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RANDOM STIRRING OF THE REAL LINE
By WANG CHUNG LEE
University of Hawaii
Random stirring of the real line R; is defined. This notion is derived
from a generalization of the nearest-neighbor simple exclusion model on
the one-dimensional lattices discussed by Spitzer and by Harris. Under
the random stirring, the motion of an infinite particle system is Markovian
and has a Poisson process as an invariant probability measure. An ergodic

theorem is established concerning the convergence of a system to a Poisson
process.

1. Introduction and summary. In his paper [12], Spitzer formulated several
models concerning the motions of infinite particle systems with interactions.
The configurations of the systems can be described by certain Markov processes
with invariant measures which are identified as some of the classical measures
in statistical mechanics. See also ([6], [8]). A special case of these is the simple
exclusion model on lattices with nearest neighbor assumption. In the one-
dimensional case, this can be described roughly in the following way. Consider
infinitely many particles on the integers Z. They move in such a way that (a)
no point of Z can be occupied by more than one particle and (b) at time ¢ a
particle can only jump to an unoccupied neighboring site with probability dr -+
o(dr) in the time interval (¢, r 4 df). Harris [6] considered the transition of a
particle at x to a neighboring site y to be caused by switching the end points of
the link (xy) joining x and y. This suggests the possibility of regarding the
motion of the particles as induced by a transformation on Z. In fact, let T be
the transformation on Z such that T(0) = 1, T(1) = 0, T(x) = u for every u =+
0, 1 and let T (#) = x + T(u — x). Then switching the end points of the link
{xy} is just the same as applying T, or T, to Z. If at time ¢ each T', has a prob-
ability dr + o(dr) of being applied during the time interval (¢, ¢ + df), then the
counting measure describing the occupation of points of Z has the same law as
for the simple exclusion model, although the motion of individual particles is
different. A first step generalization of this is to allow T to be a transformation
which is a permutation on a set of integers {ke Z: —m < k < m} for some
m = 1, and leaves integers outside this set unchanged. Further generalization
to consideration of particles distributed on the real line leads us to the following
problem. For some of the notations see Section 2.

We will consider the effect of repeated stirring of the real line R, induced
by a measure-preserving bijection T at random times and places, the randomness
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being controlled by the Poisson process P, on R,,. More precisely, suppose
that w € Q, is a realization of P,. Then at any time ¢ if there is an atom (x, f)
of w, T, is applied to R,; in this case we also say that a stirring of R, by T occurs
at x at time r. A strirring of R, occurs at a point in the interval (x, x 4 dx)
during the time interval (¢, ¢ + dr) with probability dxdr 4- o(dx dt).

We might also think of our process as representing a kind of turbulence, with
little disturbances popping up at random places and times.

The main results we have obtained are the following:

In Section 3 it is shown that under the random stirring the motion of a system
of particles is Markovian. In Section 4 we show that the transition function
defining the motion of a finite number of particles has Lebesgue measure as an
invariant measure, while the motion of an infinite particle system has a Poisson
process as an invariant probability measure; this is done in each case by con-
structing a reverse process. In Section 5 we give an interesting fact about the
distance between two particles, namely, the distance process has 2 as an invariant
measure on (0, co), and under an appropriate condition on T it is a recurrent
null process with a single ergodic class of states. Hence two particles will usually
be far apart after a long time. Equally important to us is a similar result for
the reverse process. In Section 6 it is shown that under reasonable hypotheses
the distribution of an infinite particle system will approach a Poisson process;
this result is related to the random ergodic theorem ([4] pages 165-166). The
same kind of question for particles moving independently is solved by Stone
[13]. Finally in Section 7 the corresponding lattice model is discussed

2. Notations.

Z, = set of all nonnegative integers. We adopt the convention that a measure
described as Z,-valued can also take infinite values.

(R, &,) = k-dimensional real Euclidean space, k = 1,2, .... For 4e &,
A(A) or |A4| denotes the Lebesgue measure of A.

E = {&: §is Z, -valued measure on (R,, &%) such that §({x}) < 1 for each
x e R, and §(4) < oo for each bounded 4 ¢ &Z}. &= o-field of E generated by
all subsets of E of the form {§: §(4) < k}, where ke Z, and 4¢ <%. We can
regard each ¢ as the configuration of a system of indistinguishable particles, an
atom of ¢ (i.e., a point x e R with §({x}) = 1) being identified as a particle.
Thus the words “point” and “particle” will be used interchangeably.

