, yet has
an asymptotic efficiency property. Thus, the price to be paid for using fully
nonparametric procedures when considering the trade-off between exact
inference statements and asymptotic efficiency is negligible. Much of what
is accomplished for the mean generalizes to other settings as well.

1. Introduction. Suppose X,..., X,, are i.i.d. according to a distribu-
tion F on the line. Consider the problem of constructing a level 1—« confidence
interval for w(F'), the mean of F. The distribution F is assumed to belong to
a large class F of distributions. Clearly, F must be restricted somewhat since
we are assuming w(F') exists. If I,, is a random interval (or set), define the
coverage level over F to be

inf{Pp{u(F)el, }: F € F}.

In fact, even if we assume F consists of all distributions F' having finite
moments of all orders, Bahadur and Savage (1956) proved the negative result
that it is impossible to construct an effective confidence interval for u(F),
where the term “effective confidence interval,” as utilized by Bahadur and
Savage, refers to one which is not too big. In particular, if I, is a random
interval (depending on X, ..., X,,) such that, even for one F, the probability
under F that I, is a bounded set is 1, then the coverage level over F is zero.
Hence, no bounded interval can serve as a level 1 —« confidence interval while
satisfying the level constraint for all F'.

Nevertheless, the aforementioned result has not deterred the search for
valid inference procedures, especially since Efron’s (1979) discovery of the
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bootstrap, as well as methods based on Edgeworth expansions, likelihood,
and other resampling refinements. Indeed, there are several methods yielding
intervals I, of nominal level 1 — « satisfying, for fixed F,

(1.1 | Pp{n(F)el,} —(1-a)|=0(n"?),

for some p > 0. In fact, p = 1 for intervals whose coverage error is of the same
order as that provided by the normal approximation, p = 2 for second-order
accurate intervals such as the bootstrap ¢-interval, and p can even be larger
by bootstrap iteration (under assumptions to ensure the validity of Edgeworth
expansions); these properties are derived in Hall (1992). Unfortunately, all
these intervals have the property that their coverage level over F is zero.

The technical reason why these methods can misbehave so badly yet still
satify (1.1) is that the convergence result in (1.1) holds for each fixed F and
is not uniform over F'. Therefore, a question worthy of investigation is to find
methods that are appropriately uniform, and indeed, some results are obtained
in Hall and Jing (1995), by imposing restrictions on F. Here, however, we insist
on considering only procedures whose coverage level over a large F is the nom-
inal level. Uniform convergence to the nominal level over F, while preferable
to pointwise convergence for each fixed F, is not strong enough for finite sam-
ple inferential purposes; we aim for a coverage level 1—« for any finite sample
size rather than in the limit only. Intervals possessing this finite sample valid-
ity property that the parameter is contained in the interval with probability
at least 1 —« for all F (and n) are called conservative. Because of the Bahadur
and Savage result, we do need to make some restriction in order to construct
conservative intervals that are even just bounded. The assumption imposed
then is that the unknown F has support in a fixed known compact set, which
we take to be [0, 1]; otherwise, F is arbitrary (and need not be continuous, for
example).

The main problem considered in this paper is then the following. Let F,
be the class of all distributions on [0, 1]. The goal is to construct a confidence
interval I, for u(F) that satisfies the level constraint for all F in F,, but that
is also not only bounded but efficient in some sense. First, among confidence
intervals I, whose coverage level over Fy is 1 — @, can we find an optimality
result giving a lower bound on how large the length of I, can be? Second, can
we actually construct an optimal interval? The answer to the first question is
not that surprising, as intervals based on the normal approximation serve as
our gold standard. Thus, if I, = [L,,U,] and D, = n'/?(U, — L,)/2, then the
standard asymptotic interval X, & z;_,/5s,/n"/? (where z;_, is the 1 — a/2
quantile of the standard normal distribution and s, is the sample standard
deviation) satisfies D,, — 2z;_,/p0(F) in probability under F, where o?(F) is
the variance of F. Not surprisingly, in a nonparametric setting, this asymptotic
constant z;_, 40 (F) is in some sense the best attainable.

Of course, the normal theory intervals are not fully nonparametric as their
coverage level over F is also zero. Such is the case for bootstrap intervals as
well, as made clear in Romano (1989). To appreciate why, consider F, € F,
with F, the distribution that assigns mass p, to 1 and 1— p,, to 0. Fix any 6
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in (a, 1) and choose p,, small enough (but not 0) so that (1 — p,,)” > 6. Then,
under F,, a sample of size n will be a sample of all zeroes with probability at
least 6. Since the resampled or bootstrap data sets will all be degenerate as
well, the resulting bootstrap confidence interval will not include w(F,) = p,,.
Thus, with probability at least 6, the resulting bootstrap confidence interval
will not cover the true mean, and hence the coverage probability is no bigger
than 1 — 0 < 1 — . In fact, since 6 is arbitrary in the argument, the coverage
level over F is zero.

A variety of conservative methods are presented in Bickel (1992), including
some justification for Stringer’s (1963) widely used proposal. However, none of
the methods presented there are both conservative in level and efficient. We
believe our proposal is the first one that is both nonparametric (or conserva-
tive) and efficient.

The paper is organized as follows. In Section 2, we derive a result which can
be viewed as an asymptotic efficiency result for conservative confidence inter-
vals for the mean. In essence, the result says that we cannot do better, in terms
of length of the interval, than an interval based on a normal approximation.
The novel aspect of the result is that its proof draws upon local asymptotic
minimax estimation theory by looking at an appropriate least favorable para-
metric submodel, but intervals are not compared in the usual minimax way
of worst case behavior over shrinking neighborhoods. In Section 3, we review
a proposal of Anderson (1967), which leads to genuinely nonparametric (con-
servative) intervals whose length is of the right order, but the constant is too
big. His proposal is generalized, though efficiency is not obtained. The rea-
son for considering Anderson’s approach is because it makes use of the fact
that we can construct genuinely nonparametric confidence bands for the c.d.f.
F by the usual Kolmogorov—Smirnov bands. Anderson’s procedure uses these
bands in a primary way. The efficient construction we present in Section 4 also
makes use of the Kolmogorov—Smirnov bands, but somehow the construction
relies on these bands in a more secondary way so that efficiency can ensue.
A simulation study is presented in Section 5. In Section 6, we present some
conclusions, variations, generalizations and directions for future work.

