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POSTULATES FOR SUBADDITIVE PROCESSES"?

By J. M. HAMMERSLEY

Trinity College, Oxford and
University of California, Berkeley :

The paper examines alternative postulates for subadditive processes,
especially the ergodic theory thereof. It introduces superconvolutive se-
quences of distributions and proves limit laws for these, which generalize
the weak law of large numbers, Chernoff’s theorem, and Kesten’s lemma.
It discusses eigenshift and eigendistribution theory and concave recurrence
relations in the convolutive semigroup, illustrating sundry conjectures with
computer studies. It deals with applications of the theory to the first-death
problem in branching processes, Bethe approximation of first-passage
percolation, self-avoiding walks, maximal solutions of the generalized
subconvolutive inequality, rates of convergence of a subadditive process,
multidimensional subadditive processes in physics including the dimer
problem and the overlapping-sphere model of liquid-vapor equilibrium,
and Ulam’s problem on the longest monotone subsequence of a random
permutation.

1. Introduction. The postulates appropriate for any mathematical theory
depend upon its purpose and uses. In his paper [10] on subadditive ergodic
theory, Professor Kingman adopts the relevant ergodic postulates. This is proper
and natural enough; but, of course, it does not guarantee that these same postu-
lates will serve equally well for applications of subadditive processes to other
situations. I want to illustrate this by looking at a few practical situations.

We shall need to deal with random variables which can take the value 4 oo
with positive probability. If X is such a random variable, and F(x) = P(X < x)
is its cumulative distribution function, we adopt the usual convention that F(co)
denotes lim,_, F(x), so that P(X = c0) = 1 — F(o0). A distribution is called
proper if F(co) = 1, and improper if F(co) < 1. A sequence of improper distri-
butions F,, is boundedly improper if F,(co) = é > 0 for all n, and is exponentially
improper if [F,(c0)]*— d > 0 as n — oo. We shall not need to deal with im-
proprieties at — co; so we shall always assume F(—oo0) = 0.

2. The first-death problem in an age-dependent branching process. We define
the branching process in the usual way:
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(i) The family tree originates from a single progenitor who dies at time
T =0.

(ii) Each person in the tree has a (birth to death) lifetime U distributed with
cumulative distribution function G(¥) and mean lifetime 7 = EU < 0. We
suppose that G(u) = 0 for # < 0, and that G(c0) = 1.

(iii) When anyone dies, he is replaced immediately by j newly-born offspring
with probability p; (j = 0, 1, - --). We write P(z) = };7.,p;z’; and we suppose
P(l)=1and p, < 1< P’(l) = ¢, say. Hence there is a positive chance p > 0
that the tree will propagate indefinitely, where P(1 — p) =1 — p.

(iv) All members of the tree are independent, both in lifetimes and in the
numbers of their offspring.

(v) The rth generation (r = 1,2, - - .) consists of the offspring of the (r — 1)th
generation, the zeroth generation being just the single progenitor.

The first-death problem for this branching process is to discuss at what moment
of time a death first occurs to some member of the rth generation. (See Note 1
of Section 11). We can set up a subadditive process x,, for integers 0 < r < s
as follows:

(a) x,, = oo if the subsequent recipe fails at any juncture through non-exist-
ence (for example, if the rth generation is empty).

(b) Let T, be the earliest time at which some person in the rth generation dies.
Consider all members of the sth generation who are descendants of this particular
person in the rth generation. Let T, be the earliest time at which one of these
descendants dies. Define x,, = T, — T;.

In particular, x,, is the first-death time for the rth generation; and we write F,(x)
for its cumulative disribution function. Since we are dealing with random vari-
ables which may be infinite, we shall have lim,_, F,(x) = F, (c0) < 1 when
Po > 0.

Let us examine this subadditive process in relation to the postulates given by
Kingman [10]. Clearly, postulate S, holds: (See Note 9 of Section 11).

(2.1) X, = X, + X, O=sr<s<n.

Postulate S, fails in the trivial sense that Ex, = oo when p, > 0; but we can
easily replace it by a new postulate S,':

(2'2) E(x0r|x0r< oo)_—_’g,_grﬁ< o .

The corresponding conditional form of postulate S, is clearly satisfied; but the
conditional version of postulate S, is nor. To see this, we write I; for the indi-
vidual in the jth generation (j = 0, 1, - - -, 4) who figures the defining process
(b) above for one of the three random variables x, X5, X,,. Write I, — I, for
the event that 7, is the offspring of 7;. Now x,, and x,, are independent except
when I, - I, — I;; and x,, and x,, are independent except when I, — I, — I, — I,.
In both these exceptional cases, the dependence between x,, and x,, is the same
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as the dependence between x;, and x,,. Since the event I, —» I, — I, — I, is less
probable than I, — I, — I, the positive correlation between x,, and x,, exceeds
the positive correlation between x,, and x,,. Hence the joint distribution of
(%2> X15) is not equal to the joint distribution of the shifted pair (x5, x,,). So (the
conditional version of) postulate S, is false. So Kingman’s Theqrem 1 will not
apply, and we cannot conclude (conditionally on x,, < co) that

2.3) Xy, /r— 7 = inf, g,r

with probability 1 as r — co. This is a pity, because (2.3) doubtless holds in this
particular instance: so we need some more pure mathematical work to establish
the analogue of Theorem 1 when S,” (with perhaps some additional conditions?)
replaces S,. (See Note 2 of Section 11.)

A tempting additional condition is the following postulate, given in [8]: a
subadditive process is called an independent subadditive process if the variables
X,4 X4y +5 X, are mutually independent whenever the open intervals (r, s),
(t, u), - - -, (v, w) are mutually disjoint. I call this a tempting condition because
at first sight it seems to be obviously true. However, on reflection, one sees that
it is not satisfied in the unconditional case (where x,, = oo is allowed). For, if
0 < r < sand if we are given that x,, < oo, then x,, must be finite. 1 am not
at all sure whether the process is an independent subadditive process in the con-
ditional case of finite random variables, or whether it can be made so by some
adjustment of the definitions. If it is, or can be made so, then the conditional
process is self-smothering (see [8] for a definition of this term) and (2.3) would
follow in the sense of convergence in probability (as opposed to convergence
with probability 1). However, by means of different tactics (superconvolutive
sequences as defined later) I shall prove that (2.3) is in fact true in conditional
probability (again, as opposed to conditional probability 1). This is no great
loss from the practical point of view, because convergence in probability is the
more important practical conclusion.

We next obtain a recurrence relation for the distributions F,(x). Consider the
conditional situation given that the progenitor has exactly j offspring. The time
from the death of a given one of these offspring to the first death amongst his
descendants in the rth generation has distribution function F,_,; and his lifetime
has distribution G. Hence x,, is the least of j independent observations, each
with distribution F,_; « G; and so has the distribution function 1 — (1 — F,_, x G)7.
This holds for j = 0 as well, in the sense that the distribution function is iden-
tically zero. Hence unconditionally

(2.4) Fi(x) = Z5m0pill — (1 = (Fry % G)(x))]
=1 —P[1 — (F,_,«G)¥)], (r=1,2,--).

vw

This recurrence relation stars from Fy(x) = 1 or 0 according as x > Oorx < 0.
We shall presently obtain an explicit expression of the time constant y from
(2.4); but first we examine a more general situation.
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3. Concave recurrence relations and superconvolutive sequences on the con-
volution semigroup. Let D denote the convolution semigroup: the elements of D
are (proper and improper) distribution functions, that is to say non-decreasing
functions L(x) with L(—o0) = 0 and L(+o0) < 1; and the binary operation of
D is convolution

(3.1) (L s M)(x) = 2. L(x — y) dM(y)

We shall obtain three theorems for D, and the reader who prefers to skip the

lengthy proofs should proceed at once to their statement at the end of this section.
We shall write

(3.2) LM (x=Za)

as shorthand for L(x) < M(x) for all x < a. Usually a = + o0, in which case
we simply write L < M for our partial ordering on D. From (3.1) it is clear
that (3.2) implies

(3.3) LxNSMxN x=a);

provided, when a < oo, that N(y) = 0 for y < 0.
Let Q be a concave non-decreasing function defined on 0=<z<1, with
Q(O) = 0 and Q(1) < 1. Suppose also that

(3:4) 1<QO)=g9<oo.

