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We derive the asymptotic distribution of the sequential empirical pro-
cess of the squared residuals of an ARCH(p) sequence. Unlike the residu-
als of an ARMA process, these residuals do not behave in this context like
asymptotically independent random variables, and the asymptotic distri-
bution involves a term depending on the parameters of the model. We show
that in certain applications, including the detection of changes in the distri-
bution of the unobservable innovations, our result leads to asymptotically
distribution free statistics.

1. Introduction and results. Procedures based on the empirical distri-
bution function of independent identically distributed observations occupy a
central place in statistical inference; see Shorack and Wellner (1986). For time
series data, residuals must be considered, and since these necessarily depend
on parameter estimates, the asymptotic theory for the empirical distribution
function is more complex in such cases. Nevertheless, inference based on resid-
uals, especially model goodness-of-fit tests and various diagnostic checks, is a
fundamental tool in the statistical analysis of linear time series models; see
Brockwell and Davis (1991). By contrast, large sample theory for the residu-
als of nonlinear time series models is much less developed. Li and Mak (1994)
and Horváth and Kokoszka (2001) study squared residual autocorrelations of
ARCH sequences, whose importance in various specification tests was demon-
strated by Lundbergh and Teräsvirta (1998). Tjøstheim (1999) considers non-
parametric tests based on squared residuals.

In this paper we consider the ARCH(p) model defined by the equations

yt = σtεt� σ2
t = b0 +

p∑
j=1

bjy
2
t−j�

where �εt�−∞ < i < ∞� are independent identically distributed random
variables with

Eε0 = 0 and Eε2
0 = 1�

We assume that b = �b0� b1� � � � � bp� is the parameter vector satisfying

b0 > 0� bi ≥ 0� 1 ≤ i ≤ p�
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446 L. HORVÁTH, P. KOKOSZKA AND G. TEYSSIÈRE

The distribution function of ε2
0 will be denoted by F and we assume that

f�t� = F′�t� exists and is continuous on �0�∞��(1.1)

lim
t→0

tf�t� = 0 and lim
t→∞

tf�t� = 0�(1.2)

We assume that the parameter vector b is estimated from a sample y1� y2� � � �,
yn by an estimator b̂n = �b̂0� b̂1� � � � � b̂p� which admits the representation

b̂i − bi =
1
n

∑
1≤j≤n

li�ε2
j�fi�εj−1� εj−2� � � �� + oP�n−1/2�� 0 ≤ i ≤ p�(1.3)

The functions li and fi are regular in the sense that

Eli�ε2
0� = 0� 0 ≤ i ≤ p�(1.4)

E
[
li�ε2

0�
]2
<∞� 0 ≤ i ≤ p(1.5)

and

E�fi�ε0� ε−1� � � ���2 <∞� 0 ≤ i ≤ p�(1.6)

We show in Section 2 that commonly used estimators [see, e.g., Chapter 4 of
Gouriéroux (1997)] admit representation (1.3).

The squared residuals are defined as

ε̂2
k = y2

k

σ̂2
k

� p < k ≤ n�

where

σ̂2
k = b̂0 +

∑
1≤j≤p

b̂jy
2
k−j� p < k ≤ n�

In this paper we study the weak convergence of the sequential (or two-time
parameter) empirical process of the squared residuals

ên�t� s� = n1/2s
(
F̂n�t� s� −F�t�)�

where

F̂n�t� s� =
1
ns

∑
p<k≤ns

I
{
ε̂2
k ≤ t�� p/n < s ≤ 1

and F̂n�t� s� = 0 if 0 ≤ s ≤ p/n. We note that ên�t�1� is the empirical process
of the ε̂2

k, p < k ≤ n.
Following Giraitis, Kokoszka and Leipus (2000) we also assume that

Eε4
0 <∞(1.7)

and (
Eε4

0

)1/2 ∑
1≤j≤p

bj < 1�(1.8)
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If condition (1.8) is satisfied, then the ARCH equations above have a unique
strictly stationary solution such that Ey4

k < ∞ and the squares y2
k have a

Volterra representation

y2
k =

∞∑
l=0

p∑
j1�����jl=1

bj1
· · · bjlε2

kε
2
k−j1

· · · ε2
k−j1−···−jl �

Thus y2
k is a function of εk� εk−1� � � �, and so it follows from the standard theory

[see, e.g., Stout (1974), pages 181 and 182] that the sequence �y2
k� is ergodic.

We note that condition (1.8) is not necessary for the covariance stationarity
of the process �y2

k�, but it is easy to verify. Necessary and sufficient condi-
tions are more complex and difficult to state in a closed form for p > 2 see
Section 3.4 of Teräsvirta (1999). It is also well known that ARCH(p) and more
general sequences from the GARCH family are not only ergodic but also mix-
ing with geometric rate; we refer to Lu and Cheng [(1997), Remark 4.2] for
further references. The results of this paper remain valid if condition (1.8)
is replaced by any assumption guaranteeing that the process �yk� is strictly
stationary with Ey4

k < ∞ and ergodic. The theory developed here may not be
valid if the assuption Ey4

k <∞ is dropped as the results of Davis and Mikosch
(1998) suggest. These authors consider, however, functions of the observations
yk rather than estimated residuals.

In order to state our main result we need further notation:

αi = Efi�ε−1� ε−2� � � ��� 0 ≤ i ≤ p�

gi�t� = αi

∫ t

0
li�u�f�u�du� 0 ≤ i ≤ p�

β0 = E

[
1

σ2
0

]
� βi = E

[
y2
−i
σ2

0

]
�1 ≤ i ≤ p�

γij = E
[
li�ε2

0�lj�ε2
0�
]
E�fi�ε−1� ε−2� � � ��fj�ε−1� ε−2� � � ���� 0 ≤ i� j ≤ p�

r�t� t′� s� s′� = �s ∧ s′��F�t ∧ t′� −F�t�F�t′��
+ tf�t�ss′ ∑

0≤i≤p
βigi�t′� + t′f�t′�ss′ ∑

0≤i≤p
βigi�t�

+ tf�t�t′f�t′�ss′ ∑
0≤i� j≤p

βiγijβj�

where s ∧ t = min�s� t�.

Theorem 1.1. If conditions (1.1)–(1.8) hold, then

ên�t� s� → ��t� s��
where the convergence is in the Skorokhod space � ��0�∞� × �0�1�� and � is a
Gaussian process with

E��t� s� = 0 and E���t� s���t′� s′�� = r�t� t′� s� s′��
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The convergence in Theorem 1.1 is equivalent to the convergence ên×
�F−1�x�� s� → ��F−1�x�� s�, 0 ≤ x� s ≤ 1� in � ��0�1� × �0�1��. [F−1�0� ≥ −∞
and F−1�1� ≤ ∞ denote the endpoints of the support of F.]