2. An asymptotic lower bound. In this section, it is more convenient
to index the probability distribution generating the data by the measure P
(as opposed to the c.d.f. F). Suppose X, ..., X, are i.i.d. according to a prob-
ability P, concentrated on [0, 1]; otherwise, nothing else is assumed about P.
Inference focuses on the mean w(P). The question considered in this section
is the following. Among confidence intervals for the mean with guaranteed
coverage, what is an asymptotic lower bound for the length of the interval?
The following theorem answers the question. In fact, much more is shown.
Specifically, the interval must be centered (to an appropriate order) at the
sample mean, in order to be efficient. Moreover, an efficient interval, to order
op(n~1/2) behaves like an interval provided by the usual normal approxima-
tion, namely, X, £ o(P)z;_, 2/ n1/2. However, the normal approximation inter-
val is not conservative, and so can not qualify to be efficient. In the statement
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of the theorem and in the proof, P" refers to the product measure of n i.i.d.
observations from P.

THEOREM 2.1. Let I, =[L,,U,] be a sequence of intervals (being measur-

able functions of X4, ..., X,) satisfying
PYuP)el,}>1-a
for all n and all P. Define D, = D,(I,) = n'/?(U, — L,)/2. Assume D, is
asymptotically concentrated on [0, a(P)]; that is, for every ¢ > 0, P*{D,, <
a(P)+ e} — 1las n — oo. Then:
(1) a(P) = z1_g)00(P).

(i) If I,, is an interval such that the lower bound z,_,,,0(P) is attained,

then I, is centered at X, in the sense

nl/Z[(Un;_Ln) _yn:| -0

in P"-probability.

(i) If I,, is an interval such that the lower bound z,_,;50(P) is attained,

then D, — zy_,,50(P) in P"-probability, and so
' o(P)zy_ o2 -
In: n T2/+Op(n 1/2).

Proor. Fix P = P, having mean py = u(P,), standard deviation o, =
o(Py) and density f (with respect to some o-finite measure dx). Introduce
the parametric submodel {P}; ,}, where P} , is the n-fold product measure of
P, 4, and P, , has density

fao = F| 14+ 220

for 0 < x < 1. Note that for any fixed real number 0, f, , defines a density as
soon as n > 62. Further note that f, , has mean
B 1 0ol
WPy 0) = po + 002 [ (= o) () dx = o + 0.
By the usual examination of loglikelihood ratios [see Proposition 2.3 of Millar
(1983)], it is immediate that the experiments { P} ,} converge to {P,}, where

P, is the Gaussian measure on the line with mean 6o and variance 1. Indeed,
the loglikelihood ratio at 6 versus 6 = 0 is simply

1og[n FuoX) [ T1 fn,o(Xi):| ~ ¥ log |1+ HE TR

i=1 i=1 i=1 n

Under Pj (by a Taylor expansion and the law of large numbers), this log-
likelihood ratio is asymptotic to nY*(X, — o) — 6%02/2, which of course
is asymptotically normal with mean —6%0%/2 and variance 6%0¢ (implying
contiguity). Moreoever, for this parametric submodel, it is then clear that
the sample mean X, is then locally asymptotically minimax for the mean.
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Now, let [ be any bounded subconvex loss function. Then, by the asymptotic
minimax theorem [see Millar (1983), page 146],

lim lim inf sup / [nV2(T, — w(P, )] dP? ,

ctoon—oo T, |6]<c

= lim lim inf sup [ {[c2(T, — )] dP" , = inf sup [ {[c2(T — 6)]dP,,
AT, - 0))dP; , = in AT - 0)]ap,
0

ctoon—>oo T, |6]<c

where the infimum over 7', and T refer to the infimum over all estimators
available for experiments P, , and P,, respectively. However, if @, denotes
the Gaussian distribution with mean 6 and variance 1, the last expression can
be evaluated as

inf sup/l[ao(aoT — 40)] dP, = inf sup/l[o-O(T — 0)]dQ, = El(cyZ),
T 0 T 0

where Z is a standard normal variable. In particular, let [ = /; be the (subcon-
vex) loss function satisfying [;(T — 6) = 1 if |T — 0| > d and is zero otherwise.
The previous result then says

(2.1)  lim lim inf sup PZ,B{n1/2|Tn — u(Py )| > d] = P{|Z| > i}

ctoon—oo T, |6]<c o)

for any d. Now, given the interval I, = [L,,U,], let 4, be the estimator
(L, +U,)/2. Then, by the hypothesis on I,, we get

P{n'?|p, —w(P) < D,} 21 -«
Fix a = a(P). We now claim that, for any P and any ¢ > 0,
(2.2) P"{n'?|p, —uw(P)| <a+e} > (1—a)P"{D, <a+e}.
To prove (2.2),
P*{n2|3, — p(P)| < a + e
> P"{n'?|a, — uw(P)|<a+elD, <a+e}P"{D, <a+e}
> P"{n'?|p, — w(P)| < D,}P"{D, <a+e}>(1—a)P"{D, <a+e},

and (2.2) follows. Now, under P,, P5{D, < a + ¢} — 1, by assumption. But,
for any sequence {0,} with |0,| < ¢, {P} , } is contiguous to {Pg}. It then
follows that P, , {D, <a+ e} — 1 as well. Hence, by (2.2),

liminf Py , {n"?|, — w(P, ) <a+e}>1-a

n—oo

Therefore (by a subsequence argument), for any £ > 0 and any fixed ¢, we have

(2.3) limsup sup P} o{n'?|i, — w(P, )| > a + &} < a.

n—oo |0|SC
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Now, to prove the result a > z;_,,0), assume the opposite and let A =
21_q/200 — a. Choose & so that (A — &)/0y = y > 0. Then, choose 5 small
enough so that

P{|Z| > Z1_q2 — y}—-8>a.