Clearly Q: L(x) — Q[L(x)] is an isotonic mapping of D into itself in the sense
that (3.2) implies )

(3-5) (L) = Q(M) (x=a).
Also by (3.1), concavity of Q implies that
(3.6) Q(L+«M) = Q(L)« M.
Let H,(x) denote the step function
3.7 H,(x) =1 xX=a
=0 x<a.

We are going to study the recurrence relation

(3.8) F, = Q(F,_, xG) (r=1,2,-.1),
F, = H,,

where G e D is given. It is easy to see that (2.4) is the particular case of (3.8)
when Q(z) = 1 — P(1 — z)and that (3.4) then holds. We shall write G, for the
rth-fold convolution of G:

(39) 6,=6,,xG (r=12,-..), .G, = H,.
We claim that (3.8) implies
(3.10) F,,=F, «F,.
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For, if (3.10) is true, then

(3'11) F'r+s+l= Q(F'r+a*G) .Z Q(Fr*Fs*G) _Z Q(Fr*G)*F:=F7+1*Fs
by (3.8), (3.10), (3.3), (3.5) and (3.6). Hence (3.10) follows by induction on r,
since it is plainly true for r = 0. .

A sequence of distributions satisfying (3.10) for all r, s will be called super-
convolutive. It follows immediately from (2.1) that any independent subadditive
process possesses a superconvolutive sequence of distribution functions. The
converse is however false. For consider the counter-example in which F,, F,, F;
are defined by the discrete distributions:

Fii Plxy =0) =13, Plxy = 1) =%
(3.12) F;: P(xya=0 =%, Plxy=1)=3%

Fy: Pxg=0)=1%, P(x, =1) =1, P(xpy=2)=$.
These distributions satisfy F, > F, « F, and F; = F, « F,. But, if x,, is an inde-
pendent subadditive process, then x,; < Xo + X;3and xg5 < Xo3 + Xg5; and xg = 2
can only occur if x,;, = x,; = 1; and we have the contradiction
(3.13) $=Pxy=2) < Plxy =Xy =1) = P(xy = 1)P(xpy = 1) = £ .

Superconvolutive sequences have several interesting properties; and the fol-
lowing one will be important in the sequel: there exists a concave non-positive
non-decreasing function ¢(x), which may take the value —co, such that

(3.14) F,(rx) £ e
and
(3.15) r=tlog F(rx) — ¢(x) as r— oo .

To prove this we note that (3.1) and (3.10) imply
(3.16) Foo(x +3) 2 FOF() -

First, write rx for x and sx for y in (3.16). This shows that F (rx) is a super-
multiplicative function of r for fixed x; which implies (3.14) and (3.15) for some
function ¢(x), and this function must be non-positive and non-decreasing because
F.(rx) £ F(ry) <1 for x < y. Second, write rx for x and sy for y in (3.16),
take logarithms, divide by r + s, and let r, s — co such that r/(r + s) — a and
s/(r + s) — B where a, B are arbitrary non-negative numbers such that a + 8 =1.
This shows that ¢(ax + By) = a¢(x) + B¢(y), and hence ¢ is concave.

A second property of superconvolutive sequences is that the corresponding
cumulant generating functions

(3.17) K.(0) = log §=,, e~?* dF (x)
are superadditive functions of r for each fixed ¢ = 0:
(3.18) K,.(0) = K,(6) + K,(0) ©z0).

To prove this, let X and Y be independent random variables with distributions
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F, and F, respectively. Then (3.10) implies that
(3.19) Z=F[F,«F)X+Y)]<X+7Y.

The relation (3.19) is to be interpreted in an obvious limiting sense if F, x F,
has discontinuities: we replace such a discontinuity by a sufficiently steep linear
slope and then allow the slope to tend to infinity. This limiting process is used
too at + oo if F, x F, is improper. With this interpretation Z will be a random
variable with distribution F,,,. Hence

(3.20) Ee=%% > Ee~%*Ee~'

from which (3.18) follows at once. (Of course, we allow the terms in (3.18) to
be infinite if the expectations in (3.20) are infinite or zero.) From (3.18) we
deduce the existence of a (possibly infinite) function K(6) such that

(3.21) K,(0) £ rK(9), r-K,(0) — K(0) as r—oo.
Next we shall establish a relation between ¢(x) and K(6), namely
(3.22) ¢(x) = infy,, [K(0) + Ox].

In the particular case when equality holds in (3.10), K(6) = K,(0), and (3.22)
reduces to a familiar formula on the extreme tails of a convolution proved by
Chernoff [1]. Thus (3.22) is the superconvolutive generalization of Chernoff’s
convolutive formula.

Since ¢(x) is concave and non-decreasing, there exists a number o satisfying
0 < o £ oo such that

(3.23) O(x) ~ wx as x — —oo.
We shall show that K(f) = + oo whenever § > w. We have
(3.24) K.(0) = §=re e dF ,(x) = e’"F ,(—ra)

= exp[r{6a + ¢(—a) + o(1)]] as r— oo .

If ¢ > w, we can choose a to make fa + ¢(—a) > 0, and K(§) = + oo by (3.21)
and (3.24). (See Note 10 of Section 11).

Next we dispose of the special case w = 0. In this case (3.23) implies that
¢(x) is a constant, since ¢ is concave and non-decreasing. (See Note 3 of Sec-
tion 11.) Also K(f) = oo for 6 > 0, so (3.22) becomes ¢(o0) = ¢(x) = K(0) =
lim,_,, r~*log F,(co) which is true because of (3.15) and (3.17). Thus (3.22)
holds for w = 0, and we may hereafter suppose that > 0. From (3.17), we
see that exp[K,(0)] is a convex function of #, and hence X'’ is also convex.
Hence, if eX'? is not continuous on the left at ¢ = w, then e¥“> = co. Similarly,
eX® must be continuous on the right at # = 0, because ¥ < co. Since further
K(0) = oo for § > w, we see that it suffices to prove (3.22) in the equivalent form

(3.25) $(x) = infooe, [K(O) + 0x],
and hereafter we suppose that 0 < 6§ < w.
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By (3.14),
(3.26) 0 < e ™F,(x) < exp {—x[ﬂ - %}}
and
¢(x[r) o — 0
(3.27) 6 — x_/r_ >0 as x
-0 —-—w<0 as x— —oo.

Hence we see that K,(0) is finite for all r when 0 < ¢ < ®; and we may integrate
by parts to obtain

exp[K,(0)] = 0 §>.. e ?*F (x) dx
(3.28) < 0§, exp {_x[a — M]} dx

x[r
< 20r o exp{rl¢(y) — Oyl} &y

for suitably chosen finite a, b (independent of r) after the substitution y = x/r.
Hence

(3.29) exp[K,(6)] < 20r(b — a) exp{rsup, [4(y) — O]} -

On taking logarithms, dividing by r, and letting r — co, we deduce

(3-30) K(0) = sup, [¢(y) — 0y] -

Now the slope of the concave function ¢(y) decreases from w at y = —oo to 0
at y = +oco. Hence for 0 < § < w we may find a finite value y, such that @ lies
between the right-hand and left-hand derivatives of ¢ at y,:

(3.31) PP +0)=0=¢(y,—0).
It is readily verified that ¢(y) — 0y attains its supremum at y = y,. Hence
(3.32) K(0) = ¢(ys) — 0y, -

The éopcavity of ¢ also guarantees that y, is a non-increasing function of 6.
On the other ha;}d, if the random variable X has the distribution F,, the
Chebyshev inequality yields
(3.33) F(rx) = P(X < rx) = P(e™ = e~r")
< E(e7i¥)Je~?= = exp[K,(0) + Orx].
If we take logarithms, divide by r, and let r — oo, we get
(3.34) ¢(x) = K(0) + 0x.