Before presenting detailed proofs, we outline the argument. Set

δ2
i =

σ̂2
i

σ2
i

and observe that

sup
0≤t<∞

sup
0≤s≤1

∣∣ên�t� s� − (
ên�1�t� s� + ên�2�t� s�

)∣∣ = OP

(
n−1/2)�

where

ên�1�t� s� = n−1/2 ∑
p<i≤ns

(
I
{
ε2
i ≤ tδ2

i

}−F
(
tδ2

i

))
and

ên�2�t� s� = n−1/2 ∑
p<i≤ns

(
F
(
tδ2

i

)−F�t�)�
We will show in the proofs that δ2

i is so close to 1 that the difference between
ên�1�t� s� and

en�t� s� = n−1/2 ∑
p<i≤ns

(
I
{
ε2
i ≤ t

}−F�t�)(1.9)

is negligible. As for the second term, ên�2�t� s� will be approximated by

hn�t� s� = tf�t�n−1/2 ∑
p<i≤ns

(
δ2
i − 1

)
�(1.10)

Observe that∑
p<i≤ns

(
δ2
i − 1

) = ∑
p<i≤ns

σ̂2
i − σ2

i

σ2
i

= �b̂0 − b0�
∑

p<i≤ns

1

σ2
i

+ �b̂1 − b1�
∑

p<i≤ns

y2
i−1

σ2
i

+ · · · + �b̂p − bp�
∑

p<i≤ns

y2
i−p
σ2
i

= ns
{�b̂0 − b0�β0 + �b̂1 − b1�β1

+ · · · + �b̂p − bp�βp + oP�n−1/2�}�
Hence

sup
0≤t<∞

sup
0≤s≤1

∣∣∣∣ên�t�s�−(en�t�s�+tf�t�s ∑
0≤i≤p

n1/2�b̂i−bi�βi
)∣∣∣∣=oP�1�(1.11)
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and therefore the joint convergence of en�t� s� and
√
n�b̂n − b� will imply the

result in Theorem (1.1).
Relation (1.11) explains the structure of ên�t� s� and also the formula for

the covariance function of the limiting Gaussian process. It is interesting to
compare (1.11) with Theorem 1 of Bai (1994) which shows that for the resid-
uals in an ARMA model ên�t� s� − en�t� s� is uniformly oP�1�. Boldin (1998)
showed that an additional term, analogous to tf�t�s∑0≤i≤p n1/2�b̂i − bi�βi,
makes an asymptotic contribution to the empirical process of residuals (not
squared residuals) of an ARCH(1) model.

The covariance function r�·� depends on several unknown parameters and
functions. In Section 2 we obtain explicit formulas for li� fi� 0 ≤ i ≤ p� in
the case of most commonly used estimators. Observe that αi� gi�t� and βi are
expected values and can be consistently estimated by the corresponding aver-
ages. Note also that �γij� 0 ≤ i� j ≤ p� is the asymptotic covariance matrix
of n1/2�b̂n − b� and its estimation is discussed in Gouriéroux (1997). In some
applications (see Section 3), it is not necessary to estimate the parameters
in r�·�.

We will show in the proof of Theorem (1.1) that{
en�t� s�� n1/2 ∑

0≤i≤p
�b̂i − bi�βi� 0 ≤ t <∞�0 ≤ s ≤ 1

}
converges weakly to a Gaussian vector valued process �K�F�t�� s�� ξ� 0 ≤ t <
∞�0 ≤ s ≤ 1� with

E
[
K�F�t�� s�] = 0� Eξ = 0�(1.12)

E
[
K�F�t�� s�K�F�t′�� s′�] = �s ∧ s′��F�t ∧ t′� −F�t�F�t′���(1.13)

Eξ2 = ∑
0≤i� j≤p

βiγijβj�(1.14)

E
[
K�F�t�� s�ξ] = s

∑
0≤i≤p

βigi�t��(1.15)

Observe that �K�x� s��0 ≤ x� s ≤ 1� is a Kiefer process. Also, the limit process
��t� s� in Theorem 1.1 can be written as

{
��t� s�� 0 ≤ t <∞�0 ≤ s ≤ 1

} d= {K�F�t�� s� + tf�t�sξ�
0 ≤ t <∞�0 ≤ s ≤ 1

}
�

(1.16)

In particular, the process ��·�1� admits the representation

{
��t�1��0 ≤ t <∞} d= {B�F�t�� + tf�t�ξ�0 ≤ t <∞}

�(1.17)

where �B�x��0 ≤ x ≤ 1� is a Brownian bridge.
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The results in (1.11), (1.16) and (1.17) are similar to main theorems on
parameter estimated processes. Durbin (1973a, b) was the first who consid-
ered the weak convergence of the empirical process when parameters are esti-
mated. He mainly studied the case when the parameters are estimated by
the maximum likelihood method. Burke, Csörgő, Csörgő and Révész (1979)
and Csörgő and Révész (1981) considered the general case when it is assumed
only that the difference between the estimator and the estimated parameter
is approximately given by an integral with respect to the empirical process
of the observations. The limit in their case has a representation like (1.17),
but in the iid case, ξ is a stochastic integral of a deterministic function with
respect to B�F�·��. Our case is somewhat different.

In the next section we consider three examples when condition (1.3) is sat-
isfied. Section 3 discusses some applications of Theorem 1.1, whose proof is
postponed until Section 4.

2. Asymptotic linearity of estimators. In this section we consider sev-
eral examples of estimators satisfying (1.3). We would like to point out that,
in general, asymptotic linearity like (1.3) is usually not difficult to establish
whenever asymptotic normality holds.

In the remainder of this section we use the notation s = �s0� s1� � � � � sp� ∈
�0�∞�p+1 and

σ2
i �s� = s0 + s1y

2
i−1 + · · · + spy

2
i−p�

2.1. Pseudomaximum likelihood estimation. Let

�n�s� = −1
2

∑
1≤i≤n

log σ2
i �s� −

1
2

∑
1≤i≤n

y2
i

σ2
i �s�

denote the log of the pseudolikelihood function. The estimator is the solution
of the equation � ′

n�b̂n� = 0� where

� ′
n�s� =

1
2

∑
1≤i≤n

(
y2
i

σ2
i �s�

− 1
)

1

σ2
i �s�

∂σ2
i �s�
∂�s� �

As pointed out in Section 4.1 of Gouriéroux (1997), b̂n is asymptotically nor-
mal under standard regularity conditions even if the εi are not standard nor-
mal; that is, conditionally on the past, the observations are not necessarily
normal. This holds true for time series models much more general than the
ARCH(p) considered here. In the following we assume only that∥∥b̂n − b

∥∥ = OP�n−1/2��(2.1)

where b is the true value of the parameter vector. The second derivative of
�n�s� is the matrix � ′′

n �s�� By the ergodic theorem,∣∣∣∣ 1n� ′′
n �b� −� �b�

∣∣∣∣ P→0�(2.2)
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where � �b� is a deterministic matrix. Since � ′
n�b̂n� − � ′

n�b� = −� ′
n�b�� by

the mean value theorem, we have

� ′′
n �β��b̂n − b� = −� ′

n�b��(2.3)

where β is a point between b̂n and b. The matrix � �b� is invertible [see, e.g.,
Gouriéroux (1997) pages 50 and 51], so (2.3) yields

b̂n − b = − 1
n
�−1�b�� ′

n�b� −�−1�b�
(

1
n
� ′′
n �β� −� �b�

)
�b̂n − b��(2.4)

To see that the second term on the right-hand side of (2.4) is oP�n−1/2�, use
(2.1) and the decomposition

1
n
� ′′
n �β� −� �b� = 1

n

(
� ′′
n �β

)−� ′′
n �b�� +

(
1
n
� ′′
n �b� −� �b�

)
�(2.5)

The first term on the right-hand side of (2.5) is oP�1/n� because β→P b,
whereas the second is oP�1� by (2.2). Representation (1.3) now follows since

� ′
n�b� =

1
2

∑
1≤i≤n

(
ε2
i − 1

) 1

σ2
i �b�

[
∂σ2

i �s�
∂s

]
s=b

�

2.2. Conditional least squares. By definitionE�y2
k��k−1� = σ2

i �s�, so the
conditional sum of squares is

Qn�s� =
∑

p<i≤n

(
y2
i − σ2

i �s�
)2
�

The conditional least squares estimators of the bk� k = 0�1� � � � � p, are the
solutions of the equations