Finally, choose ¢ large enough so that the result (2.1) with d = a + ¢ gives

(24) lim infsup P} o[n"2|T, = w(P, o) > a+ &} = P{|Z| > a”} — 8.

n—oo T, |6]<c (on
But the right-hand side of (2.4) is greater than or equal to

21 200 —A+e

Pliz) = |-o=PlizI= 21 0s-5)-0>a

0]
by choice of 8. This yields a contradiction because by (2.3), the estimator 4,
would have a smaller asymptotic minimax risk than the bound of @ which is
valid for any estimator 7', given by (2.4).

To prove (ii), the result (2.3) implies that {1, is almost locally asymptotic
minimax, which would be immediate if (2.3) were true with & replaced by 0.
The result would then follow by Theorem 4.1 of Hajek (1972). Since we cannot
just replace & by 0 in (2.3), we sketch an argument based on the proof of (4.3) in
Hajek (1972). For notational simplicity, assume o, = 1. Assume n/2(f, — X,,)
fails to converge to 0 in P-probability. Then, there exists an £ > 0 such that
for all large m,

P (m' 2|, — X, > &) > &.

If Z denotes an observation from the model { P4}, then by Lemmas 3.1 and 3.2
of Hajek (1972), this would imply the existence of an estimator sequence
£,(Z,U) (possibly depending on an auxiliary randomization U, independent
of Z), satisfying

Pr{16,(2,U)~ Z| > 5} > &

for all m large enough, and &,,(Z,U) — 6 is constructed to have the same
asymptotic properties as m'?(d,, — w(Py,,)); see (4.8) of Hajek. But by
Lemma 2.1 of Hajek, there exists 8 > 0 depending only on & so that the
maximum risk of ¢,,(Z, U) for the loss function /, ., is at least « + 8. But,
the maximum risk of ¢,,(Z, U) for the loss function le/z +s 1s asymptotically
[by our (2.3)] less than or equal to @, which is within (2/7)!/2¢ of the best
obtainable rate, since

o — P{lZ| = 21_ojp + }] < (2/m) .

Hence, by choosing & small enough so that (2/7)Y2¢ < B, we get a
contradiction.
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Finally, to prove (iii), writing u for u(P),
l-—a>P{L, <p=<U,}=Pn"*(X,-U,) <n"*(X, —p)

(2.5) —
<n'*(X,-L,)}

But, by result (i), n'/*(X,,— L,,) = D, +0p(1). Therefore, invoking the asymp-

totic normality of n/2(X, — w), the probability on the right side of (2.5) is

P{_Dn =< nl/Z(yn - :u') =< Dn} +OP(1)'

But, the fact that D, is asymptotically concentrated on [0, z;_,,50(P)] and the
asymptotic normality of n'/2(X, — u) with asymptotic variance o2(P) forces
D, — z;_,30(P) in P"-probability. O

REMARK 2.1. If a conservative interval I, is constructed such that the
lower bound a(P) = z;_,/90(P) is obtained for every fixed P, then we will
call I, efficient; otherwise, we will call the interval inefficient.

REMARK 2.2. Surprisingly, there is not a vast literature on efficiency the-
ory in the construction of confidence intervals. Beran and Millar (1985) is
a notable exception. They develop an asymptotic theory for confidence sets
in a decision theoretic local asymptotic minimax framework. More specifi-
cally, a loss function is introduced to measure the performance of an interval
I, for a real-valued parameter 6 (and more generally for abstract parame-
ter sets) as follows. If u is the true parameter and interval I, is used, the
loss is g(n'/? sup,cr |y — u|); here, g is an increasing function on the pos-
itive reals. Evidently, the loss penalizes if the interval is too wide or if it
is miscentered. Now, once a loss function is introduced, different procedures
(satisfying the constraint on level) can be compared by comparing their risk
functions, by looking at the maximum risk over shrinking neighborhoods as in
the local asymptotic minimax theory for estimation problems. Note that our
simple result (while indeed making use of local asymptotic minimax ideas)
does not compare procedures by looking at the maximum risk over shrink-
ing neighborhoods. The assumption that D, is asymptotically concentrated
on [0, a] need only hold under a single law P, and then the conclusion is that
the asymptotic constant a must be no less than z;_,,0(P), under P. Issues
like superefficiency do not come into play once we impose the coverage con-
straint, which must hold for all P for I, to even be considered. Moreover, the
optimality result we achieve is based directly on the length of the interval.
In essence, however, our result is an asymptotic admissibility and asymp-
totic minimax result of sorts. Indeed, one can construct an interval I, whose
standardized half-length D, is strictly less than the bound z;_,,0(P) with
probability tending to some number p € (0, 1). The number p can be positive
but it cannot be 1 (by the theorem), so that shorter intervals are possible but
only at the expense of intervals that must then be bigger some of the time.
That is, our result can be viewed as a minimax result because it says that
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no interval (sequence) can have a half-length that is asymptotically concen-
trated on a smaller set. Furthermore, if an interval achieves the lower bound
on the length in the sense of part (i) of Theorem 2.1, then it already must be
appropriately centered in the sense of (ii) of the theorem.

REMARK 2.3. The theorem generalizes to parameters 6(P) other than the
mean. If the functional 6(-) is appropriately differentiable, then, in a nonpara-
metric setting, efficient intervals must behave like

o(P,) £ 21 op7(P)/n'? + op(n1?),

where P, is the empirical measure and 72(P) is the asymptotic variance of
n'/2¢(P,) under P.