Putting x = y, in (3.34), and comparing the result with the opposite inequality
(3.32), we have

(3.35) $(y0) = K(0) + 6y, .
If x is such that either 0 < ¢’(x — 0) or ¢’(x + 0) < w, we can find a solution
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of (3.31) such that y, = x for a suitable ¢ satisfying 0 < 6 < w; and (3.34) and
(3.35) will establish (3.25) for this x. If ¢’(x + 0) = w, we proceed instead in
the following way. We note that y, > x for #§ < o and that

(3.36) $(x) Z ¢(ys) — (¥ — X)¢'(x + 0)
by the concavity of ¢. Inserting (3.35) into (3.36) we get
(3.37) $(x) = K(6) + 0x + (y, — [0 — ¢'(x + 0)] .

If we let  — @ — 0, and note that y, is non-increasing, we again obtain (3.25)
from (3.34) and (3.37). A similar argument applies to the case ¢’(x — 0) = 0,
and completes the proof of (3.25). The reciprocal equation

(3.38) K(0) = sup, [¢(x) — 0x] 020

can also be established by analogous arguments.

It is a familiar result that convolutive sequences obey the conditional versions
of weak law of large numbers if we assume the existence of the conditional
means

(3.39) E(x,|x, < 00) = g, .

(The counter-example of the Cauchy distribution shows that some such assump-
tion as (3.39) is needed.) Can this result be generalized to superconvolutive
sequences? I do not know the answer to this question; but the answer is affir-
mative if we make the additional assumption that all the distributions are proper.
Thus we now suppose that x, has a distribution F, with F,(co) = 1 and that

(3.40) 9, = E(x,) < .
Taking expectations of (3.19), we find
(3.41) Jrts = 90 + 945

so g, is a subadditive function of r and hence there exists y such that
(3.42) r<9.jror as r— oo .

To sketch in the remainder of the proof without going into all details of rigor,
we fix an ¢ > 0 and choose r so that g,/r < y 4+ . For large n we write n =
rs + t where 0 < # < r; and we write X, X,, - -, X, for independent random
variables each with distribution F,, and Y for a further independent random
variable with distribution F,. By an obvious analogue of (3.19) we have

(3‘43) Z/né(Xl_'—Xz_'“ e +Xs+ Y)/”;

where Z is a random variable defined in terms of X, X,, .- ., X,, Y and where Z
has distribution F,. As n— oo, the right-hand side of (3.43) will converge in
probability to g,/r; and hence P(x,/n > y 4 2¢) — 0 asn — co. Similarly, if L,
is the distribution function for x,/n, we can make §=,,, x dL, arbitrarily small by
bounding it with the corresponding integral for the right-hand side of (3.43).
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Hence

(3.44) r = lim,_,, g,/n = lim,_,, {2, xdL, = lim,__ {7t xdL, .
For fixed £ < 7, we have

(3.45) jriv xdL, < EL(E) + (7 + 29[1 — L&)
and (3.44) and (3.45) give

(3.46) 0=<2— (r +2¢ — &) limsup, ., L,(§) .
Thus

(3.47) 0 < limsup,_, L,(§) < 2¢/(y + 2¢ — §) .

On letting ¢ — 0, we conclude that L,(§) — 0 as n— oo for each fixed § < 7;
and consequently x,/n— 7 in probability as n — oo as required for a super-
convolutive weak law of large numbers.

There seem to be difficulties in extending this argument to cover improper
distributions in general. However, by means of an ad hoc procedure, we can
prove convergence in probability for the special case of the improper distribu-
tions arising from the recurrence relation (3.8). We write

(3.48) fo=Fy ).
Putting x = oo in (3.8) we deduce
(3.49) fo=1,  f.=0(r) (r=12,--)

because G(co) = 1. Hence the sequence f, is non-increasing by the assumed
properties of the function Q and

(3.50) fi—mp>0 where Q(p) =p.

Thus we are dealing with a boundedly improper superconvolutive sequence F,.
Now define

(3.51) C.(x) = F)f. -

Thus C, is the conditional distribution of x, = x,, given x, < co. Since G(u) =0
for u < 0 by hypothesis, we see that x, is a nonnegative random variable; and
hence the cumulant-generating functions K,(¢) exist for all § = 0. On dividing
(3.18) by ¢ and letting § — 0 we deduce

(352) fr+agr+s élf‘rgr +faga ’
where
(3.53) 9, = E(x,|x, < o).

Note that sign of the equality in (3.52) is the reserves of that in (3.18) because
f.9, is the coefficient of —@ in the expansion of K,(6) by virtue of (3.17). Now
(3.52) shows that f, g, is a subadditive function of r; so f,g,/r tends to a limit as
r— oo. We write yp for this limit, thus defining y; and now (3.50) establishes
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the existence of a conditional time-constant
(354) T = hmr-»oo gr/r *

By substituting (3.51) into (3.8), we find that the recurrence relation governing
the distributions C, is

(3.55) C,=H,, C,,=0,C,+G) r=0,1,2,..-)
where
(3.56) 0.(2) = f71Q(f,2) -

Each of the functions Q, is concave and non-decreasing and satisfies Q,.(0) = 0,
0,(1) = 1. Therefore the same properties are enjoyed by the function

(3.57) R(z) = inf, 0,(2) .
Consequently if we define a sequence of distributions D, by
(3.58) D,=H,, D,,, = R(D, % G) (r=0,1,2,...)

we shall have
(3.59) D, <C,.

The distributions D, are all proper because G is proper and R(1) = 1. Hence,
if y, is a sequence of random variables with respective distributions D,, we know
that y,/r converges in probability to some time constant 8 as r — co. In other
words, as r — oo

(3.60) D (rx) — 1 x>8
-0 (x< B)-

Suppose that ¢(x) is the ¢-function associated with the sequence D,:

(3.61) ¢(x) = lim,_,, r~*log D (rx),

and define a by the equation

(3.62) a =sup{x: ¢(x) < 0}.

It is clear from (3.60) and (3.62) that

(3.63) a<B,

and we shall eventually prove that « = 8.
For 0 < § < 1 define

(3.64) 9, = Q(9)/9 .

By the concavity of Q we have
(3.65) 4,2 < 0(2) < gz 0<z<9)
where

(3.66) 1 <q=00) = lim;_,q,.
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Hence from (3.57) and (3.65)

(3.67) 4fr > 240) 5 RQ) 5 jng Gfe _ g, ©0<z<0)
fr+1 z z f"+1

because f, is a decreasing sequence which tends to p > 0 as r — oo. Letting
r— oo in (3.67), and then letting § — 0 we deduce

(3.68) R(O)=¢>1.

Next consider arbitrary numbers a and b such that a < b < B. By (3.60),
there exists n = n(b, §) such that

(3.69) D, (rb) < 7, (r=n).

Let r, s, t be positive integers such that
(3.70) 0<tr<s, nr—s, ra<(r—s)b<(r—1b.

Then for x < ra

(3.71) D, (x) < D, (ra) < D, [(r — 5] < §.

Hence, by (3.3), since G(u) = 0 for u < 0

(3.712) D, xG <o x=Zra);
whereupon (3.58) and (3.67) yield

(3.73) D, ,,=RD, ,«xG)=q;D,_,+xG x=Zra).
Hence by (3.3) and (3.9)

(3.74) 4D, 111 G, = q,D,_, + G, (x < ra).

Since (3.74) holds for t = 1,2, ..., s, we deduce
e > D (ra) 2 q,(D,_,  G,)(ra)
(3.75) = ¢, D,_(ra — 5a)G (sa)
= 4,'G,(sa) exp[(r — $)d(@) + o(r — 3)] .
By (3.22) applied to the convolutive sequence G,, we have

(3.76) lim, ., s7'log G,(sa) = log J(a) ,
where
(3.77) J(a) = infy,, =, €*"* dG(u) .