R,, = R, X (0, 00). Z,, = set of dll Borel sets in R,,.

Q = |[w: 0 is Z, -valued measure on &%, such that o(R, X {t}) < 1 for each
te (0, o) and w(A4) < oo for each bounded set 4 ¢ <Z}}.

Q, = {w e Q: for each ¢ > 0, there are infinitely many positive and negative
integers m such that o([3m, 3(m 4 1)) x (0, t]) = 0; w({ x (0, c0)) = oo for
every interval /in R,}. The reason that we take Q, is that we will deal with a
Poisson process on R,,, which is obviously concentrated on Q,. &, = o-field
generated by all subsets of Q, of the form {w: w(4) < k}, where ke Z, and
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Ae &,,. P, = Poisson process on R,, with constant intensity 1 per unit of area.
(R0, F, Py) is our basic probability space.

The letter T denotes a bijective, bi-measurable and (Lebesgue) measure-pre-
serving transformation from (R,, £2,) onto itself such that T(x) = x for each
xg¢[—1,1]. Also we will exclude the uninteresting case that T(x) = x, 2-a.e.
For each x € Ry, T, is the transformation on R, defined by T,(y) = x + T(y — x).

3. Markoyv processes. The proofs of the results in this section are standard
and will be omitted.

3.1 The motion of a point. For each x ¢ R, and w € Q,, we construct two
sequences X, x;, - - -, whereeach x, e R;,and0 =1, < t, < ..., in the following
way. Take x, = x and #, = 0. Suppose that for some n > 0 we have deter-
mined x,, - -+, x, and ¢, < .-+ < t,. Choose ¢,,, such that for some %,,, € R,,
(Fa+15 tasr) is the atom of @ in [x, — 1, x, + 1] x (#,, o) having the smallest ¢-
coordinate. Thenputx,,, = T;, , (x,) and continue the construction inductively.
Next for the same x and w, define

(3.2) X(x,0) =%, L<t<t,, i=0,1,2,....

PRrOPOSITION 3.3. Under the Poisson process P, for each fixed x € R, X,(x, +) is
a Markov process with initial value x, state space (R,, <,) and stationary transition
function Q, (y, A) = Pfw: X(y, w) € A}, wheret = 0, ye R, and A c ZB,.

X,(x, ) describes the motion of a particle initially at x. It will be the basis
for constructing other Markov processes that are interesting to us. Note that
for any £ > 0,

(34)  Qux+h A+ h) =0Q,,(x,4), where A+ h={a+h:aed.

3.5) The motion of a finite number of particles. For k =1,2, ..., let
(x5 s X)) €S, ={(y> - s ;)€ R, y, # y; for i = j}. It is clear from Pro-
position 3.3 that under P,, (X,(x, +), - - -, X,(x;, )) is a Markov process with
initial value (x,, - .-, x,), state space (S,, &, n S,) and stationary transition
function  Q, ,(y1, -+, yis I') = Pt (Xy(y1, @), - -+, X(ys» ®)) €T},  where
(y1s -+ ) e Spand T' e &5, n S, The following easy observation will be useful
later.

(3.6) () Qiu(xps -5 x5 T) = Q, u(X,005 + 5 Xoi3 I',), Where ¢ is a permu-
tation on {1, - .-, k} and
Lo ={ows ==+ Yow): (s -+ -> y) €T}

() Quexi+ s -, x,+ 85T 4+5)=0,,(x), -+, x5 ) where T 4 5=
i+ nmt ) On-mp)el}l
3.7 The motion of a particle system. Foreachée &, we Q and ¢ = 0, define
§i(&, 0)(A) = é{x e R,: X(x, w) € A}, for Ae &&,. If we interpret & as the con-
figuration of a system of indistinguishable particles, then &,(§, ») can be regarded
as the configuration of the system at time 7.
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ProposITION 3.8. For each & € & under Py, §,&, +) is a Markov process with
initial value &, state space (8, .5”) and stationary transition function W,(y, E) =
Piw: &,(n, w) e E}, wheret = 0, pe€ E and E ¢ .

(3.9) The distance process between two points. Consider the motion of two
points. Denote the set of all strictly positive real numbers by R, and the set
of all Borel sets in R, by <#,. Let ¢: S, — R, be the function ¢(x, y) = |x — y|.
It is clear from (3.6) that Q, ,(x, y; ¢™(4)) = Q,s(|x — y|, 0; ¢7*(4)), for every
A€ ZZ,. This justifies the following definition.