3. Inefficient methods with guaranteed coverage. The possibility
of finding confidence intervals for the mean with guaranteed coverage, but
which are not too big, seems plausible given the following construction, due
to Anderson (1967) [and later rediscovered by Breth, Maritz and Williams
(1978)]. At this point, we switch notation and index the probability distribu-
tion generating the sample X, ..., X,, by the cumulative distribution function
(c.d.f) F. Then, u(F) = Ep(X;). Here, all we are assuming is that F' € Fy,
the class of all c.d.f’s supported on [0, 1]. Let ﬁ'n be the empirical c.d.f. For
c.d.f’s F' and G, let the sup (Kolmogorov) distance d i be defined by

dg(F,G) = sup|F(t) - G(O)]-

Let Rn’ 1_q be the Kolmogorov—Smirnov uniform confidence band for ¥ of nom-
inal level 1 — « defined by

A

(3.1) R, 1 o=|FeFyn2dg(F,,F)<c,(1-a),

where c¢,(1—a) is the 1—a quantile of the distribution of n2/2d g (F',, F') under
F when F is any continuous distribution. Note that, for any F (discrete or
otherwise),

PplFeR,  J>1-a

the inequality is an equality iff F' is continuous. This leads to a nominal level
1 — a confidence interval I, , for u(F) as follows. In words, the value u is
included in I,  if there is some distribution F in Rn, 1_ that has mean u.
Then, the event {F € Rn 1oy implies {u(F) € I, o} and so

Pr{w(F)el, o) >1—a

In fact, I, , = X, £ Op(n~'/?), which follows from the following simple
proposition.

PROPOSITION 3.1. Let my(F) = Ep(X¥). If F and G are in Fy and
dg(F,G) < e, then |m,(F)—m,(G)| <e.
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PROOF. By integration by parts,

1
ma(F) = ma(@)| = | [ #d(F - G)x)

1 1
- '/ (F(x) — G(x))kx" ' dx| < akf xFldx =e.
0 0

It follows immediately from Proposition 3.1 that the interval I, , is con-
tained in the interval X, +c,(1—a)/n'/2. The claim that I, ; = X, £0p(n"1/2)
follows since ¢, (1 — @) — ¢(1 — @), where ¢(1 — «) is the upper 1 — « quantile
of the distribution of sup,_,_.; |B(¢)|, where B(-) is a Brownian bridge process.

In fact, it can be argued that if F' is uniform on (0, 1)

I, = X, £c(1—a)/nY? +op(n~Y?).

The constant ¢(1 — «) is too big and should be compared with z;_,,0(F). For
example, with @ = 0.05, ¢(0.95) = 1.36, while z;_,,,0(F) = 1.960(F) < 0.98
for all F. In particular, when F' is the uniform distribution on (0, 1), the
asymptotically best constant is 1.96/(12)/2 = 0.57. The ratio 1.36/0.57 =
2.4 measures the inefficiency of Anderson’s procedure. Indeed, a sample of
approximately (2.4)?n = 5.76n is needed when using Anderson’s procedure to
be as efficient as an efficient procedure based on a sample of size n.

Anderson’s method, with the hope of improved efficiency, is generalized in
Gasko (1991) (who treats the one-sided case) as follows. If x, = (X;,..., X,)
is a sample of size n from F, let X,. , denote the ith order statistic. Define
mo= (%, F) = F(X;1.,) — F(X;.,) fori =1,....,n —1; also, let my =
F(X, , and 7, =1-F(X,. ,). Then, w = w(x,, F') is a random point in the
n + 1 simplex 3, in R"*1. Note that the distribution of 7(x,, F) under F is
the same for all continuous F.

Now, let S, ; , C 2, be a region of probability content at least 1 — a,
meaning

(3.2) Pp{m(x,, F) €8S, 1 . >1-a

for all F. Then, the region S, ; , induces a confidence set C, ;_, for F' by
including Fin C, ; , if w(x,, F) € S, 1_,. Clearly,

PF{F € Cn,l—a} = 1_01’

and so C, |, is a level 1 — « confidence set for F.

We can now proceed as before to construct an interval I, for the mean. That
is, a value u belongs in the interval I, if there is some distribution F € C,, ;_,
with mean u. Then, Pp{u(F) € I,} > 1 —a. However, regardless of the choice
of region S, , the resulting interval I, is not efficient.

PROPOSITION 3.2. Any region S, _, satisfying (3.2) leads to a conservative
1 — a confidence interval I, for u(F). However, no choice of S, 1_, leads to

efficiency.
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PrROOF. Fix (a sequence of regions) S, ;_, satisfying (3.2), and let I,, denote
the induced confidence interval for w(F'). Assume efficiency holds; then, by
Theorem 2.1(iii), we must have

Zlfa/Zo-(F)

I,=X,+ "

+ Op(n~1?)
for all F. Now, S,, ;_, also induced a level 1—a confidence interval, M,,, for the
parameter m(F) = E;(X?) by a similar prescription: a value m is included
in M, if there is an F in C, ;_, with m(F) = m. By construction, we in fact
have that (u(F), m(F)) € (I,,, M) with probability at least 1 — « for all F.
We now argue that the interval for m(F) based on data x, is the same
as the interval for u(F) based on data y , where y = (Y,,...,Y,) and
Y; = X2 To appreciate why this is so, if the interval M, for m(F) based
on x, includes a value m, then there is an F in C, ; , with m(F) = m and
a(x,, F) € S, 1_,. But then, m(y ,F) € S, ,_,, where F(\) = F(-'2) is the
distribution of Y; = X? if X; has c.d.f. F. This follows because
F(X;;,)=F(Y[5)=F(Y ).

it n

Hence, based on data Y. the value

/ydﬁ(y):fxzdF(x)=m

is included in the confidence interval for the mean. Conversely, if the interval
for the mean based on Y, includes m, so does the interval for the second
moment based on x,. Therefore, the hypothesis that I, is efficient entails M,
is efficient and so,

Zl—a/ZU(ﬁ)

M, =Y, + =00

+ Op(n_1/2).

We are now in a position to arrive at a contradiction. By the bivariate
central limit theorem,

l1—a<Pp{u(F)el,, m(F)e M,}

_ P{n”% ()| < 21_uypo(F), P2

x < 21 o)} +op(0),

n Y X2 —m(F)
i=1

Now, the last expression converges to

P{|Z1| =< 21_a/20'(F)a |Zy] < Zl—a/ZU(ﬁ)}a
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where (Z,, Z,) is bivariate normal, mean 0, Var(Z,) = o%(F), Var(Z,) =
o?(F), and covariance Cov(X;, X2). Hence,

1—a < P{|Zy] < 21_0p0(F), |Zy] < 21_o00(F)}
= P{|Z}| < 21_0)20(F)} = P{|Z1] < 21_o)s0(F), |Z| > 21_op0(F))

=(1—a) = P{|Z1] < 21_020(F), |Zy| = 21_oj00(F)}.