If we take logarithms of (3.75), divide by rand let r, s — co such that (r — s5)/r —
a/b, which is consistent with (3.70), we get

(3.78) 9@) = 5 9(@) + (1 = 2 ) log [4,4(@)] -

Letting d — 0 in (3.78), we deduce
(3.79) e’ @ > gJ(a) (a< B).
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On the other hand (3.56) and (3.67) give

(3'80) Cr+l é (f'r/f'r+l)qcr * G >

whence (3.59) provides

(3'81) ‘Dr é Cr é (H:=l s—l/fs)qTCO . Gr = qTGr/f'r .
=9G,/e.

Therefore (3.61) and (3.76) yield

(3.82) ¢(x) < limsup,_, r*log C(rx) < log[¢J(x)] .

Combining (3.79) and (3.82) and noting that ¢(x) and J(x) are continuous, we
deduce (See Note 4 of Section 11.) that

(3.83) e/ = gJ(x) x=H).
In view of (3.62) and (3.63) we now deduce
(3.84) qJ(a) = 1.

Since ¢ > 1, we have J(a) < 1; and therefore J(x) is a strictly increasing func-
tion at x = a. So if @ < 8 were true we should have ¢(8) > 0 from (3.83) in
contradiction of ¢ < 0. Hence

(3.85) a=2§.
Now (3.59), (3.60), (3.82), and (3.84) provide
(3.86) C(rx)—>1 (x> a)
-0 (x<a) as r— oo .

So the random variables x,/r converge to a in probability conditionally on
x, < oo. Finally the contribution to the conditional mean

(3.87) 9, = {2, xdC.(x)

from the top part of this integral §3,,., x dC,(x) is bounded by {x,.., xdD (x),
and this latter integral tends to zero as in the proof of the superconvolutive
version of the weak law. The contribution to (3.87) from the lower part
{ria=2) x dC, (x) also tends to zero because of (3.82) and the fact that x, = 0.
Hence by (3.42)

(3.88) a=7,

whereupon (3.77) and (3.84) yield and explicit equation for the conditional
time-constant y. Finally, we have y < & because J(7) = 1. We can sum up our
results in this section by stating them as theorems.

THEOREM 1. If a sequence of distributions F, in the convolutive semigroup D is
superconvolutive, namely if

(3.89) F,,(x) = (F, « F)(x) forall x,
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then the function
(3.90) K.(0) = log {=, e~?* dF (x)

is a superadditive function of r for each fixed 0 = 0, and log F (rx) is a superadditive
function of r for each fixed x. Also the limits

(3.91) ¢(x) = lim,_, r~*log F (rx) , K(6) = lim,_,, r;lK,iﬁ) @ =0)
satisfy the reciprocal relations
(3.92)  ¢(x) = inf, [K(O) + 0x],  K(0) = sup, [¢(x) — 6x] (6 = 0).
If, in addition, the distributions F, are all proper, there exists a constant y such that
(3.93) F(rx)—>1 (x>7)

-0 (x<7) as r— co.

THEOREM 2. If Q(z) is a concave non-decreasing function defined on 0 < z < 1
such that for some p satisfying0 < p < 1

and if the sequence of distributions F_ is given by
(3.95) F (%) = Q[(F, * G)(¥)] (r=0,1,2,-..)

where F(x) = 0 or 1 according as x < 0 or x > 0, and where G is a proper distri-
bution of a nonnegative random variable with a mean i, then the sequence F, is
superconvolutive and

(3.96) F(rx)—>p (x>7)
-0 (x<7) as r— oo,

where 7 is the unique (See Note 5 of Section 11.) root of
(3.97) infy,, {& 7~ dG(u) = 1/q , r<i.

Moreover, if x, is a random variable with distribution F,, then conditionally on
x, < oo the random variable x_[r converges in probability to y as r — oo, and

(3.98) y = lim,_ E(x,[r|x, < o).

THEOREM 3. An independent subadditive process is characterised by a superconvo-
lutive sequence of distributions, but the converse is false in general.

Theorem 1 is the superconvolutive generalization of two familiar convolutive
theorems, namely the weak law of large numbers and Chernoff’s theorem [1] on
the extreme tails of distribution. Theorem 2 yields an explicit equation (3.97)
for the time constant y of the subadditive process for the first-death problem in
an age-dependent branching process, when we take Q(z) = 1 — P(1 — z). The
discussion in this section exhibits some of the shortcomings of thé postulates
for subadditive processes in [8] and [10]; and in particular, it suggests that the
postulates need widening to include improper distributions. Further, Theorem
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1 ought to be extended, if possible, to remove the final clause under which the
distributions F, are all assumed proper. The fact that we are able to prove
(3.88) in the course of proving Theorem 2 seems to be a fortunate consequence
of being able to work with an explicit recurrence relation (3.95): an analogous
(3.88) is also likely to be true in other situations though its proof in general
promises to be difficult—it appears, for example, as one of the long-standing
conjectures in the theory of self-avoiding walks (see below).

The result (3.97) for the particular case of a branching process is an old
unpublished result which I obtained in 1959 in the early days of work on sub-
additive processes, but the idea of setting it in the more general framework of
superconvolutive sequences is new. (See Note 6 of Section 11.)

4. Eigenshift problems in the convolution semigroup. We have seen in the
previous section that the concave recurrence relation (3.94) yields conclusions
which amount to convergence in probability; and it seems likely that correspond-
ing results involving convergence with probability 1 could be established for
some suitably imposed underlying probability space. However, computer studies
(See Note 8 of Section 11.) of particular cases of (3.94) suggest the truth of a
very much stronger conclusion than the almost sure convergence of a sequence
like x,/r: they suggest that x, — g, converges in distribution, or perhaps the even
bolder conjecture that x, — yr converges in distribution. We shall now look at
the consequences of this second conjecture.

The distribution of the random variable x, — yris F, « H_,,, where H denotes
the step function defined in (3.7). Shift operators of the form H, x commute
with any function like Q(-); so we have ‘

(4.1) H, % (Fpy+ H_yp) = H_,, % O(F,  G)
=QF,«H_,xG).

Hence, if it is true that

“4.2) F,«H__ —F as r— oo,

then this limiting distribution F must satisfy

4.3) QF xG) =H_«F.

Now we look at (4.3) in a more general framework. Suppose we are given a
transformation 7' which maps the convolution semigroup D into itself. We can
ask for what values y (if any) does the equation

(4.4) T(F)=H, xF

have a solution FeD. We call any such solution F an eigendistribution corre-
sponding to the eigenshift y. In the particular case when T(.) = Q(- * G), where
Q and G have the properties specified in Theorem 2, we know that y cannot be
an eigenshift unless it satisfies (3.96) (or rather, to be more precise, it is the only
eigenshift resulting from iterating the recurrence relation with H, as starting
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point—conceivably there might be other values of y if we started the iteration
from some other original F;). But, if y does satisfy (3.96), is it an eigenshift; and
if so, how do we then solve (4.3) for F and to what extent will F be unique; and,
finally, is (4.2) true for some eigendistribution F of (4.3)? T do not know the
answers, let alone to the corresponding questions for (4.4).

However, we can create special cases in which (4.3) does possess an eigen-
distribution by the simple device of choosing F and G arbitrarily, and then
solving (4.3) for the function Q(.). From several possible examples, I choose
the following, which actually began life as a putative’ counterexample to Theo-
rem 2! Suppose

4.5) F(x)=1—e7* x=0),

and

(4.6) G(x) =0 (x < 0)
=1—}e- (x=0).