∂Qn

∂sk
= −2

∑
p<i≤n

(
y2
i − σ2

i �s�
)∂σ2

i �s�
∂sk

= 0� k = 0�1� � � � � p�

In order to establish (1.3) we proceed similarly as in Section 2.1. Direct veri-
fication shows that Q′′

n�s��= Q′′
n�b�� does not depend on s and by the ergodic

theorem.

n−1Q′′
n�b�

P→)�b��(2.6)

Since Q′
n�b̂n� = 0,

−Q′
n�b� = Q′′

n�b��b̂n − b��(2.7)

Relations (2.7) and (2.6) in conjunction with a central limit theorem for the
squares of an ARCH process imply that n1/2�b̂n−b� is asymptotically normal.
Consequently, arguing as in Section 2.1,

b̂n − b = − 1
n
)−1Q′

n�b� + oP�n−1/2��
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Representation (1.3) now follows on observing that

∂Qn

∂s0

∣∣∣
s=b

= −2
∑

p<i≤n

(
ε2
i − 1

)
σ2
i �b�

and for 1 ≤ k ≤ p,

∂Qn

∂sk

∣∣∣
s=b

= −2
∑

p<i≤n

(
ε2
i − 1

)
σ2
i �b�y2

i−k�

2.3. Conditional likelihood. Let h denote the density function of ε0. The
conditional density of yi given �i−1 is h�t/σi�/σi. Hence the conditional log
likelihood function is

� ∗
n �s� = −1

2

∑
1≤i≤n

log σ2
i �s� +

∑
1≤i≤n

log h�yi/σi�s���

If ε0 is normal, then � ∗
n coincides with �n in Section (2.1). The conditional

likelihood estimator b̂∗
n is the solution to � ∗′

n �b̂∗
n� = 0, where

� ∗′
n �s� = −1

2

∑
1≤i≤n

{
yi

σi�s�
h′�yi/σi�s��
h�yi/σi�s��

+ 1
}

1

σ2
i �s�

∂σ2
i �s�
∂s

�

Assuming that n−1E� ∗′′
n �s� → � ∗′′�s� and � ∗′′�b� is a positive definite

matrix we obtain that � ∗�b� > � ∗�s� in a neighborhood of b where � ∗�s� =
limn→∞ � ∗

n �s�/n. This implies that∥∥b̂∗
n − b

∥∥ = oP�1�(2.8)

[cf. Amemiya (1985)]. Standard arguments show that (2.8) implies that (2.1)
also holds for b̂∗

n and therefore the arguments used in Section 2.1 give

b̂∗
n − b = −[� ∗′′�b�]−1 1

n
� ∗′
n �b� + oP

(
n−1/2)�

Since

� ∗′
n �b� = −1

2

∑
1≤i≤n

{
εi
h′�εi�
h�εi�

+ 1
}

1

σ2
i �b�

(
1� y2

i−1� � � � � y
2
i−p

)
�

we showed that (1.3) holds.

3. Some applications. Similarly to the parameter estimated process, the
limit of ên�t� s� depends on the unknown parameter b and the correlation
between I�ε2

i ≤ t� and b. The martingale approach of Khmaladze (1981)
was used to transform the parameter estimated process so that the limit
is a Brownian motion and therefore distribution free. The transformation is
based on a martingale representation of the empirical process and in case of
parameter estimation the transformation must be constructed from the data.
Khamaladze’s martingale approach was extended by Koul and Stute (1999)
to regression and autoregression. These authors use an m-dependent version
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of (1.3), corresponding to fi�·� ≡ 1� li = li�ε2
j� � � � � ε

2
j−m�� 1 ≤ i ≤ p� It is

not immediately clear how the martingale approach can be adapted to ARCH
sequences. Csörgő (1983) and Horváth (1985) suggested kernel-transforms of
the parameter estimated empirical process to get a distribution (parameter)
free limit. Their approach uses the covariance function (or its estimator), so,
in principle, it might be used to transform ên�t� s�. However, the required cal-
culation of the eigenfunctions and eigenvalues of the estimated covariance
function is computationally unreasonable.

Next we consider some simple and immediate consequences of Theorem 1.1.

Example 3.1. The detection of possible changes in the structure of obser-
vation has been extensively studied in various settings [see, e.g, Csörgő and
Horváth (1997)]. Chu (1995) and Mikosch and Stărică (1999) investigated
changes in GARCH models. Theorem 1.1 can be used to test for a possible
change in the distribution of the innovations in an ARCH model. Following
the method described in detail in Section 2.6 of Csörgő and Horváth (1997),
the process

wn�t� s� =


0� 0 ≤ s ≤ p/n�

�ns��n− �ns��
n3/2

(
F̂n�t� s� − F̂∗

n�t� s�
)
� p/n < s ≤ �n− 1�/n�

0� �n− 1�/n < s ≤ 1�

with

F̂∗
n�t� s� =

1
n− ns

∑
ns<i≤n

I�ε̂2
i ≤ t�

compares the empirical distribution function of ε̂2
p+1� � � � � ε̂

2
�ns� to that of ε̂2

�ns�+1�

� � � � ε̂2
n. Observe that wn�t� s� has the same limit in � ��0�∞�×�0�1�� as ên�t� s�

−sên�t�1� which by (1.11) has the same limit as en�t� s�−sen�t�1� [the contribu-
tions from the function hn defined in (1.10) cancel]. Thus Theorem 1.1 implies
that wn�t� s� converges in � ��0�∞� × �0�1�� to K∗�F�t�� s�, where K∗�u� s� is
a tied-down Kiefer process, that is, a Gaussian process with E�K∗�u� s�� = 0
and

E�K∗�u� s�K∗�u′� s′�� = �u ∧ u′ − uu′��s ∧ s′ − ss′��
Since F is continuous,∫ 1

0

∫ ∞

0
w2
n�t� s�dF̂n�t�1�ds

d→
∫ 1

0

∫ 1

0
�K∗�u� s��2 duds

and

sup
0≤t<∞�0≤s≤1

∣∣wn�t� s�
∣∣∣ d→ sup

0≤u� s≤1

∣∣K∗�u� s�
∣∣∣�

Blum, Kiefer and Rossenblatt (1961), Cotteril and Csörgő (1985) and Martynov
(1992) studied the distribution function of

∫ 1
0

∫ 1
0 �K∗�t� s��2 dtds. They com-

puted its characteristic function and inverting the characteristic function one



454 L. HORVÁTH, P. KOKOSZKA AND G. TEYSSIÈRE

can compute the distribution function at points of interest. Tables for the
distribution function of

∫ 1
0

∫ 1
0 �K∗�t� s��2 dtds can be found in Blum, Kiefer,

and Rossenblatt (1961) and Cotteril and Csörgŏ (1985). The distribution of
sup0≤u� s≤1 �K∗�u� s�� is tabulated in Picard (1985).

Example 3.2. In this example we consider sums of functions of the
squared residuals. Let ψ�·� be a function on �0�∞� with finite variation on
�0�∞�. Theorem (1.1) and integration by parts give∫ ∞

0
ψ�t�dên�t�1�

d→
∫ ∞

0
ψ�t�d��t�1��

If ∫ ∞

0
ψ�t�d�tf�t�� = 0�(3.1)

then by (1.17) we have

n1/2� 1
n

∑
p<i≤n ψ�ε̂2

i � −
∫∞
0 ψ�t�dF�t��

�Varψ�ε2
0��1/2

d→N�0�1��(3.2)

where N�0�1� stands for the standard normal random variable. We note
that neither condition (3.1) nor the norming constants in (3.2) depend on the
unknown b.