This last probability can only be 0 if Z; and Z, are perfectly correlated, which
means that X; and X? must be linearly dependent with probability 1. Clearly,
this is not the case when X is uniform on (0, 1), and so a contradiction is
obtained.

REMARK 3.1. An alternative way to generalize Anderson’s idea is just to
change the metric. The same basic argument in the proof of Proposition 3.2
would show inefficiency.

REMARK 3.2. While no particular region S, ;_, leads to efficiency, Gasko
(1991) argues that improvements in efficiency at a particular F, € F, are
possible, and that perhaps F, can be chosen adaptively. Some simulations
show some improvement over Anderson’s method, but no proof of efficiency is
supplied (and it seems doubtful that one exists).

4. An efficient construction for the mean. Let X,,..., X, be ii.d.
with c.d.f. F, mean u(F), variance o?(F), and set p(F) = Ep[|X; — uw(F)]?].
The unknown c.d.f. F' is assumed to be in F,. Again, the goal is to construct
a confidence I, for w(F) that contains w(F) with probability at least 1 — «
for every F; in addition, the interval I, must be efficient. In particular, the
interval must satisfy the square root of the sample size multiplied by the
length of the interval tends in probability to 2z;_,,0(F), for every F c F.

Let X, = n~'Y", X; and J,(F) be the distribution of n'/2(X, — u(F))
under F, with corresponding c.d.f.,

J,(x, F) = Pp{nV%(X,, — u(F)) < x}.
Also, let
d, (o, F) = inf{x: J,(x, F) > a}.

Note that J,(d, (o, F), F) > « and J,(d,(a, F)~, F) < a. Suppose B,, is a
sequence of numbers in [0, 1] converging to 0. Let Rl, 1-p, be defined by (3.1)
with « there replaced by 8,,. Define

~ (64 o A
(4.1) dn,U<1 — 5) = sup{dn(l -3 + B, F): F e Rn,lﬁn}

and

N o . o ~
(42) dn,L<§> = lnf{dn(§ — Bn’ F> F e Rn,l—B”}‘
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The interval we first propose is defined by

(4.3) In, 1= {/"L: Cin,L(%) = nl/Z(Yn - /J“) = dAn,U(l - %) }
This construction leads to an interval which, in fact, is determined by two one-
sided conservative level 1 — «/2 intervals; as such, we are tacitly assuming
a < 0.5. At this point, it is certainly not clear how to compute I, ; because
of the sup in the definition (4.1), which is a sup over an infinite-dimensional
set. For now, we postpone this computational issue and present the following
result. Note, however, that in the course of analyzing I, ;, we will derive
further more conservative intervals (which are efficient, too), but which are
directly computable.

THEOREM 4.1. For each n and all F € Fy,
Pplw(Fyel, ;}=1-a.

PROOF.

Po(u(F) € I 1b= Pedy 1 (5 ) = n(X, = u(F)

zPF{dn

A/~
NI R

B, F) < nV2A(X, - w(F))
(4.4)

< dn<1 - g + B, F> NFe anl_ﬁn}

zPF{dn

A/~
NI R

B, F) < n'2(X, - u(F))

Sdn<1_g+3naF>} _PF{F¢Rn,1—Bn}a

where we have used the trivial inequality P(ANB) > P(A)— P(B¢). However,
(4.4) is bounded below by
(1-a+B,)~PplF ¢R, 1 p}=1-a

and the proof is complete. O

REMARK 4.1. Setting B8, = 0 in the construction of I, ; would lead to a
conservative interval, but not one which is efficient.

REMARK 4.2. The above construction is related to the constructions pre-
sented in Loh (1985) and Silvapulle (1996), both of whom consider para-
metric testing problems. Note, however, that Loh’s construction in essence
replaces the value d,,(1—«a/2+ B,,, F') in the definition (4.1) by d,,(1— /2, F),
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which would not lead to a conservative interval. The goal here is not just to
produce conservative intervals, but efficient ones in a nonparametric setting.

THEOREM 4.2. Suppose B, > 0 and B,, — 0 in such a way that log(B,)/
n — 0 as n — oo. Then, afn?U(l —a/2) — 0(F)zy_, )y in probability under
F; similarly, dAn,L(a/2) — 0(F)z,)5 in probability under F. Therefore, I, ; is
efficient in the sense of Theorem 2.1.

In order to prove Theorem 4.2, we seek an upper bound for a?n’U(l — a/2)
which is analytically tractable and which tends to o(F)z;_,/s in probability
under F. At the same time, we constructively derive an upper bound which
may be computed explicity.

First, let

(4.5) A, (F) = Cggn ?p(F)a 3(F),

where Cgg is the smallest known universal constant valid in the Berry—Esseen
Theorem. Then, let 6, ,(F') be defined as follows:

(4.6) 8, o(F)=inf{8 > 0: ®(21_o24p,(1+8)) = P(21_4p1p,) = Au(F)}.
In (4.6), ®(-) denotes the standard normal c.d.f.

PROPOSITION 4.1. The following bound holds:
@D 4y(1-5 + Bur F) = 21 nep, (14 0, (NP,
Therefore,
(4.8) (in,U<1 - %) < 21_aj248,5Up{(1+ 8, (F))o(F): Fe R, 4 }

and

(4.9) dn,L@) > 2oj0_p, If{(1+ 8, (F))o(F): Fe R, 1 4 }.