Then

(4.7 (FxG)(x) =1 — (1 4+ }x)e* (x=0);

and so, for 7y =0, we may define Q implicitly by
(4.8) O[l — (1 +ix)e*l=1—e* (x=0).
It is easy to verify that Q satisfies the conditions of Theorem 2, and that

Q'(0) = 2. Also we find

(4.9) {5 e dG(u) = _667(11: 0%0—) = ¢(r, 0y, say;

and, according to Theorem 2,

(4.10) infy.o (7, 0) = % r<i%

ought to Have the unique solution y = 0. Since ¢(7,0) = 1 > %, we see that §
must satisfy do(0, r)/06 = 0, which leads to

(4.11) =101 + 02+ 0),

and (at first sight) it looks as though y = 0 is incompatible with (4.11). H‘bw-
ever, solving (4.11) for & > 0 and substituting the result into (4.10), we find

4.12)  log2 — 7 [g - (1+ f})‘;’] + log { ;12:(21(?:/2;),} =0

and this does have the solution y = 0, and moreover this can be proved to be
the only solution satisfying y < }. So, after all, this is a verification of Theorem
2, and not a counterexample: in fact (4.11) is satisfied with § = co.

With appropriate choices of G, one can convert the problém: of solving (4.3)
into an eigenshift problem for differential-difference equations. For example,
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with G(x) = 1 — e (x = 0) and y(x) = Q[F(x)], and p = Q(p), we obtain

(4.13) V() +yx) =0Qyx+ 7], y=00) =0, y(+0) = p;
and Theorem 2 suggests that (4.13) cannot have a non-decreasing solution unless

Q'(0)ye'~7 = 1. Whether it actually has such a solution under this condition
requires further investigation. '

5. Bethe approximations to first-passage percolation. In studies of coopera-
tive phenomena in physics, it is a great mathematical simplification (though
admittedly somewhat of a distortion of the physical reality) to replace the inter-
atomic bound structure (of, say, an atomic lattice in solid-state physics, or of a
coagulating gel in polymer chemistry) by a tree structure. The independence
of the branches of the tree removes difficult and embarassing correlation terms.
Physicists call such a replacement a Bethe approximation.

We can use the same device to find bounds in first-passage percolation by
stripping out the tree of self-avoiding walks on a linear graph. In this situation,
we start with a linear graph T', possibly directed, on which we have a distin-
guished node N together with a set of nodes B, depending on an integer 7. Each
edge of I carries a nonnegative random variable U with common distribution G,
and all the U’s are independent. Each walk along I' from N to B, has a passage
time equal to the sum of all U traversed on the walk; and the first-passage time
form N to B, is the infimum of the passage-times taken over all such walks.
Clearly we need only consider self-avoiding walks, namely walks which never
traverse any edge more than once. We now construct a tree A, having N for its
root. Each walk w, on A from N to a terminal node of A corresponds to a self-
avoiding walk w, from N to B, on I' and vice versa. The nodes of A which are
visited by some w, correspond to nodes on I' visited (in the same order) by the
corresponding w,; and the structure of A is determined by the following rule:
if w,” and ,” coincide from N to some node N,” and never thereafter (A being
a tree), then the corresponding w,’ and w,” coincide from N to the corresponding
N’ whereat they immediately separate (though they may coalesce once again on
I' a few steps later). Now suppose B, consists of all nodes on I' which can be
reached from N by some self-avoiding walk w, of exactly r steps. The corre-
sponding tree A will have r generations with N as progenitor. It is fairly simple
to prove that the expected time to reach the rth generation on A does not exceed
the expected time to reach B, on I'. Consequently the time-constant y, for the
first-death problem of the age-dependent branching process on A is a lower
bound for the time-constant 7, of the percolation process on I' (see [4] and [15]
for an example of this procedure).

At first sight, this argument would seem to require that the tree-structure A
should be one which can be generated by a branching process with some gener-
ating function P(z); and it is by no means certain (or even likely) that A will be
of this special form. At any rate, far too little is known about the asymptotic
properties of the number of self-avoiding walks to afford a reasonable hope of
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being able to prove such a fact. On the other hand, the final conclusion (that
7r = 7,) can be proved rigorously [4]; and this is because we only need the easy
half of the argument in Section 3 to prove y. = 7,: the more difficult half of the
argument in Section 3 would not be needed unless we wanted to prove that a
Bethe approximation was incapable of providing a sharper lower bound than
this. But, in turn, these considerations raise two questions.

First, is it possible to get a sharper lower bound to 7, by some sort of trun-
cated Bethe approximation? Speaking very roughly, if two self-avoiding walks
on I' coincide from N to A4 and then separate at 4 but meet once again at a
subsequent node A4’, should it not be possible to delete from one of the corre-
sponding walks on A all steps after 4’? The answer would clearly be “Yes”,
provided we knew which of the two walks we ought to select for truncation.
But what happens if, not knowing which to select, we select one at random?

Second, if we can manage to get a sharp lower bound to y; in this sort of
fashion, could we then prove that it is sharp? Effectively, we should need to
prove Theorems 1 and 2 under much less stringent postulates; and this draws
attention to how unsatisfactory these postulates are at present. The theorems
for subadditive processes have very weak conclusions: they merely say that
some sequence tends to a limit in some sense (in probability, or with probability
1, etc.). For such feeble conclusions should it really be necessary to impose
such draconian postulates as stationarity, or subadditivity, or superconvo-
lutivity? It ought to be enough to postulate that the sequence approaches sta-
tionarity (or subadditivity, etc.) as we approach infinity. This sort of thing
works for ordinary subadditive functions. For example, we can relax the ordinary
subadditive inequality

(5'1) xr+s é X, + Xs

to the weaker generalized form

(5~2) xr+a g xr + xs + yr+a ’
and yet still reach the same conclusion
(5.3) xjr—7

provided [2] that y, is non-decreasing and satisfies

(5.4) Lyt < oo

What is the stochastic analogue to (5.2) and (5.4)? For example, consider a
weakened superconvolutive inequality of the form

(55) Fr+a g Fr * Fa * Hh(r+a) ’
where the non-decreasing function A(r) satisfies
(5.6) S h(NIP < .

Then (because we are merely shfting the origin by amounts which satisfy a
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relation like (5.2)) an easy combination of Theorem 1 and [2] shows that the
essential conclusions of Theorem 1 remain true. How far can we generalize
this result with some more elaborate distribution in place of H,,,,, in (5.5)?
(See Note 7 of Section 11.)

6. Self-avoiding walks. Analysis of self-avoiding walks has hitherto depended
upon combinatorial arguments because we have lacked a probabilistic frame-
work for them. However, it now seems that the ideas in Section 3 can provide
a satisfactory framework. In the first place, although Section 3 envisages scalar
random variables x, we can easily extend it to random vectors x, with the usual
convention that x <y if and only if the coordinates of x do not exceed the
corresponding coordinates of y. For simplicity, let us consider self-avoiding
walks on the square lattice (the nodes of I are the points with integer coordinates
in the Euclidean plane, and the edges of I' are undirected and join pairs of
nodes unit distance apart). Consider all n-stepped walks starting from the origin,
and assign probability 4" to each of them. Let x be a vector associated with
each walk as follows: if the walk is self-avoiding, then x is the position vector
of the node reached at the end of the walk; whereas, if the walk is not self-
avoiding, then X = co = (+ o0, +0). Let F,(x) denote the cumulative distri-
bution function of this improper distribution. It is easy to see that the sequence
F, is subconvolutive

(6.1) F,,,<F,«F,.

So there is a ¢-function attached to the sequence:

(6.2) ¢(x) = lim,_, rlog F (rx),
and
(6.3) O(x) =& — log 4 for x>0,

where « is the connective constant of the lattice [3]. A long-standing unproved
conjecture about self-avoiding walks is that the distance between the two ends
of an r-stepped self-avoiding walk is o(r) as r — co for “almost all” such walks.
More precisely, this conjecture may be formulated as

6.4) o(x) < £ — log4 for x<0.

This conjecture may be compared with the analogous result (3.88) proved for
concave recurrence relations.