DeriniTION 3.10. The distance process D,(u, w), t =0, ue R,, we ,, is
defined as D,(u, w) = |X,(u, ) — X,(0, w)|. It represents the distance at time ¢
of two particles initially at a distance u apart. For ue R, let g(u) = A{x e R,:
|T(u — x) — T(—x)| # u}.

ProrosiTION 3.11. For each fixedu € R, D,(u, +) is a jump type Markoy process
with initial value u, state space (R, <%,), stationary transition function A (a, A) =
Q, «(@, 0; 0~Y(A)) and intensity q(a), where a« € R, and A€ &,.

4. Reverse processes and invariant measures. In the symmetric simple ex-
clusion model discussed by Spitzer, one important feature is the symmetry of
the stochastic kernel defining the motion of a finite number of particles. In our
case this symmetry is not necessarily present, but as in the case of some Markov
processes, we can still define a reverse process, which will help us to investigate
the original one. The following definition is adopted from [10].

DerINITION 4.1. Let {P},, and {P,*},., be two transition functions defined
on a measurable space (Y, €"). They are called reverses of each other with
respect to a measure mon (Y, &) if {;, P(y, Cy)m(dy) = §,, P,*(y, Cy)m(dy), for
every C,, C,ez and t > 0.

REMARK 4.2. If {P,},., has a reverse with respect to some measure m, then
m is an invariant measure for {P},.,.

DEerINITION 4.3. If we use T* = T!instead of T, we will obtain a different
random stirring of the real line. This is called the reverse of the original one.
The reason for this will be clear later. All the quantities defined for T also
make sense for 7* and will be denoted by adding an asterisk.

For each ¢t > 0, let H,: R,, — R, be the map

Hy(x,r)=(x,t —r) 0<r<t,xeR,
= (x, ) r=t,xecR,.

H, is a measurable bijection and defines a map H,*: Q, — Q, by H,*(0) = 0H,™!
for w € Q,. H,* in turn defines a measurable transformation on point processes
on Q, by mapping P into PH,** for each point process P on £,. An easy obser-
vation is that P, = P, H,*~. In the following we will drop the dependence on
t and simply write wH,*~! and PH,*~' as o* and P* respectively.
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Finally, let 4 be a probability measure on (E, 5). For r=1,2, .., we
define p,"(A,, -+, A3 kyy -+, k,) = pfée B: §(4;) =k, 1 < i < r}, where k, e
Z, and 4, are bounded sets in <%, 1 < i < r. It is known that ¢ is uniquely
determined by the functions p,”.

THEOREM 4.4. Fork =1,2, ...,

(1) {Q:i}izo and {Qf )z, are reverses of each other with respect to ;

(ii) 2 is invariant for {Q, ,},s,-

ProoF. (i) The case k = 2 is sufficiently representative. In this case it is
enough to prove that

4.5) §8r, Qua(x, y3 Ty) dx dy = §§r, Qfa(x, y; T) dx dy
for I'y = 4, x 4, and T, = B, x B,, where A,, A,, B,, and B, are bounded sets

in &2 such that 4, N 4, = ¢ and B, n B, = ¢. For such sets (let us drop the
index k = 2), the left-hand side of (4.5) is

(4.6) $a, Po(d) §§ 4,4, Iy x5, (X%, @), X(p, 0)) dx dy
by definition of Q,. Let w and ¢ be fixed. Since A4,, 4,, B, and B, are bounded,
we can find a finite sequence x,, - .., x, in R, such that X(z,0) =T, o---0
T,(z) for ze A, U 4,, and X,*(z, 0*) = Tho--wo T} (z) for ze B, U B,. Not-
ing that for each x;,, T,, and T} preserve 1, we have
SSAlea Ip,x5,(Xi(%, ©), X(y, 0)) dx dy
= SSleBa Ly xal(XH(X, 0%), X(p, 0*)) dx dy.
Accordingly, since P* = P, (4.7) is equal to
SOo Py(dw) SSlesg IAlez(Xt*(x’ 0), X,*(y, ®)) dx dy
and (4.5) is proved. (ii) follows from (i) by Remark 4.2.
Using similar argument, we can prove

THEOREM 4.7. Suppose that p is a probability measure on (8, &) such that for
each r=1,2, ..., and each sequence A,, - .., A, of bounded disjoint sets in B,
p. depends on A,, - .., A, only through their Lebesgue measures. Then

(i) {W.}izo and {W *},., are reverses of each other with respect to p;
(i) p is invariant for {W},.,. In particular, the results are true if p is a Poisson
process.