PROOF OF PROPOSITION 4.1. Let r = r, ,(F) = 1+ §, ,(F). By the
Berry-Esseen theorem,

|Jn(21—a/2+ﬁn o(F)r, F) — (I’(Zl—a/2+ﬁn")‘ <A,
By definition of 5, ,(F) (and hence r),

o
Ot o)~ (15 +62) 2 8o
Therefore, by the triangle inequality,
Jn(zlfa/2+[3,la-(F)r’ F) - <1 - % + Bn) = 0>

and (4.7) follows, as then do (4.8) and (4.9).
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Now, in order to use the bounds (4.8) and (4.9), we first need to understand
the behavior of §, ,(F). Indeed, §, ,(F) is order n~'/2 in probability; in fact,
the following is true. Of course, ¢(-) denotes the standard normal density.

LEMMA 4.1. For all n large enough,
8, a(F) < An(F)[¢2(zl—a/2+,Bn) - 2(27Te)71/2An(F)]71/2/Zl—a/2+l3n;

the bound holds for n satisfying ¢p*(z1_q94p,) > 2(2me)"V2A, (F), which holds
for all large n.

The proof of the lemma will be deferred to the Appendix. Now, define An
and o,, to be

(4.10) A, =sup{A,(F):FeR, 4}

and

(4.11) 5, =inf {8 > 0: D(21_oj91p (1 +0)) — D(21_a2:p5) = A, ).
Also, define

(4.12) 6, u=suplo(F):FeR,  ,z}

From (4.8) and (4.9), this leads to the following bounds.

PROPOSITION 4.2.

~ o Q A
(4.13) dn,U<1 - 5) < 21-aj24,(1+ 0,) 00,0
A~ o ] A~
(4.14) dn,L<§> > Zaj9-p,(1+0,)0, v

Note, from Lemma 4.1, we have

-1/2

(4.15) Sn = An|:¢)2(2170z/2+ﬁn) - 2(2778)_1/2An] /Zlfa/ZJan

as soon as the term in brackets is nonnegative. So, to bound 5, in (4.13)
and (4.14), it suffices to understand the behavior of A,,. But, using the (crude)
inequality p(F) < o?(F) (for F € Fy), we get

(4.16) A, <Cpgn?sup{oc(F): Fe R, g} =Cpgn 25,7,
where 6, , is defined by
(4.17) 6, =inf{o(F): FeR, 5}

Therefore, to complete our series of successive approximations, it is only
necessary to bound o(F) (in both directions) as F varies in R, ;_g . We will
appeal to the following lemma.
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LEMMA 4.2. Fix F and G, cd.f’sin Fy. If dx(F, G) < ¢, then
‘O’Z(F) — 0'2(G)} < 3e.

Therefore,

(4.18) |0(F) — o(G)| = (3¢)"”
or

(4.19) lo(F) — o(G)| < 3g/o(F).

For the proof, apply Proposition 3.1.

Now, for F € Rn,l_ﬁn, it follows from (4.19) [noting that we could have
employed (4.18)] that

. 3¢ (1 —
(4.20) lo(F,) — o(F)| < 3en1 = Bn)
n'2o(F,)
and so the following is true.
PROPOSITION 4.3.
(4.21) Gy < o(b,)+ 220 =B
’ n20(F,)
(4.22) 6. > o(f)— Sl =Bn)
’ nl2qg(F,)

THEOREM 4.3. Suppose B, satisfies log(B,)/n — 0 as n — oco. Let
(423) In, 2 = Yn + n_l/Zzl—a/Z-‘rﬁn(l + Sn)&n, U-

Then I, o contains I, | (hence is conservative) and I, o (hence I, 1) is efficient
in the sense of Theorem 2.1.

PROOF OF THEOREMS 4.2 AND 4.3. It suffices to show 5, — 0 in probability
under F and 6, ;y — o(F) in probability under F. First, to show 6, ; — o(F)
in probability, by the law of large numbers and (4.21), it suffices to show
c,(1—B,)/n'? — 0. But, by the Dvoretsky—Kiefer—Wolfowitz inequality, there
is a universal constant Cpgkw such that

Pp{n'?dg(F,, F) > t} < Cpgy exp(—2¢),
so that ¢, (1 — B,) satisfies
CDKW exp(—2ci(1 - Bn)) = Bn’
which implies

ca(1-B,) < ilog<CZKW>.

n 2n
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The right-hand side tends to 0 by our hypothesis on 8,. Thus, 6, y — o(F)
in probability. By the same reasoning, &, ;, — o(F) in probability. Therefore,

by (4.16), An — 0 in probability, and by (4.15), Sn — 0 in probability. The proof
is complete. O

REMARK 4.3. Actually, the bounds used in the proof show much more.
Specifically,

|6y v —0(F)| = OP<C'1(1—_B")> _ Op(llog(n)!1/2>

nl/2 | n

if, for example, B, satisfies 8, = n~? for any p > 0. Furthermore, |2,_,/9,5 —

21_a2l = O(B,). Also, by (4.16) and (4.20), A, = Op[(log(n)/n)"/?], and so 3,
is this same order, by Lemma 4.1. Hence, for j =1, 2,

I, j=X,£n""%(21 45+ Op(B,))(1 + Op[(log(n)/n)"?])

)

J— _ Bn [IOg(an)]l/2
4.24) I, ;=X,+£n"%z_,po(F)+ 0P<n1/2 Tt '

(ot 0,122

or

Taking B8, = O(n~1/2) then yields the following corollary.
COROLLARY 4.1. If B, = O(nY?), then

_ 1
(4.25) I, =X,+n"%z; ,50(F)+ 04%).

Of course, the intervals I
satisfy

n,j are conservative in level, but asymptotically

Pp{i(F)el, ;} > 1-a

as n — oo, for any fixed nondegenerate F. In fact, the proof shows a much
stronger statement. Let F_. be all distributions F on [0, 1] with o(F) > 7.
Then, the arguments in this section show the following.

COROLLARY 4.2. Forany 7> 0and for j=1,2,
sup[Pp{u(F) eI, ;}-(1-a)] -0
FeF,
as n — oo.