Self-avoiding walks give rise to an exponentially improper sequence of
subconvolutive distributions, whereas in Section 3 we have considered super-
convolutive sequences. When the sequence is proper or at most boundedly
improper, we can infer results about subconvolutive sequences from the corre-
sponding superconvolutive results by reversing the signs of all the random vari-
ables. To do this for an exponentially improper sequence would however
throw away the baby with the bath water; so a separate treatment is needed for
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expontially improper subconvolutive sequences. I imagine this will go through
without difficulty, but I have not examined the issue in detail.

7. Maximal solutions of the generalized subconvolutive inequality. Suppose
we are given a sequence of distributions G, (not necessarily successive convolu-
tions of a distribution G), and we consider a sequence F, satisfying

(7.1) F..<F.xF,xG,_,.

r+s =

The maximal solution of (7.1) is clearly given by the recurrence
(7'2) F’n(x) = minl(rgé’n (F'r * Fn—’r * G’n)(x) (n = 2’ 3’ ° .) ’

when F, is prescribed. Suppose that r = p(n, x) is the (or a) value of r which
achieves the minimum on the right of (7.2). What can we say about the func-
tion p? How does it depend upon F, and the sequence G,, and what are the
properties of the resulting sequence (7.2)? These questions are the obvious
analogues of the corresponding questions for ordinary subadditive sequences [6],
and are clearly germane to any study of the inequality (7.1).

8. Rates of convergence. Kingman [10] asks how fast a subadditive process
converges. This question can be split into two parts, and a complete answer
given to one part. First, we can ask how fast does the sequence of means g,/r
converge to r; and second, we can ask what is the order of magnitude of the
deviations x, — g,: for example, under what conditions is this deviation
O(rtloglog r)?

As to first question, g, can be any subadditive sequence; and hence g,/r may
tend to y arbitrarily slowly. For, in particular, g, is subadditive when g,/r is
an arbitrary decreasing sequence, because

8.1) Gris = T Jris + s Yria §r&+s£:g,+g,.
r+ s r4 s r N

In the absence of additional information in the problem, this gives a complete
(and completely disappointing) answer to the first question. In most applica-
tions, however, there is additional information; and the usual technique is to
show that a subadditive function g, can be made superadditive by modifying it
with some small correction. Another way of looking at this technique is to say
that g, satisfies both the subadditive relation (8.1) and also a suitable generalized
superadditive relation

(8'2) g'r+s g gr + gs + hr+s *

This highlights the importance of studying inequalities like (7.1). For an ex-
ample of how these techniques work, see [3] and [9].

The second question has not yet received any satisfactory answer. We note,
however, that certain subadditive processes appear to have deviations which
are of much smaller order than the usual O(r? log log r): for example, the con-
cave recurrence relations discussed in Section 3, and Ulam’s problem [5].
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The considerations in this section show that the existing postulates for sub-
additive processes are too general, in the sense that we need additional restric-
tions'if we are to get good descriptions of the phenomena which arise in various
practical problems.

9. Questions of structure. Kingman [10] asks whether a subadditive process
can always be represented as the supremum of additive processes. The answer
is no for ordinary subadditive sequences, and a fortiori no for subadditive pro-
cesses. The subadditive sequence

9.1) x, =1 r odd

r

=0 r even
is not the supremum of a family of additive sequences.

10. Multidimensional processes. The existing postulates of subadditive pro-
cesses contemplate random variables indexed by a pair of integers, each of which
is of course scalar. On the other hand, many of the most intetesting physical
applications require the random variable to bé indexed by a pair of vectors.
Suppose, then, that r, s, t are vectors (all of the same finite dimensionality)
with integer coordinates, and that x,, is a random variable indexed by r and s.
We can postulate a subadditive inequality of the form

(10-1) xrtéxrs’*“xst (r§s§t)'

The other postulates can be straightforward analogues of S, (or S,/) and S;. We
write r — 66 t6 denote that the coordinates of r tend to infinity independently;
and we define [] r to be the product of the coordinates of r. It is true that

(10.2) xoe/TI T — 71 as r— oo

in some sense (ergodically, in probability, etc.)?

To fix the ideas, let us consider a practical example from the statistical theory
of liquid-vapor equilibrium [11], [12], [13], [14]. Suppose thatr, s are 3-dimen-
sional vectors; and let V,; denote the rectangular parallelopiped, with edges
parallel to the coordinafté axes of 3-dimensional Euclidean space, and 4 pair of
opposite vertices at the points with coordinates r and s. Consider a Poisson
process of density 2 on the Euclidean space, let « be a fixed positive number,
and suppose théte is a sphere of radius a centered at each point of the Poisson
process. Let Sy denote the set of such spheres which lie wholly within V,; and
let x,, denote the total volume covered by S, (counting each element of volume
once only, irrespective of the number of spheres covering it). Clearly (10.1) is
satisfiéed and x,, is a multidimensional subadditive process. By ad hoc arguments
[12] one can show that (10.2) holds for this example, and one can calculate the
first five cumulants of the distribution of xq; and all five are asymptotically
proportional to ] r.

How does one ¢xtend subadditive theory to cover situations of this type?
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More generally, suppose that x(E) is a random variable defined for each subset
E of a vector space; and let

(10.3) x(E, U E,)) < x(E,) + x(E,)

for all suitably restricted E,, E, (e.g., Borel sets). Under what conditions does
there exist a measure u(E) such that

(10.4) x(E)|p(E) — 7 as p(E)— oo
with some suitable definition of convergence? The answers to questions like
this are of great importance in studying cooperative phenomena in physics and
chemistry; and they depend greatly upon what one means by u(E)— oo.
Roughly speaking, the desired results require that E should become infinite in
all directions (and should not be a long needle of large volume but fixed cross-
section) and that the “boundary” of E should be “reasonably smooth.” Evena
single tiny irregularity on the boundary can catastrophically change the results.
For example consider the dimer problem [7] in solid-state chemistry. In the
two-dimensional version of this one has a region consisting of a whole number
of squares of an infinite chessboard together with a set of dominoes, each of
which will cover a pair of neighboring squares. The problem is to determine
(for large regions) the number of ways of covering the region with dominoes
such that each square is covered by one and only one domino. If the region is
a rectangle of area 4 with an even number of squares, then the number of ways
turns out to be exp[oA4 + o(A)] as A — oo, where

(=17

(10.5) 5= T PR

But if the region has an irregularity on its boundary, which prevents the num-
ber of black squares equalling the number of white squares in the region, then
obviously the number of ways is zero because each domino must cover one
white and one black square. In the dimer problem, the number of ways of
covering a region satisfies a supermultiplicative relation analogous to (10.3).
Similarly, in the treatment of Ulam’s problem via Poisson processes [5], one
encounters (10.3). There are many other examples [16]; but enough has been
said to indicate the desirability of extending subadditive processes and their
postulates to the multidimensional case.

11. Notes. The following notes have been added to the original discussion
given above to bring things up to date: Note 1, 2, 3, and 6 to deal with points
raised by the referee; Note 7 to cover work arising from Kesten’s contribution
to the discussion on Kingman’s paper [10]; Note 8 to cover some recent computa-
tions at Berkeley performed by Dr. Robert Davies, of D.S.I.R., Wellington, New
Zealand and by Mr. Bob Traxler, Statistics Department, Berkeley; and Notes 4
and 5 to remedy an oversight in Theorem 2 revealed by the computer in the
course of these calculations. Note 8 is written jointly with Dr. Davies and
Mr. Traxler.
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Note 1. Ido not know of any previously published material on the first-death
problem. In our original work on percolation (in 1954 on the design of gas-
masks for coal miners) Broadbent and I noticed that branching processes were
the simplest special case of percolation processes, and critical branching was the
inspiration for the concept of the critical percolation probability. Hence in
1958, when extending ordinary percolation to first-passage pefcolation, I natu-
rally considered the simplest case—namely the first-death problem—and the
original computations on it were done on Illiac I in 1959. Nor do I know how
much this theory has been used for applications, though I have used it myself
as a rough model for detonation fronts in initiators of some explosive devices.
Maybe the theory might apply to the onset of cancer in multistage carcino-
genesis. There is of course a corresponding last-death problem, and the time-
lapse between first and last deaths gives an epoch for the generation, which
might be useful in palaeological dating of fossil records.