TueOREM 4.8. (i) {A},;, and {A*),., are reverses of each other with respect to
Aon R,;
(i) 2 on R, is invariant for {A,},.,.
Proor. It is enough to show that
§40(u, Bydu = §,A*(u, A)du for open intervals A4, BeR, .
For convenience we transform the coordinates of R, by ¢(x, y) = (u, v), where
u=(x—y)2tand v = (x + y)2~%. Q,, is then transformed into a transition
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function Q} ,(u, v; T') = Q, J(¢~*(u, v); ¢~(I")) satisfying
4.9) Q/(u,v+ T 4+ (0,h) =Q,/(u, v; T') for heR,
and Q/(—u,v;T) = Q/(u, v; T), where T' = {(u,v): (—u,v) e}, (we have
dropped the index 2 again). Notice also that 2 is again invariant for Q,’ and
that A,(2tu, 2t 4) = Q/(u, 0; A), where uc R, Ac <, and A = (A U —A)x R,.
Similar statements hold for Q,*. Furthermore, the relation of two processes
being reverses of each other is invariant under a coordinate transformation.
Thus Q, has a reverse denoted by Q,’* which is just Q,* transformed by the
above rotation, i.e., Q,/* = Q,*'. Letting I = (0, 1) and using (4.9), we have
4.10)  §,A,(2%,2¢B)du = §,§, Q/(u, v; B) du dv

= §§; 0%, v; A x I)du dv

= $5 {82, QM ®; 0 (4 U —A) x (I — v))dv}du.
We claim that for fixed 4 € &,

§2, Q' (4,05 (AU —A) x (I —v))dv < Q,*(4, 0; A) for 2-a.e.u.
To see this,

(i) First suppose that Q is any transition function on (R,, &%) with a density
q(u, v; x, y) satisfying q(u, v; x, y) = q(u, v + h; x, y + h) for u, v, x, y, he R,.
It is easily verified that the equality in our claim holds in this case.

(ii) Next we define forn =1,2, ...,

gilts V3 X, y) = §§2, Q7 (4, v; dz, dw)r,(z, X)r, (W, }) ,

where r,(r, s) = (n/2x)t exp [—(n/2)(r — 5)*]. Using the properties of Q,*' it is
not hard to check that ,g, satisfies the requirement in (i). Let ,Q, be the tran-
sition function defined by ,g,. Then

4.11) § 2, nQu(, 05 (4 U —A) x (I — v))dv < ,0,(4, 0; 4).
From definition,
W0, 05 A) = §§5, Q%' (4, 0; dx, dy)ga(x; A U — ),
where ¢,(x, AU —A) = §,,_, r.(z, x)dz. Thus,
(4.12) lim,_,, ,Q(4, 0; f‘f) = Q,*(u, 0; /f)
+ 27'Q,*'(u, 0; {a, —a, b, —b} x R)),

where a and b are the end points of 4.

For any x,eR,, using the invariance of 2 for Q,* and (4.9), we obtain
§§2, Q*'(u, 0; {x;} x R,)dudv = 0. This implies that Q,*(u, 0; {x;} x R,) = 0,

A-a.e. u. Accordingly, the limit in (4.12) = Q,*'(u, 0; A) for 2-a.e. u. Similarly
we prove that
lim inf, ., ,Q.,, 0; A x (I — v)) = Q,*(,0; A x (I — v))

and
lim inf,_, ,Q,,0; —A x (I — v)) = Q,*'(u,0; —A x (I — v))
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for every uand v. The claim then follows from (4.11) and Fatou’s lemma. Now
returning to (4.10), we have

(4.13) §4 4,2, 2!B)du < §; A*(2u; 24 A) du .

However Q,** = Q,. Thus, equality actually holds in (4.13) and (i) is proved.
(ii) again follows from (i).

Theorem 4.8 is quite an interesting fact for D, and will be an important tool
in the next section.

5. The null recurrence of the distance process. In simple exclusion model
on lattices with nearest neighbor assumption, it can be shown that any two
particles will “usually” be far apart from each other. We wish to establish the
same phenomenon in our model.