Example 3.3. In this example a very simple χ2-test is suggested. It can be
used to check if the distribution function of ε̂2

1� � � � � ε̂
2
�ns� is F, for any 0 < s ≤ 1�

Let M ≥ 1 be an integer and 0 < s < 1. Define 0 ≤ t0 < t1 < t2 < · · · < tM ≤ ∞.
By Theorem 1.1, the vector ZM = �Z1�M� � � � �ZM�M�,

Zi�M = n1/2
[

1
ns

∑
p≤j≤ns

(
I
{
ti−1 ≤ ε̂2

j < ti

}
− �F�ti� −F�ti−1��

)
− 1
n�1 − s�

∑
ns<j≤n

(
I
{
ti−1 ≤ ε̂2

j < ti
}− �F�ti� −F�ti−1��

)]
�

is asymptotically normal with zero mean and covariance matrix �s�1−s��−1D�
D = �dij� 1 ≤ i� j ≤M�, where

dij =
{ �F�ti� −F�ti−1�� − �F�ti� −F�ti−1��2� i = j,
−�F�ti� −F�ti−1���F�tj� −F�tj−1��� i �= j�

It is well-known [just observe that D is the covariance matrix of en�ti−1�1� −
en�ti�1��1 ≤ i ≤M] that the rank of D is M− 1. If D−1 denotes a generalized
inverse of D [cf. Seber (1977), page 76], then s�1 − s�ZMD−1ZT

M is asymptoti-
cally χ2�M− 1� [cf. Theorem 2.8 in Seber (1977)].

Since the asymptotic distribution of ên�t�1� depends on unknown parame-
ters, classical goodness-of-fit tests, like the Kolmogorov–Smirnov and Cramér–
von Mises tests, are not directly applicable. However, Theorem 1.1 shows that
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appropriate functionals of ên�t�1� have an asymptotic distribution, and it may
be hoped that bootstrap goodness-of-fit tests may be developed. In Horváth,
Kokoszka and Teyssiére (2000) we proposed and examined by means of a
simulation study such tests for ARCH(p) and more general GARCH mod-
els. Bootstrap tests based on ên�t�1� can, in principle, be expected to detect
any departure from the null hypothesis of independent, identically distributed
squared innovations ε2

i with specified distribution functionF. In practice, how-
ever, certain alternatives, like, for example, the change-point alternative dis-
cussed in Example (3.1), are not reliably detected and it may be expected that
the asymptotic test described in Example 3.1 will have higher power. Other
alternatives, like, for example, distribution function F even slightly different
from the postulated one, are detected with probability around 0.8 even for
series of length 200 (financial time series based on intradaily trading have
often lengths of several thousand). The tests have close to perfect size even
for series of length 50. We refer to Horváth, Kokoszka and Teyssiére (2000)
for further details.

It appears often to be the case that for GARCH and related models many
important statistics are not asymptotically pivotal and alternative approaches
like bootstrap and response surface analysis must be used in such situations
[see Frances and Vandijk (2000)] for an analysis of a related problem of outlier
detection.

4. Proof of Theorem 1.1. Set

ζn = n−1/2 ∑
0≤k≤p

βk
∑

1≤j≤n
lk�ε2

j�fk
(
εj−1� εj−2� � � �

)
(4.1)

and

un�t� s� = tf�t�sζn�(4.2)

In light of (1.16), Theorem 1.1 follows from Lemmas 4.6 and 4.7 below. The
proof of Lemma 4.7 is fairly standard. In order to establish Lemma 4.6 we
need a number of auxiliary lemmas.

In the following, �·� stands for the maximum norm of a vector.

Lemma 4.1. If conditions (1.3)–(1.8) hold, then

√
n�b̂n − b� = OP�1��(4.3)

Proof. Define Xj� i = li�ε2
j�fi�εj−1� εj−2� � � �� and observe that for any 0 ≤

i ≤ p, the variables Xj� i are zero mean, uncorrelated and form a stationary
sequence. Therefore Var�∑1≤j≤n Xj� i� = O�n� and so (4.3) follows from (1.3)
and the Chebyshev inequality. ✷

Recall now the definition of the function hn�t� s� given in (1.10).
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Lemma 4.2. If (1.1)–(1.8) hold, then

sup
0≤t<∞

sup
0≤s≤1

�ên�2�t� s� − hn�t� s�� = oP�1��

Proof. By the mean value theorem,

F�tδ2
i � −F�t� = f�ϑi�t�δ2

i − 1�
= tf�t��δ2

i − 1� + t�f�ϑi� − f�t���δ2
i − 1��

(4.4)

where ϑi is between t and tδ2
i . Hence

ên�2�t� s� − hn�t� s� = n−1/2 ∑
p<i≤ns

t�f�ϑi� − f�t���δ2
i − 1�

= n−1/2�b̂0 − b0�
∑

p<i≤ns

1

σ2
i

t�f�t� − f�ϑi��

+n−1/2 ∑
1≤k≤p

�b̂k − bk�
∑

p<i≤ns

y2
i−k
σ2
i

t�f�t� − f�ϑi���

We will verify below that

max
p<i≤n

sup
0≤t<∞

t�f�t� − f�ϑi�� = oP�1��(4.5)

which together with Lemma 4.1 will imply that

sup
0≤s≤1

sup
0≤t<∞

�ên�2�t� s� − hn�t� s�� = oP�1�
1
n

∑
p<i≤n

1

σ2
i

[
1 + ∑

1≤k≤p
y2
i−k

]
�

and so the claim will follow from the ergodic theorem.
In order to verify (4.5), we first show that

max
p<i≤n

sup
0≤t<∞

�ϑi − t�
t

= oP�1��(4.6)

Observe that

�ϑi − t� ≤ t

b0

{
�b̂0 − b0� + �b̂1 − b1�y2

i−1 + · · · + �b̂p − bp�y2
i−p

}
�(4.7)

Since �y2
i� is a stationary sequence with Ey4

i <∞,

max
1≤i≤n

y2
i = oP�n1/2��(4.8)

Putting together (4.7), Lemma 4.1 and (4.8) we obtain (4.6).
Now to verify (4.5) fix ε > 0 and 0 < T < ∞ so that supT/2≤t<∞ tf�t� ≤ ε

[cf. (1.2)]. By continuity of f it is not difficult to see that (4.6) together with
(1.1) and the first relation in (1.2) yield

max
p<i≤n

sup
0≤t≤T

t�f�t� − f�ϑi�� = oP�1��
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Let

5̃n =
{
ω � ϑi

t
≥ 1

2
for all 0 ≤ t <∞� p < i ≤ n

}
�

By (4.6), we have limn→∞P�5̃n� = 1. On the event 5̃n we have

max
p<i≤n

sup
T≤t<∞

t�f�t� − f�ϑi�� ≤ ε+ max
p<i≤n

sup
T≤t<∞

t

ϑi

max
p<i≤n

sup
T≤t<∞

ϑif�ϑi�

≤ ε+ 2 sup
T/2≤t<∞

tf�t� ≤ 3ε�

and so (4.5) is proved. ✷

For any a = �a0� a1� � � � � ap� ∈ Rp+1 define

γia = a0
1

σ2
i

+ a1
y2
i−1

σ2
i

+ · · · + ap
y2
i−p
σ2
i

�

so that δ2
i = 1 + γi�b̂n − b�� Let

e∗n�t� s�a� = n−1/2 ∑
p<i≤ns

(
I
{
ε2
i ≤ t+ tn−1/2γi�a�

}−F�t+ tn−1/2γi�a��
)
�

Observe that

e∗n�t� s� n1/2�b̂n − b�� = ên�1�t� s��(4.9)

Lemma 4.3. If conditions (1.1)–(1.8) hold, then for any x > 0,

P
{

sup
0≤s≤1

�e∗n�t� s�a� − en�t� s�� ≥ x
}
≤ 1
n

C

x4
��a�2 + 1��

if n ≥ 16�a�2/b2
0� with some constant C (which depends on f�p� b0�Ey

4
0 but

not on t).