Norte 2. The extra work is now supplied by Kesten’s lemma in the discussion
of Kingman’s paper and its extension in Note 7 below.

Norte 3. If ¢’ is the right-hand derivative of ¢ and x < y and x < 0, then
x x x

Letting x — —oo, we get 0 = w = ¢'(y) = 0, and hence

P(x) = ¢0) + §§ ¢'(y) dy
= ¢(0).

NoTE 4. We need a gloss here to cover one possible exception. The function
¢(x) is concave, non-decreasing, and bounded above by zero. Hence e/ is
continuous everywhere except perhaps at a single point &; and if there is a dis-
continuity at § then e/® =0 for x < §&. The function J(x) arises from the
convolutive sequence G, in the same way as e arises from the superconvolu-
tive sequence F,; and so J(x) can have at most one discontinuity, at » say; and
if this discontinuity exists, then J(x) = 0 for x < 5. Now (3.82) shows that
e’(x) < ¢qJ(x) for all x; while (3.62) shows that e/ =1 for x > a. Hence
neither of the functions e and J(x) can be discontinuous in the open interval
x> a. Also e#® = qJ(x) for x < 8 by (3.79) and (3.82). So if a < B, we get
(3.83) as before, and (3.84) holds in the modified form gJ(a + 0) = 1 and J(x)
is a strictly increasing function in some right-hand neighborhood of « and this
leads to (3.85) as before. If either side of e#**) = ¢J(x) is continuous in the open
interval x < 8, then both sides are discontinuous at the same point § = 5 < §;
and, by working in the half-open interval § < x < 8 we deduce that gJ(8) = 1.
The only remaining case to consider is when either e#® or J(x) is discontinuous
at x = B itself. In this case we find e/ = gJ(x) = 0 for x < B, while ¢J(x) =
e#® = 1 for x > B; so both functions must be discontinuous at x = 8, and we
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then have the pair of relations
¢JB—0)=0, qiB+0)=1
in place of the previous relation ¢J(g) = 1.

Note 5. Equation (3.97) may fail to have a solution in one exceptional case.
In that case, if J(y) denotes the left-hand side of (3.97), then 7 is the unique
solution of 0 = J(y — 0) < 1/g < J(y + 0). See Note 4 above. If g = o, we
choose the “largest possible” solution of J(y) = 0.

Notk 6. In the branching process case, y has the following rough interpre-
tation. If the rth generation is not void, we should expect it to have roughly
¢" members. Any one of these members will die at a time (after the tree starts)
equal to the sum of r independent observations from the distribution G. The
times for different members of the rth generation will be dependent. However,
if we ignore this dependence, we still get the same asymptotic value of y. In
other words, yr + o(r) is the expected value of the least of 4" independent sums,
each sum being the sum of r independent identically distributed variables from
G. The dependence which actually occurs, strongly near the top of the tree and
more weakly as we descend the tree, is asymptotically “forgotten.”

Note 7. Some answers to these questions are given in the following extension
of Kesten’s contribution [10], which I read after writing the main text of this
paper.

LEMMA. Let X, (s = 1,2, --.) be a given sequence of real random variables with
distribution functions F, and finite second moments (EX,* < co). Suppose that there
exists an absolute constant 3 (independent of s) such that

(11.1) E[(X, + sp) ' < A2,
where {A,} is a real sequence satisfying
(11.2) 0445 - and LAl < oo

Suppose that we can also find (for each pair of positive integers s, t) a pair of random
variables X], and Y, , with the properties:

(i) EY, < A4
(ii) X, has the distribution function F;
(iii) the correlation coefficient p, , between X, and X|, satisfies p,, < 0 < 1 for
some absolute constant d (independent of s and t); and

(iv) F,., = G,, where G, , is the distribution function of X, + X/, + Y, ,.

Let s(n) = 2"m, where m and n are positive integers. Then there exists an absolute
constant y (independent of m) such that X, [s(n) — y almost surely as n — oo for
each fixed m. Finally X,/s — 7 in quadratic mean (and hence probability) as s — oo.

REMARK 1. The form of condition (11.1) allows some flexibility in applications
because we can choose § suitably. However, if we write X, — s8 and X/, — 8
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in place of X, and X/,, we see that there is no loss of generality in proving the
lemma under the assumption 8 = 0, in which case (11.1) reduces to

(11.17) E(X, )P < A}.

REMARK 2. The additional assumption that {X}},_,,... be almost surely a
monotone sequence will entail in the usual way the stronger conclusion that
X,/s — y almost surely as s — co.

REMARK 3. Our lemma generalizes Kesten’s lemma [10]: he considers the case
when 4, is a constant C and when X}, is independent of s and of {X},_,,.... It
is also a stochastic generalization of the following real variable theorem [2], to
which it reduces when X, = B, almost surely. Moreover, this theorem shows
that condition (11.2) in the lemma cannot be weakened.

THEOREM 4. Let {A},_,, ... and {B},_, , ... be real sequences such that {A} is
non-decreasing and such that
(11.3) B, <B +B,+4,.

Then the convergence of Y., A,[s* is a sufficient condition that B,|s shall tend to a
limit (which may be — o) as s — oco. It is also a necessary condition in the sense
that, if Y, A,[s* is any given divergent sequence, we can always find a corresponding
solution {B.} of (11.3) such that B,[s fails to converge to any ( finite or infinite) limit
as s — oo.

PROOF OF THE LEMMA. Define
(11.4) B,— EX,, C,=,EX}, D,=C}— B},
where (here and later) ,/ denotes the positive square root. We have

(11.5) (EY, ) < EY?,E1 < A

s+t
by the Schwarz inequality and condition (i). By conditions (iv) and (ii)
(11-6) B,., = EX,,, < E(Xs + Xs’,t + Ys.t) =B, + B + 4,,.

So the Theorem above exhibits a constant y such that

(11.7) lim,_, B,Js =1 (—0o =7 < ).
By (11.1’) and condition (iv), togethei with Schwarz inequalities like 2EX, X, <
2[(EX)(EX]Y) ], we have
Cove = E(XL,) + E(X5,) = E(XL) + 4,
(11.8) < E(X, 4+ X[, + Y, )" + A,
= (BXD) + (BEXD) + (EYD)N' + A0
SCHCHA44) + 4 = (C+ Co+24,,.) .

Hence

(11.9) 0<C,, <C +C +24,,,
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and the Theorem exhibits a constant ¢ such that
(11.10) lim,_,,C,/s = 0 00 < ).
However B?/s* < C2[s?, because D, is nonnegative (variance of X,). So (11.7)
and (11.10) show that y* < ¢® < co. Hence y > —oco. By (11.4), (11.8), and
condition (iii)
D, + By, =Co, = E(X, + X, + Y,,)" + 4,
= E(X + X, t)2 + 2EY t(X + X,t) + 2As+t
< E(X, + X)) + 2(EYE)EX, + X!, ) + 242,
(11.11) < E(X, + X! ) 4 24,,(C.? + 2C,C, + C2) 4 24?2,
= D, + 2p,(D,D,)} + D, + (B, + B,)*
+ 2Ax+t(cs + Ct + As+t)
< D, + 26(D,D,} + D, + (B, + B,)’
+ 2As+t(cs + Ct + As+t) *

However (2) shows that 4, = o(s) as s — co; so (11.10) guarantees the existence
of a constant M such that

(11.12) C,+Co+ A4, ZEMs+1).
Putting s = ¢t = s(n — 1) = 2"'m in (11.11) and writing
(11.13) Fu = Buwls(n) .

we find from (11.11) and (11.12)

Ds(n) (1 + 6) Ds(n—l) 2 s(’n)
11.14 < + T — Tat + 2M 2
WD oF=" 2 a—np T )