Let A be the transition function of the imbedded pure jump Markov process
D, of D,, and q(u) be as defined in (3.10).

ProrosiTION 5.1. (i) 0 < q(u) < 4, for every uc R,; q(u) and ﬁ(u, A) are in-
dependent of u foru > 2.
(i) Let o(A) = §,q(u)du for Ac B,. Then o is an invariant measure for A.

Proor. In (i) the only nonobvious statement is g(x) > 0. This can be shown
as follows: Let
(5.2) Xo=supf{x:xecR, and T(y) <y for 2-a.e. y < x}.
Since T is measure-preserving from [—1, 1]Jonto [—1, 1], §,_, ,;[T(x)—x] dx = 0.
This implies that x, is in [ —1, 1) because the case T(x) = x 2-a.e. is excluded
and T(x) = x for x¢[—1, 1]. Also it is obvious that T(y) < y for 2-a.e. y < x,
and that

(5.3) for every u > 0, there exist 1 > K, > 0 and L, > 0 such that |B,| >
L,, where B, = {x € (%, X, + u): T(x) = x + K,}.

Next note that T(—x) < —xand T(u — x) > u — x + K, for A-a.e. xe B, + u.
Hence, q(u) = |—B, + u| = |B,| = L, > 0.

(ii) follows directly from the Kolmogorov forward equation for A,.

In what follows, the terminology can be found in ([11], pages 4 and 12). For
convenience, we state the following fact ([3] and [11]).

5.4 Let {Z,} be a Markov process with state space (Y, ) and stationary
transition function P(y, C) and let m be a nontrivial o-finite measure on (Y, %¥).
Suppose that '
(i) & is separable, _
(ii) for each m-null set C, P(y, C) = 0 m-a.e. and
(iii) {Z,} is m-recurrent on a stochastically closed set A such that m(A4°) = 0.

Then the following hold.
(i) {Z,} has a unique (up to a multiplicative constant) nontrivial o-finite
invariant measure z stronger than m.
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(ii) If #7(Y) = oo, then there exists an m-null set Bsuch that lim,__, P™(y, C) =
lim, ., P*™(y, C) = 0 for every C with 7(C) < oo and every y ¢ B. (P* denotes
a reverse of P with respect to x.)

Next we will impose the following condition on T'.

[D]. There exists 0 < 6 < 1 such that

[D],. For each Borel set A in (—4, 0), |(T — 6)~%(4)| = p|A| for some 5 > 0
independent of 4, where ¢ denotes the identity function on R,.

[D],. For each Borelset Ain (—2, —2 4 d) with |4] > 0, (T — 6)7*(4)| > 0.

See (5.10) below for examples of T satisfying these conditions.

REMARK 5.5. A can be expressed in terms of 7 by A(u, 4) = |F,~}(4)|q(x)"%,
where uc R,, Ae &, with u¢ A and F,(x) = |T(u — x) — T(—x)| for xeR,.
Therefore, [ D] implies the following conditions on A(6 and B are as in [D]).

[D),. Foru > 2, A(u, A) = p|4|4~* for every Borel set 4 in (u — 3, u).
[D],. Foru > 2,A(u, A) > 0 for every Borel set Ain (u — 2, u — 2 + &) with
4] > 0.

LEMMA 5.6. (i) Under Condition [D],, R, is the union of two disjoint sets R,
and I, such that R, is stochastically closed, {15,,} is A-recurrent on R, and
I, N (2, 00)] = 0.

(ii) If furthermore [ D], holds, then |I, n (0, 2)| = 0.

Proor. We will divide the proof into several stages. First observe that the
size of a jump of D, is at most equal to 2.

(i) Any interval I = (a, b) in [2, co) with |I] > 2 is essential. For if such an
interval 7 is inessential, then

5.7 Pr{D, eI infinitely often| D, = a} = 0 for every a > 0.

On R, define a random walk ¥V, = Y, + ... + Y, where Y,’s are independent
random variables with a common distribution given by the displacement random
variable Z of D, when u > 2, more precisely, Z = T,(4) — T,(0) — u with
u > 2 and x uniform on {xeR,: T (u) — T,(0) # u}. Then E(Z) =0. This
together with [D], shows that ¥, is 2-recurrent ([2] Chapter 8 and [7]). Now
for every a e R, because of (5.7) D, is either in (0, a] or [b, co) after a finite
number of steps. In the latter case, D, would follow the same law as ¥, on
[b, c0) and have to visit (a, ) infinitely often almost surely, which is a contra-
diction. Accordingly lim, [&‘”’(a, (0, a]) = 1. However since ¢ is invariant
for A, ¢(0,a] = §z, 3‘”’(0(, (0, a])o(da), ne Z,, and so Fatou’s lemma gives
a(0, a] = o(R,). This is a contradiction [(5.1)].