Proof. Let

ξi�t�a� = I�ε2
i ≤ t+ tn−1/2γi�a�� − I�ε2

i ≤ t� − �F�t+ tn−1/2γi�a�� −F�t���
so that

e∗n�t� s�a� − en�t� s� = n−1/2 ∑
p<i≤ns

ξi�t�a��

Since t and a are fixed, we write in the following ξi and γi instead of ξi�t�a�
and γia. The σ-algebra generated by �εj� −∞ < j ≤ i� will be denoted by �i.

It is not difficult to verify that E�ξ2
i ��i−1� ≤ �F�t + tn−1/2γi� − F�t�

∣∣∣ and so

we have ∑
1≤i≤n

E
{
ξ2
i ��i−1

} ≤ ∑
1≤i≤n

�F�t+ tn−1/2γi� −F�t���(4.10)
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There is ξ∗i between t and t + tn−1/2γi such that F�t + tn−1/2γi� − F�t� =
f�ξ∗i �tn−1/2γi and so, by conditions (1.1) and (1.2),

�F�t+ tn−1/2γi� −F�t�
∣∣∣= ξ∗if�ξ∗i ��t/ξ∗i �n−1/2�γi� ≤ c1�t/ξ∗i �n−1/2�γi��

where c1 = sup0≤u≤∞ uf�u�. If n−1/2γi ≥ −1/2, then t/2 ≤ min�t� t + n−1/2γi�,
so t/ξ∗i ≤ 2 and therefore we have

�F�t+ tn−1/2γi� −F�t�� ≤ 2c1n
−1/2�γi�I

{
n−1/2γi ≥ −1/2

}
(4.11)

+ I
{
n−1/2γi < −1/2

}
�

By (4.10) and (4.11),[ ∑
1≤i≤n

E
{
ξ2
i ��i−1

}]2

≤ 4c2
1

n

∑
1≤i�j≤n

�γi��γj�

+4c1n
−1/2 ∑

1≤i�j≤n
�γi�I

{
n−1/2γj<−1/2

}
+ ∑

1≤i�j≤n
I
{
n−1/2γi<−1/2

}
I
{
n−1/2γj<−1/2

}
�

(4.12)

Note that (recall the definition of σ2
i )

�γi� ≤ �a�b−1
0 �1 + y2

i−1 + · · · + y2
i−p�(4.13)

and therefore Eγ2
i ≤ c2�a�2, where c2 depends on p, b0 and Ey4

0. By the
Cauchy–Schwarz inequality we also have that E��γi��γj�� ≤ c2�a�2. Using
again (4.13) and the existence of Ey4

0 we get that

P
{
γi < −n1/2/2

} ≤ P
{�γi� ≥ n1/2/2

}
≤ P

{
1 + y2

i−1 + · · · + y2
i−p ≥ n1/2b0

2�a�
}

≤ P

{
y2
i−1 + · · · + y2

i−p ≥ n1/2b0

4�a�
}

≤ 16p2�a�2Ey4
0

nb2
0

�

(4.14)

provided n ≥ 16�a�2/b2
0. Hence

E
[�γi�I{n−1/2γi < −1/2

}] ≤ (
Eγ2

i

)1/2(
P
{
n−1/2γi < −1/2

})1/2 ≤ c3�a�2n−1/2

and

E
[
I
{
n−1/2γi < −1/2

}
I
{
n−1/2γj < −1/2

}]
≤ (

P
{
n−1/2γi < −1/2

}
P
{
n−1/2γj < −1/2

})1/2 ≤ 16p2�a�2Ey4
0

nb2
0

�
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Therefore, by (4),

E

[ ∑
1≤i≤n

E
{
ξ2
i ��i−1

}]2

≤ c4�a�2n�

Since �ξi� ≤ 2, the last inequality and Theorem 2.11 on page 23 of Hall and
Heyde (1980) give

E

[
max
p<k≤n

∣∣∣∣ ∑
p<i≤k

ξi

∣∣∣∣4] ≤ c5
[
c4�a�2n+ 24] ≤ c6

(�a�2 + 1
)
n

and therefore by the Markov inequality,

P

{
n−1/2 max

p<k≤n

∣∣∣∣∣ ∑
p<i≤k

ξi

∣∣∣∣∣ ≥ x

}
= P

{
max
p<k≤n

∣∣∣∣∣ ∑
p<i≤k

ξi

∣∣∣∣∣
4

≥ x4n2

}
≤ c6��a�2 + 1�

x4n
�

This completes the proof of Lemma 4.3. ✷

Lemma 4.4. If conditions (1.1)–(1.8) hold, then for any a ∈ Rp+1 we have

sup
0≤s≤1

sup
0≤t<∞

∣∣e∗n�t� s�a� − en�t� s�
∣∣ = oP�1��

Proof. Following the notation introduced at the beginning of the proof of
Lemma 4.3, we write ξi�t� and γi instead of ξi�t�a� and γi�a� (a is fixed). To
prove the claim, we will verify that for any x > 0,

lim
T→0

lim sup
n→∞

P

{
sup

0≤s≤1
sup

0≤t≤T

∣∣e∗n�t� s�a� − en�t� s�
∣∣ ≥ x

}
= 0�(4.15)

lim
δ→0

lim sup
n→∞

P

{
sup

0≤s≤1
sup

T≤t≤δn1/2

∣∣e∗n�t� s�a� − en�t� s�
∣∣ ≥ x

}
= 0(4.16)

for any T > 0, and

sup
0≤s≤1

sup
δn1/2≤t<∞

∣∣e∗n�t� s�a� − en�t� s�
∣∣ = oP�1�(4.17)

for any δ > 0.
Verification of �4�15�. Fix ε > 0. By condition (1.2) there isT∗ ≤ 1 such that

sup0≤t≤T∗ tf�t� ≤ ε. Define 0 = t0 < t1 < · · · < tN < T∗/2 ≤ tN+1 satisfying

F�ti+1� −F�ti� = εn−1/2� 0 ≤ i ≤N�

It is clear that N ≤ n1/2ε−1 + 1 and so by Lemma 4.3 we have

P

{
n−1/2 max

1≤j≤N+1
max
p<k≤n

∣∣∣∣∣ ∑
p<i≤k

ξi�tj�
∣∣∣∣∣ ≥ x

}
≤ c1n

−1/2�(4.18)
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It thus remains to show that

limsup
n→∞

P

{
n−1/2 max

0≤j≤N
sup

tj≤t≤tj+1

max
p<k≤n

∣∣∣∣∣ ∑
p<i≤k

ξi�t�−
∑

p<i≤k
ξi�tj�

∣∣∣∣∣≥x
}
=0�(4.19)