REMARK 4.4. By now, the constructive approach used clearly shows effi-
cient intervals can even be computed by hand. Indeed, employing even cruder
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approximations while still retaining efficiency, use Proposition 4.3 to get the
following conservative and efficient interval:
3cn(1 B :B n)

I, ;= X, + nil/zzlfa/%ﬁn <U(F") * n20(F,)
n

)(1 + 8n,U),

where Sn’ u is obtained by replacing A, in (4.11) by

3cn(1 B Bn)]l
n2g(F,) 1~

~

A, u= CBEn_1/2|:O'(Fn) -

tacitly, we are assuming the term in brackets is positive for such an approx-
imation to be employed (which happens with probability tending to 1). The
reasoning follows from inequalities (4.16) and (4.22).

5. Some finite sample results. In this section, we examine finite sam-
ple properties of various confidence intervals via the use of some simulation
studies. While the interval I, 5 that was derived in the proof of Theorem 4.2
can be computed exactly in practice, it is, unfortunately, much too wide for
a reasonable sample and the same is expected for I, ;. We therefore restrict
ourselves to an approximation of the ‘ideal’ interval I, ; that is computed as

follows. We generate bootstrap distributions F‘Z & by resampling with replace-
ment from the observed data until we obtain K of those that lie within the
Kolmogorov—Smirnov band R, ;_g ; bootstrap distributions generated in this
process that fall outside the band are discarded. In addition, we consider the
lower and upper limit of the Kolmogorov—Smirnov band denoted by IfA’n, 1-8,, 1o

and I'A’n, 1-8, respectively, and given as

> up?
Fn,l—ﬁn,lo(x) = max{O, Fn(x) - nil/zcn(l - Bn)}

and

A

Fo 1 p up(x)=min{l, F,(x)+n 2, (1-B,)}

The approximations of (4.1) and (4.2) are then defined as the respective max-
imum and minimum over these K + 2 distributions only. Note here that the
quantiles d,(1—«a/2+8,,, F) and d,(a/2 - B,,, F') can in general not be calcu-
lated analytically but have to be estimated by another round of bootstrapping
(based on B resamples), say. We denote the resulting interval by I, ;. It is

clear that [ n,1 18 no longer strictly conservative but the corresponding loss
is expected to be very small. An alternative avenue in approximating (4.1)
and (4.2) would be to compute the respective maximum and minimum of all
distributions that make up an e-net of R, ; g and to explicitly correct for the
approximation error while retaining a conservative interval. However, we will
leave this approach for future work. The interval I, ; should be close enough
to I, ; to give an idea of what price one is paying by insisting on the correct
coverage level for all distributions.
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In our simulations, we compare I n.1to I, o (Anderson’s conservative inter-
val), Boot,, p, Boot, g, Boot, g (percentile, hybrid, and Studentized bootstrap
based on B resamples, respectively), and CLT (the gold standard). Perfor-
mance is measured by empirical coverage and mean length of nominal 90%
and 95% confidence intervals. Note that all intervals are truncated at 0 and 1
if necessary. The sample sizes considered are n = 10 and n = 30 and the
underlying distributions considered are uniform, triangle, inverted-triangle,
skewed-triangle (see Figure 1 for their densities) and two-point having mass
0.95 at 0 and mass 0.05 at 1. Furthermore, for « = 0.1, we use 8, = 0.01 and
for o = 0.05, we use B, = 0.005. Since I ».1 18 computationally very expensive,

we had to restrict ourselves to K = 150 bootstrap distributions ﬁ':‘L &~ Finally,

Uniform Triangle

2.0 2.0 -
1.5 1.5
1.0 4 1.0 -
0.5 - 0.5 4
0.0 o 0.0 -

0.0 o2 04 06 08 1.0 00 02 04 06 08 1.0

Inverted-Triangle Skewed-Triangle

2.0 2.0 -
1.5 A 1.5 4
1.0 1.0 -
0.5 - 0.5 -
0.0 0.0 -

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

FiG. 1. Densities of some of the distributions used in the simulations.
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TABLE 1
Estimated coverage probabilities of various confidence intervals based on 1000 replications
for each scenario

Uniform distribution

n Target L, I, Boot,, p Boot, g Boot,, g CLT
10 0.90 1.00 0.94 0.83 0.83 0.93 0.85
30 0.90 1.00 0.93 0.87 0.87 0.90 0.88
10 0.95 1.00 0.97 0.91 0.89 0.97 0.92
30 0.95 1.00 0.97 0.93 0.94 0.97 0.94
Triangle distribution
10 0.90 1.00 0.98 0.87 0.87 0.92 0.88
30 0.90 1.00 0.98 0.89 0.87 0.90 0.89
10 0.95 1.00 0.99 0.90 0.89 0.95 0.91
30 0.95 1.00 0.99 0.95 0.95 0.96 0.96
Inverted-triangle distribution
10 0.90 1.00 0.95 0.86 0.83 0.98 0.87
30 0.90 1.00 0.94 0.88 0.87 0.93 0.89
10 0.95 1.00 0.96 0.91 0.87 0.99 0.91
30 0.95 1.00 0.96 0.93 0.91 0.96 0.93
Skewed-triangle distribution
10 0.90 1.00 0.98 0.84 0.84 0.91 0.85
30 0.90 1.00 0.98 0.88 0.88 0.91 0.88
10 0.95 1.00 0.99 0.91 0.89 0.97 0.91
30 0.95 1.00 0.99 0.93 0.92 0.96 0.94
Two-point distribution
10 0.90 1.00 1.00 0.39 0.39 0.39 0.40
30 0.90 1.00 1.00 0.78 0.79 0.40 0.78
10 0.95 1.00 1.00 0.35 0.35 0.35 0.35
30 0.95 1.00 1.00 0.76 0.77 0.42 0.76

we employ B = 1000. The results are presented in Tables 1 and 2. Note that
the column labelled “Target” in both tables refers to the nominal level. Thus,
the column labelled “CLT” in Table 2 refers to the asymptotic lower bound in
length as provided by the central limit theorem; that is, for a given n and level
1 — a, the column labelled “CLT” is 20(P)n""?2;_, .