Since 4, is non-decreasing in s, we have for any integer N > 2

A 1
N — (n+1)—1
ol Zn—- 3(”) 2 Zn 2 s(n) Z;:s(n)

~s(n) T s(n) s(s + 1)
A, A
11.15 <2y, Y amih-t <2 e
( ) = Zn—z Zs—s(n) S(S + 1) = 8= 3(2) (S + 1)

<2}_‘_'81-_<oo.

aw — D < <&”_>2 < <92_’"_>2 + 1+0 D,u,

Also
D

11.16 = < .
( ) [s(H]? (2m)* — \2m 2m 2 [s(N)]

Summing (11.14) from n = 2 to n = N, and adding (11.15) and (11 16) to the
result, we find

v, D L LE O g D (Gom )2+ aM p, %

(1.17) %N,
[s(m)]* 2 [s(m)]*
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and hence

D 2 G\ B,\* A
11.18 i 10 ) i k13 —_m 4M Si=, 20 .
( ) WP T 1 = 5[(2m> + <m) + L s’:I

The right-hand side of (11.18) is independent of N, and the left-hand side con-
sists of nonnegative terms. Hence

(11‘19) Z;o=l D,(",/[s(n)]z < oo ;

and the Chebyshev inequality now implies that for every > 0

(11.20) z;;;lp[ém_ﬁn_) >5]<oo,
s(n)y  s(n)

So the Borel-Cantelli lemma ensures that

(11.21) Xw _ B _,
s(n)  s(n)

almost surely as n— co. Combination of (11.7) and (11.21) implies that
X, (n)/5(n) — 7 almost surely as n — oo.
Finally we have

(11.22) 0" — 1 =1lim,_ D,/s* = 0.

Indeed, the existence of the limit in (11.22) is guaranteed by (11.4), (11.7), and
(11.10); and, if its value were not zero, the series in (11.19) would not converge.
Hence X,/s — y in quadratic mean as s — co.

NoTEe 8. We have done some computations of the iteration F, ,, = Q(F, = G),
with various Q and G. Writing g, and ¢,* for the mean and variance of F,,
we may ask

(i) how does g, — ny = o(n) behave?
(ii) does gy — pty— 17
(iii) is ¢, bounded?

For simplicity, we confined the calculations to discrete distributions on the
nonnegative integers. If y is not an integer, the centered version of F, cannot
converge in distribution, but one would expect it to reflect the behavior of the
continuous case. Table 1 shows the results for

G(u) = 0 (1 < 0)
—1 =1

and Q(x) = 1 — (1 — x)?, corresponding to a branching process with exactly 2
offspring for each parent.



678 J. M. HAMMERSLEY

TABLE 1
p 7 n Un tn — ny o/ Un = ftn-1 oa?
0.25 0.1893 1 .56 .37 .563 .563 .25
2 .97 .59 .486 .409 .38
5 1.95 1.01 .341 ) 2303 57
10 3.28 1.39 .328 .249 .70
20 5.58 1.79 279 .219 .79
50 11.77 2.31 .235 .200 .85
100 21.62 2.69 .216 .195 .87
0.50 0.0 1 .25 .25 .250 .250 .19
2 .41 .41 .203 .156 .27
5 .57 .57 .140 .078 .41
10 .96 .96 .096 .041 .49
20 1.22 1.22 .061 .019 .55
50 1.55 1.55 .031 .007 .59
100 1.77 1.77 .018 .003 .60
0.75 0.0 1 .06 .063 .063 .063 .06
2 .09 .088 .044 .026 .08
5 L1 .109 .022 .003 .10
10 L1 112 .011 .000 .10
20 L1 112 .006 .000 .10
50 1 112 .002 .000 .10
100 L1 112 .001 .000 .10

For p = 0.75, both p, — ny and ¢, tend to constants. But, for p = 0.50 and
p = 0.25, the quantity g, — ny seems to be increasing to infinity rather slowly
(perhaps logarithmically) and it is not very clear whether o, converges to a
finite limit (probably it does, we believe). The critical distinction appears to be
whether pQ’(0) > 1 or pQ’(0) < 1. We have also looked at a number of other
cases, which seem to confirm the above findings. These cases include

Qz)=1—(1 — z)t for k =%,2,3
Q(z) = 3z — 2z%
@) =1—-{1 -2+ (1 —-27+ (1 —273

taken (in various combinations) with G equal to binomial distribution, a geo-
metric distribution, a mildly truncated Poisson distribution, and a J-shaped
distribution (low on the left and high on the right). Results are rather different
when Q'(0) = oo, for example, when' Q(z) = z!, and in this case, although g,
converges for the discrete distributions we have used, there are indications that
¢, would diverge to + oo for continuous distribution G.

Note 9. This note, and the next note, constitute corrigenda added at the page
proof stage. Dr. V. M. Joshi, of Bombay, kindly pointed out to me (in a letter
dated 10 April, 1974) that the inequality (2.1) is false in the case of the first death
problem: indeed, here is a case of one of those “clearly true” false statements!
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Dr. Joshi writes “In the rth generation let 4 be the person whose death occurs
first; in the sth, among the descendants of 4, let B be the person whose death
occurs first; in the th, amongst persons descended from 4, let C be the person
whose death occurs first. In the whole sth generation, let B’ be the person whose
death occurs first; and in the rth, amongst the descendants of B’, let C’ be the
person whose death occurs first. Let the times of death of A; B, C, B, C' be
respectively T, T,, Ty, T,’, T;/. Then according to the definition of the process
X =T, — Ty, x,, = Ty — Ty, x,, = Ty — T,). If B and B’ are different persons,
of which there is positive probability, T; — T, and Ty — T, are independently
and identically distributed random variables. Hence, with positive probability,
Ty — T, < T,— T, so that x,, > x,, + x,,.” Thus the first-death problem for
an age-dependent branching process is not a subadditive process, at least if
formulated as here. It does, however, still provide an example of a supercon-
volutive sequence, since Theorem 2 remains valid. It also illustrates the false
converse in Theorem 3. Dr. Joshi’s letter continues “I also point out here a
minor discrepancy in your joint paper with D. J. A. Welsh [8]. The Theorem
8.3.1 (page 108 of that paper) states that (0, m 4 n) = ¢(0, m) + ¢(0, n). But
this is incorrect. The route r of ¢, . ,(») meets the line X = n at the point P
and r, r, are the portions of » which run from (0, 0) to P and (m + n, 0) to P
respectively. In the proof of the theorem it is assumed that #(r,, ©) = 5,,,, .(®)
which is not correct because the path of s,,, .(®) is subject to the restriction
that it has no arc along the line X = m + n, a restriction which does not apply
to r,., What can be asserted therefore is only #(r,)) = b, .(®) leading to
(0, m 4+ n) = ¢(0, n) + B(0, m).” I am grateful to Dr. Joshi for giving me the
present opportunity of correcting these errors.

Note 10. The argument after (3.24) needs further clarification, From (3.24)
we conclude (on letting r — oo) that K(¢) = fa + ¢(—a) for any a. However
¢(—a) ~ —wa as a— co. Hence K(0) = (0 — w)a + o(a) as a — co. Letting
a — oo, we deduce K(f) = + oo for § > w, as required. There is also an incor-
rect statement in Section 3 four lines before (3.25): the convexity of exp{K,(6)}
need not imply the convexity of eX'”. Accordingly the three lines before (3.25)
should be deleted. Nevertheless, (3.22) is equivalent to (3.25). To see this, we
first carry through the proof of (3.25) under the restriction 0 < § < o as in the
text. Next notice that the argument in (3.33) remains valid under the weaker
condition 0 < 6. Thus (3.34) holds for § = 0, since it is trivially true for ¢ = 0.
Consequently ¢(x) < inf,,, {K(0) + 0x} < info,., [K(0) + 0x] = ¢(x), by (3.34)
and (3.25). This establishes (3.22), as required.
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