For any tj ≤ t ≤ tj+1 we have

max
p<k≤n

sup
tj≤t≤tj+1

∣∣∣∣ ∑
p<i≤k

[(
I
{
ε2
i ≤ t+ tn−1/2γi

}−F�t+ tn−1/2γi�
)

− (I{ε2
i ≤ tj + tjn

−1/2γi
}−F�tj + tjn

−1/2γi�
)]∣∣∣∣

≤ max
p<k≤n

sup
tj≤t≤tj+1

∣∣∣∣ ∑
p<i≤k

(
I
{
ε2
i ≤ t+ tn−1/2γi

}− I
{
ε2
i ≤ tj + tjn

−1/2γi
})∣∣∣∣

+ max
p<k≤n

sup
tj≤t≤tj+1

∣∣∣∣ ∑
p<i≤k

(
F�t+ tn−1/2γi� −F�tj + tjn

−1/2γi�
)∣∣∣∣

≤ max
p<k≤n

∑
p<i≤k

(
I
{
ε2
i ≤ tj+1 + tj+1n

−1/2γi
}− I

{
ε2
i ≤ tj + tjn

−1/2γi
})

× I
{
n−1/2γi ≥ −1/2

}+ max
p<k≤n

∑
p<i≤k

(
F�tj+1 + tj+1n

−1/2γi�

−F�tj + tjn
−1/2γi�

)
I
{
n−1/2γi ≥ −1/2

}+ 2
∑

1≤i≤n
I
{
n−1/2γi < −1/2

}
≤ max

p<k≤n

∣∣∣∣ ∑
p<i≤k

[(
I
{
ε2
i ≤ tj+1 + tj+1n

−1/2γi
}−F�tj+1 + tj+1n

−1/2γi�
)

− (I{ε2
i ≤ tj + tjn

−1/2γi
}−F�tj + tjn

−1/2γi�
)]
I
{
n−1/2γi ≥ −1/2

}∣∣∣∣
+2

∑
p<i≤n

(
F�tj+1 + tj+1n

−1/2γi� −F�tj + tjn
−1/2γi�

)
I�n−1/2γi ≥ −1/2

}
+2

∑
1≤i≤n

I
{
n−1/2γi < −1/2

}
≤ max

p<k≤n

∣∣∣∣ ∑
p<i≤k

(
I
{
ε2
i ≤ tj+1 + tj+1n

−1/2γi
}−F

(
tj+1 + tj+1n

−1/2γi�
)

− ∑
p<i≤k

(
I
{
ε2
i ≤ tj + tjn

−1/2γi
}−F�tj + tjn

−1/2γi�
)∣∣∣∣

+2
∑

p<i≤n

(
F�tj+1 + tj+1n

−1/2γi� −F�tj + tjn
−1/2γi�

)
I
{
n−1/2γi ≥ −1/2

}
+4

∑
1≤i≤n

I
{
n−1/2γi < −1/2

}
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≤ max
p<k≤n

[∣∣∣∣ ∑
p<i≤k

ξi�tj�
∣∣∣∣+

∣∣∣∣ ∑
p<i≤k

ξi�tj+1�
∣∣∣∣]

+ max
p<k≤n

�Vk�j�� + 2W�j� + 4
∑

1≤i≤n
I
{
n−1/2γi < −1/2

}
�

where

Vk�j� =
∑

p<i≤k

[(
I
{
ε2
i ≤ tj=1

}−F�tj+1�
)− (

I
{
ε2
i ≤ tj

}−F�tj�
)]

and

W�j�= ∑
p<i≤n

(
F�tj+1+tj+1n

−1/2γi�−F�tj+tjn−1/2γi�
)
I
{
n−1/2γi≥−1/2

}
�

A similar, in fact, simpler argument shows that

max
p<k≤n

sup
tj≤t≤tj+1

∣∣∣∣ ∑
p<i≤k

[(
I
{
ε2
i ≤ t

}−F�t�)− (
I
{
ε2
i ≤ tj

}−F�tj�
)]∣∣∣∣

≤ max
p<k≤n

�Vk�j�� + 2n�F�tj+1� −F�tj���

Thus we get

max
p<k≤n

sup
tj≤t≤tj+1

∣∣∣∣ ∑
p<i≤k

ξi�t�−
∑

p<i≤k
ξi�tj�

∣∣∣∣
≤ max

p<k≤n

[∣∣∣∣ ∑
p<i≤k

ξi�tj�
∣∣∣∣+
∣∣∣∣ ∑
p<i≤k

ξi�tj+1�
∣∣∣∣]+2 max

p<k≤n
�Vk�j��+2W�j�(4.20)

+4
∑

1≤i≤n
I
{
n−1/2γi<−1/2

]+2n�F�tj+1�−F�tj���

Now we establish appropriate upper bounds for the terms on the right-hand
side of (4.20) which (when divided by n1/2) will imply (4.19). The first two
terms are asymptotically negligible by (4.18). Focusing on the Vk�j�, we see
that by the modulus of continuity of the empirical process [and (4.22) below],

max
0≤j≤N

sup
0≤s≤1

�en�tj+1� s� − en�tj� s�� = oP�1�(4.21)

[cf., e.g., Shorack and Wellner (1986), page 542]. By the definition of the tj� 0 ≤
j ≤N+ 1, we have

max
0≤j≤N

n�F�tj+1� −F�tj�� ≤ εn1/2�(4.22)
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If n−1/2γi ≥ −1/2, then we have t/�t∧ �t+ tn−1/2γi�� ≤ 2. Hence by the mean-
value theorem and the choice of T∗ we have

max
0≤j≤N

W�j�≤2 max
0≤j≤N+1

∑
p<i≤n

∣∣F�tj+tjn−1/2γi�−F�tj�
∣∣I{n−1/2γi≥−1/2

}
+ max

0≤j≤N
n�F�tj+1�−F�tj��

≤2 max
1≤j≤N+1

∑
p<i≤n

f�ξi�j�tjn−1/2�γi�I
{
n−1/2γi≥−1/2

}+εn1/2

≤2 max
0≤j≤N+1

∑
p<i≤n

ξi�jf�ξi�j��tj/ξi�j�n−1/2�γi�I
{
n−1/2γi≥−1/2

}+εn1/2

≤4εn−1/2 ∑
p<i≤n

�γi�+εn1/2�

(4.23)

where ξi�j is between tj and tj+tjn−1/2γi. Using the definitions of γi and σi
and the ergodic theorem we have

1
n

∑
p<i≤n

�γi�≤
�a�+1
b0

p+1
n

∑
p<i≤n

y2
i =OP�1��(4.24)

Applying (4.14) we conclude that

E
∑

p<i≤n
I
{
n−1/2γi<−1/2

}=O�1��(4.25)

Verification of �4�16�. We will use again Lemma 4.3 and (4.20). Let t0=T
and ti=T+iδ1/6n−1/2�1≤i≤M−1�tM−1≤δn1/2≤tM. We note that M≤nδ5/6+
1. By Lemma 4.3 we have

P

{
max

0≤j≤M
max
p<k≤n

n−1/2

∣∣∣∣ ∑
p<i≤k

ξi�tj�
∣∣∣∣≥x}≤ c2

x4

M+1
n

≤ c3

x4

(
δ5/6+ 1

n

)
�(4.26)

Using again the modulus of continuity of en�t�s�, we get

max
0≤j≤M

max
p<k≤n

�Vk�j��=oP�n1/2��(4.27)