As expected, our method is paying some price to achieve correct cover-
age level for all distributions. However, unlike Anderson’s method, the price is
not unreasonable (for the distributions considered). The estimated coverage
probability of Anderson’s interval is constantly equal to 1 for all scenarios con-
sidered. On the other hand, the interval I, ; consistently overcovers, but esti-
mated coverage is always below 1 except for the two-point distribution. Of the
“standard” methods, all but the Studentized bootstrap generally undercover,
even for n = 30. The Studentized bootstrap tends to work well except for the
two-point distribution where it fails, as do the remaining “standard” intervals.
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TABLE 2
Estimated mean lengths of various confidence intervals based on 1000 replications for each scenario

Uniform distribution

n Target L, fn, 1 Boot,, p Boot, g Boot,, g CLT
10 0.90 0.62 0.39 0.28 0.28 0.34 0.29
30 0.90 0.41 0.22 0.17 0.17 0.18 0.17
10 0.95 0.73 0.46 0.33 0.33 0.44 0.35
30 0.95 0.46 0.26 0.20 0.20 0.22 0.20
Triangle distribution
10 0.90 0.55 0.30 0.20 0.20 0.24 0.21
30 0.90 0.36 0.16 0.12 0.12 0.13 0.12
10 0.95 0.65 0.35 0.23 0.23 0.31 0.25
30 0.95 0.40 0.19 0.14 0.14 0.15 0.1446
Inverted-triangle distribution
10 0.90 0.67 0.47 0.34 0.34 043 0.36
30 0.90 0.43 0.26 0.21 0.21 0.22 0.21
10 0.95 0.78 0.53 041 041 0.58 0.43
30 0.95 0.49 0.30 0.25 0.25 0.26 0.25
Skewed-triangle distribution
10 0.90 0.57 0.36 0.23 0.23 0.29 0.24
30 0.90 0.37 0.20 0.14 0.14 0.15 0.14
10 0.95 0.68 0.40 0.27 0.27 0.37 0.29
30 0.95 0.42 0.23 0.16 0.16 0.18 0.17
Two-point distribution
10 0.90 0.45 0.35 0.13 0.10 0.06 0.12
30 0.90 0.28 0.20 0.11 0.09 0.08 0.11
10 0.95 0.54 0.35 0.12 0.09 0.05 0.11
30 0.95 0.32 0.22 0.12 0.09 0.08 0.11

Looking at estimated mean length, it turns out that our method is somewhat
worse than the Studentized bootstrap but a big improvement over Anderson’s
method. In summary, in finite samples our method seems to provide a reason-
able compromise between being too conservative (as with Anderson’s method)
and being too optimistic (as with the bootstrap, which typically undercovers
and has no finite sample validity).

6. Conclusions and directions for future work. In this paper, we have
demonstrated that it is indeed possible to construct confidence intervals for
the mean that have a finite sample nonparametric validity and large sample
efficiency, if it assumed the observations lie in a compact set. Our approach was
constructive and made use of some crude inequalities (so there is, hopefully,
room for improvement); nevertheless, we have proved existence of efficient
intervals which can even be calculated by hand. Ultimately, we would not
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want to employ the most conservative of the intervals, I, 5, and we seek better
ways at approximating I, ;.

There are obvious approaches based on simulation, such as the one
employed in the previous section. It might be possible to account for the sim-
ulation error so that the guaranteed coverage property can be maintained.
Given that the simulations look promising, future work will address this issue.

Our method can be generalized in a number of directions. First, the
Kolmogorov—Smirnov distance played a role but only a minor one; however,
it proves to be convenient at this time. Second, instead of basing the interval
on the distribution of X, — u(F), it may be better to look at a Studentized
quantity with hopes of higher efficiency. Next, the basic interval I, ; defined
in (4.3) applies to other parameters; simply, replace w(F) by the parameter
0(F), X, by 6, and let J,(F) be the distribution of n'/2(9, — 6(F)) under F.
Extensions to two (or more) sample problems are immediate as well; indi-
vidual confidence bands for the unknown laws are constructed and utilized
appropriately. Finally, when the observations are no longer real-valued, we
no longer have the convenience of distribution-free confidence bands for the
unknown distribution. However, these bands really play a secondary role,
and we can utilize exponential inequalities for the sup distance between the
empirical measure and the true measure to get conservative bands which may
be good enough.

As a final, more philosophical, point we advocate that the goal of construct-
ing procedures that have finite sample validity requirements should be a pri-
mary consideration. There are many methods that enjoy excellent properties,
such as (1.1) with p = 2. Rather than finding methods that satisfy (1.1) with
p = 3, for example, we should only do so when we do not have to compromise
on finite sample validity. Thus, now that we have intervals that are conserva-
tive and efficient, can we retain these two properties and still have (1.1) with
p large?

APPENDIX

PROOF OF LEMMA 4.1. For purposes of the proof, set z = z; 49,5, A =
A,(F),8=6, ,(F)and r =1+ é. By Taylor’s theorem,

D(2r) — ®(2) = 2(r = 1)$(2) + 52°(r — 1)*¢'(2"),

where z* is between z and zr. Then ¢/(z*) < 0 and |¢'(z)| is maximized when
z = 1, which leads to

D(zr) —®(z) = z2(r — 1)dp(2) — %zz(r — 1)2(2776)71/2.

So it suffices to choose r large enough so that the right-hand side of the last
expression is greater than or equal to A; equivalently, it suffices to choose &
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large enough so that
—122(2me) V28 + 2¢p(2)8 — A > 0.
Solving the quadratic leads to choosing § so that

5 9(2) ~ [6%(2) — AT
- zc/2 ’

where ¢ = 2(2me)~ /2. [As in the statement of the lemma, we are assuming
$?(z) > zA.] By expanding the function f(A) = (¢%(2) — cA)Y/2, so that

w1-1/2
f(A) = ¢(2) — JAc[p?(2) — eA*] ™
for some A* between 0 and A, it suffices to choose & so that
8> A[dp?(z) — cA*] )z

So, by monotonicity in A*, it suffices to choose § so

-1/2

8> A[¢%(z) - cA]_l/z/z.

Hence, the smallest 6 that will work is no bigger than the right-hand side of
this last expression.
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