Since f�t� is bounded on �T�∞�, say, by c4, we obtain

max
0≤j≤M

n�F�tj+1�−F�tj��≤c4δ
1/6n1/2�(4.28)

and by the mean-value theorem

max
0≤j≤M

W�j� ≤ c4 max
0≤j≤M

∑
p<i≤n

�tj+1−tj��1+n−1/2�γi��I
{
n−1/2γi≥−1/2

}
(4.29)

≤ c4δ
1/6n−1/2

(
n+n−1/2 ∑

p<i≤n
�γi�

)
≤δ1/6n1/2OP�1�

on account of (4.24). Relation (4.16) follows from (4.20), (4.26)–(4.29) and
(4.25).
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Verification of �4�17�. We use Lemma 4.3 and the following bound:

max
p<k≤n

sup
δn1/2≤t<∞

∣∣∣∣ ∑
p<i≤k

ξi�t�
∣∣∣∣

≤ max
p<k≤n

sup
δn1/2≤t<∞

∑
p<i≤k

(
1−I{ε2

i ≤t+tn−1/2γi
})

+ max
p<k≤n

sup
δn1/2≤t<∞

∑
p<i≤k

(
1−F�t+tn−1/2γi�

)
+ ∑

1≤i≤n

(
1−I{ε2

i ≤δn1/2})+n(1−F�δn1/2�)
≤ ∑
p<i≤n

(
1−I{ε2

i ≤δn1/2+δγi
})
I
{
n−1/2γi≥−1/2

}
+ ∑

p<i≤n

(
1−F�ε2

i ≤δn1/2+δγi�
)
I
{
n−1/2γi≥−1/2

}
(4.30)

+2
∑

p<i≤n
I
{
n1/2γi<−1/2

}+∣∣∣∣ ∑
1≤i≤n

(
I
{
ε2
i ≤δn1/2}−F�δn1/2�)∣∣∣∣

+2n
(
1−F�δn1/2�)

≤
∣∣∣∣ ∑
p<i≤n

ξi�δn1/2�
∣∣∣∣+2

∣∣∣∣ ∑
1≤i≤n

(
I
{
ε2
i ≤δn1/2}−F�δn1/2�)∣∣∣∣

+2
∑

p<i≤n

(
1−F�δn1/2+δγi�

)
I
{
n−1/2γi≥−1/2

}
+4

∑
p<i≤n

I
{
n−1/2γi<−1/2

}+4n
(
1−F�δn1/2�)�

By Lemma 4.3, ∣∣∣∣ ∑
p<i≤n

ξi�δn1/2�
∣∣∣∣=oP�n1/2��(4.31)

Observing that E�∑1≤i≤n�I�ε2
i ≤δn1/2�−F�δn1/2���2=nF�δn1/2��1−F�δn1/2��

=o�n�, by the Chebyshev inequality we have∣∣∣∣ ∑
1≤i≤n

(
I
{
ε2
i ≤δn1/2}−F�δn1/2�)∣∣∣∣=oP�n1/2��(4.32)

Also ∑
p<i≤n

(
1−F�δn1/2+δγi�

)
I
{
n−1/2γi≥−1/2

}
≤n�1−F(δn1/2/2�)=o�1��(4.33)

by assumption (1.7) which implies that nP�ε4
0>n�→0. Relations (4.30)–(4.33)

and (4.25) imply (4.17). ✷
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For any A>0 define A=�−A�A�p+1.

Lemma 4.5. If conditions (1.1)–(1.8) hold, then for any A>0,

sup
a∈A

sup
0≤s≤1

sup
0≤t<∞

�e∗n�t�s�a�−en�t�s��=oP�1��

Proof. Denote

Xn�a�= sup
0≤s≤1

sup
0≤t<∞

∣∣∣∣n−1/2 ∑
p<i≤ns

ξi�t�a�
∣∣∣∣�

In Lemma 4.4. we showed that Xn�a�→P0 for every a. Here we show that
supa∈A Xn�a�→P0.

Consider ε>0 such that 2A/ε is an integer, which will be specified at the
end of the proof. Define a�k�=−A+kε�1≤k≤K≡2A/ε. Set k=�k0� k1�����
kp�� 1≤k0� k1�����kp≤K and consider the grid of �p+1�K points a�k�=
�a�k0�� a�k1������a�kp��. Consider also the corresponding �p+1�K cells,

A�k�=��a0�a1�����ap�∈A� a�ki�−ε≤ai≤a�ki��
and the points a∗�k�=�a�k0�−ε�a�k1�−ε�����a�kp�−ε�. Observe that

F
(
t+tn−1/2γi�a0�����aj−1�a�kj��aj+1�����ap�

)
−F(t+tn−1/2γi�a0�����aj−1�a�kj�−ε�aj+1�����ap�

)
=
{
f�ξ∗i0�tn−1/2ε/σ2

i � if j=0,
f�ξ∗ij�tn−1/2εy2

i−j/σ
2
i � if 1≤j≤p�

where ξ∗ij is a point between the arguments of F above. Consider the set

5∗
n=

{
ω � max

p<i≤n
sup
a∈A

n−1/2�γi�a��>1/2
}
�

and notice that by (4.8), limn→∞P�5∗
n�=0� In the remainder of the proof we

work on the complement of 5∗
n. Since t/ξ∗ij≤2,

F
(
t+tn−1/2γi�a0�����aj−1�a�kj��aj+1�����ap�

)
−F(t+tn−1/2γi�a0�����aj−1�a�kj�−ε�aj+1�����ap�

)
(4.34)

≤
{

2c1tn
−1/2ε/σ2

i � if j=0,

2c1tn
−1/2εy2

i−j/σ
2
i � if 1≤j≤p�

where c1=sup0≤t<∞tf�t�. Applying (4.34) consecutively to each coordinate, we
obtain for any t>0 and any k,

sup
a∈A�k�

∣∣∣∣ ∑
p<i≤k

[
F
(
t+tn−1/2γia

)−F(t+tn−1/2γi�a�k��
)]∣∣∣∣

≤2c1εn
1/2b−1

0

[
1+n−1 ∑

p<i≤n

∑
1≤j≤p

y2
i−j

]
�

(4.35)
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and so

sup
a∈A�k�

∣∣∣∣ ∑
p<i≤k

�ξi�t�a�−ξi�t�a�k���
∣∣∣∣

≤2c1εn
1/2b−1

0

[
1+n−1 ∑

p<i≤n

∑
1≤j≤p

y2
i−j

]
+2

∑
p<i≤k

[
I
{
ε2
i ≤t+tn−1/2γi�a�k��

}−I{ε2
i ≤t+tn−1/2γi�a∗�k��}](4.36)

≤4c1εn
1/2b−1

0

[
1+n−1 ∑

p<i≤n

∑
1≤j≤p

y2
i−j

]

+
∣∣∣∣ ∑
p<i≤k

ξi�t�a�k��
∣∣∣∣+
∣∣∣∣ ∑
p<i≤k

ξi�t�a∗�k��
∣∣∣∣�

Observe that

sup
a∈A

Xn�a� ≤ sup
k

sup
a∈A�k�

sup
0≤s≤1

sup
0≤t<∞

∣∣∣∣n−1/2 ∑
p<i≤k

�ξi�t�a�−ξi�t�a�k���
∣∣∣∣

+sup
k
Xn�a�k���

Hence, by (4.36),

sup
a∈A

Xn�a� ≤ c2ε

[
1+n−1 ∑

p<i≤n

∑
1≤j≤p

y2
i−j

]
+2sup

k
Xn�a�k��+sup

k
Xn�a∗�k��=�εYn+Zn�

Fix r>0. We must show that limn→∞P�supa∈AXn�a�>r�=0. By the ergodic
theorem,Yn �=c2�1+n−1∑

p<i≤n
∑

1≤j≤py
2
i−j� tends in probability to a constant,

say, c3. We now fix ε so small that εc3<r/2. With ε fixed, Zn �=2supkXn�a�k��
+supkXn�a∗�k�� is a maximum over a finite number of points and so P�Zn>
r/2�→0 by Lemma 4.4 and P�εYn>r/2�→0 by the choice of ε. ✷

Lemma 4.6. If (1.1)–(1.8) hold, then

sup
0≤s≤1

sup
0≤t<∞

�ên�t�s�−�en�t�s�+un�t�s���=oP�1��

where un�t�s� is defined by (4.2) and (4.1).

Proof. We use the inequality

�ên�t�s�−�en�t�s�+un�t�s��� ≤ �ên�1�t�s�−en�t�s��+�ên�2�t�s�−hn�t�s��
+�hn�t�s�−un�t�s���

where hn is given by (1.10).
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Lemmas 4.1 and 4.5 yield [cf. (4.9)]

sup
0≤s≤1

sup
0≤t<∞

�ên�1�t�s�−en�t�s��=oP�1��(4.37)

Indeed, denoting, as in the proof of Lemma 4.5, Xn�a�=sup0≤s≤1 sup0≤t<∞
�e∗n�t�s�a�−en�t�s�� and ân=n1/2�b̂n−b�, we have

P�Xn�ân�>r�≤P
{

sup
a∈A

Xn�a�>r
}
+P�ân /∈A��

By Lemma 4.5 this implies limsupn→∞P�Xn�ân�>r�≤P�ân /∈A� and so (4.37)
follows because by Lemma 4.1, letting A→∞�P�ân /∈A� can be made arbitrar-
ily small.

By Lemma 4.2,

sup
0≤s≤1

sup
0≤t<∞

�en�2�t�s�−hn�t�s��=oP�1��

To verify that

sup
0≤s≤1

sup
0≤t<∞

�un�t�s�−hn�t�s��=oP�1��(4.38)

observe that by (1.3),

hn�t�s�−un�t�s�

=
[

1
n

∑
p<i≤ns

1

σ2
i

−sβ0

]
tf�t�n−1/2 ∑

1≤j≤n
l0�ε2

j�f0�εj−1�εj−2�����

+ ∑
1≤k≤p

[
1
n

∑
p<i≤ns

y2
i−k
σ2
i

−sβk
]
tf�t�n−1/2 ∑

1≤j≤n
lk�ε2

j�fk�εj−1�εj−2�����

+oP�1�tf�t�
1
n

∑
p<i≤ns

1

σ2
i

(
1+ ∑

1≤k≤p
y2
i−k

)
�

In view of (1.1) and (1.2) and (1.4)–(1.6), it remains to verify that for each
1≤k≤p,

sup
0≤s≤1

[
1
n

∑
p<i≤ns

y2
i−k
σ2
i

−sβk
]
=oP�1��(4.39)

with an obvious modification for k=0. Since for each fixed k, the random
variables y2

i−k/σ
2
i −βk form a stationary geometrically mixing sequence [see

Guegan and Diebolt (1994)] with zero mean and finite variance, their normal-
ized partial sum process converges weakly to a Brownian motion, and so the
left-hand side of (4.39) is in fact OP�n−1/2�. ✷

Lemma 4.7. Let en�t�s� and ζn be defined by (1.9) and (4.1), respectively.
If (1.1)–(1.8) hold, then ��en�t�s��ζn�� 0≤t<∞�0≤s≤1� converges weakly in
� ��0�∞�×�0�1��×R to the Gaussian process ��K�F�t��s��ζ��0≤t<∞�0≤s≤
1� defined by (1.12)–(1.15).
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Proof. We will verify tightness and the convergence of the finite-
dimensional distributions. Since en�t�s� is a sequential empirical process of
independent identically distributed random variables, its tightness is well
known; see, for example, Csörgő and Révész (1981). If we show that ζn con-
verges in distribution to a normal random variable, the tightness will be
proved because the vector valued process �en�t�s��ζn� is tight if the coordi-
nates are tight.

Fix an integer M, real numbers λ1�λ2 ����λM�λM+1, 0≤t1�t2�����tM<∞, 0=
s0≤s1≤s2≤···≤sM≤1 and define

Z�n�= ∑
1≤m≤M

λmen�tm�sm�+λM+1ζn�

It is easy to see that

n1/2Z�n�= ∑
1≤j≤n

τj�

where, setting f−
k �j�=fk�εj−1�εj−2�����,

τj=
∑

m�j�≤m≤M
λm
(
I
{
ε2
j≤tm

}−F�tm�
)+λM+1

∑
0≤k≤p

βklk�ε2
j�f−

k �j��(4.40)

where m�j�=i if �nsi−1�∨p<j≤nsi�1≤i≤M and

τj=λM+1
∑

0≤k≤p
βklk�ε2

j�f−
k �j� if 1≤j≤p or nsM<j≤n�

Recall that �k is the σ-algebra generated by εk�εk−1����. We will use Theorem
3.5 of Hall and Heyde (1980) to show that Z�n� is asymptotically normal. To
do so, we will verify that

max
1≤j≤n

E
{
τ2
j��j−1

}=oP�n1/2��(4.41)

E

∣∣∣∣ ∑
1≤i≤n

(
E
{
τ2
j��j−1

}−Eτ2
j

)∣∣∣∣=o�n�(4.42)

and

E

∣∣∣∣ ∑
1≤i≤n

(
τ2
j−Eτ2

j

)∣∣∣∣=o�n��(4.43)

Focusing on the more complex case (4.40), we write

τ2
j =

[ ∑
m�j�≤m≤M

λm
(
I
{
ε2
j≤tm

}−F�tm�
)]2

+λ2
M+1

∑
0≤k�k′≤p

βkβk′lk�ε2
j�lk′ �ε2

j�f−
k �j�f−

k′ �j�(4.44)

+2λM+1
∑

0≤k≤p
βkf

−
k �j�lk�ε2

j�
∑

m�j�≤m≤M
λm
(
I
{
ε2
j≤tm

}−F�tm�
)
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and therefore

E
{
τ2
j��j−1

} = ∑
m�j�≤m≤M

λ2
m

[
F�tm�−F2�tm�

]
+λ2

M+1

∑
0≤k�k′≤p

βkβk′E�lk�ε2
j�lk′ �ε2

j��f−
k �j�f−

k′ �j�(4.45)

+2λM+1
∑

0≤k≤p
βkf

−
k �j�

∑
m�j�≤m≤M

λm

∫ tm

0
lk�x�f�x�dx

and

Eτ2
j = ∑

m�j�≤m≤M
λ2
m�F�tm�−F2�tm��+λ2

M+1

∑
0≤k�k′≤p

βkγkk′βk′

+2λM+1
∑

0≤k≤p
βk

∑
m�j�≤m≤M

λmgk�tm��
(4.46)

Since for each k�f−
k �j�≡fi�εj−1�εj−2������ 1≤j<∞ is a stationary sequence

satisfying (1.6), max1≤j≤n �f−
i �j��=oP�n1/2�, and so (4.41) follows from (4.45).

Using expressions (4.44)–(4.46), we see that (4.41) and (4.43) follow from the
mean ergodic theorem.

By computing EZ2�n�, we obtain the desired covariance structure. ✷
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