(ii) R, is properly essential. We assume the contrary. Then R, is a counta-
ble union of inessential sets. Take the intervals I, = (5, 8) and [, = (2, 11), and
then pick an inessential set 4 such that [4° n [,| < 627, where d is the number
in condition [D]. From (1), I, is essential. Hence there exists o, € R, such that
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Pr {D, e I, infinitely often|D, = )} > 0. However for each a ¢ I, ﬁ(a, A) =
Aa, [ — 8, 2] n A) = p4~Y[a — &, a] N A| = B38~* > 0. Hence if I, is visited
infinitely often with nonzero probability, so is 4. This is impossible since A4 is
inessential.

(iii) For every a and b in R, there exist positive integer n.and r > b such
that 3‘”’(0{, [6,r]) > 0. This is clear for « = b. Hence we may assume that
a<b. Foruza,let C,,={xe(x,x,+u): T(x) = x + K,}, where x, and
K, are defined in (5.2) and (5.3). Then for 2-a.e. xe —C, , + u, T(u — x) —
T(—x) =z u + K,. Thus,

Hx: T — x) — T(—x) Z 4 + K.} = |Cul = |Bo] = Lo,

where B, and L, are defined in (5.3). This implies that for u > a, ﬁ(u, [ +
K,, ©)) = L,47'. Next let n, be the smallest positive integer such that a -+
n,K, > b. During the time interval [0, n,], from a D, can move at most to
a + 2n,. Then A®o(a, [b, @ + 2n,]) = (L,/4)™, and this proves (iii).

(iv) R, is indecomposable. Let 4 be a stochastically closed set in R,. From
(iii) it follows that 4 contains an arbitrarily large positive number. Pick ae A4
with @ > 2. Partition [2, a] into finitely many subintervals J; each of which
has length < §2-*. Then from [D], it is easily seen that |J, n 4° = 0 for each
J; and so |[2,a] N 4°] = 0. Accordingly,

(5.8) |[4° N [2, co)| = O for each stochastically closed set 4, and (iv) follows.

(v) Since 7, is separable, a theorem in ([11] page 39) says that R, has the
decomposition stated in Lemma 5.6 (i). That |, n [2, co)| = 0 follows from
(5.8).

(vi) Finally to prove (ii) subdivide (0, 2) into finitely many intervals J; each
of length < 62-'. Because of [D]2 for each J; we can find an interval L; in
[2, oo) such that A(x, 4) > 0 for everyuel; and Ain J; with [4] > 0. From
(v) we know that L; n R, # ¢. Thus |[J; n Ry| must be zero for each J;, whence
|, n (0,2)] = 0.

ComMENTS 5.9. Condition [D] can be modified so that Lemma 5.6 still holds.
For example, 1° replace (T — ) in [D], by 6 — T or (—4, 0) by (0, 6); 2° [D],
also can be replaced by

[D], For every Borel set 4 in (—-1 —1 4 9) with [4] > 0, (T — 6)~%(4) n
(—=1,0) > 0.

ExaMmpLES 5.10. Quite a number of transformations T can be constructed to
satisfy [D]. In fact, [D], is satisfied by any T such that for some a e (—1, 1]
and ¢ > 0, T(a) = a and T is continuous and linear with slope—1 (abbreviated
as CLS-1) on [a — ¢, a]. In the following examples if the values of T on some
part of [—1, 1] are not specified, it is understood that they can be arbitrarily
defined as long as T is as in Section 2.
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(i) T(x) = —x,xe[—1,1]. This is a continuous analogue of the nearest
neighbor simple exclusion model on lattices.
(i) T(x) = —x, for xe[—1, —1+4¢), T(—1 +¢)=—1+4¢, and T is
CLS-1on[—1+ ¢, —1 4 2¢], where 0 < e < 272,
(iii) T7(0) = —1, T(2"") = 27!, and T is CLS-1 on[—¢, 0], and [27! — ¢, 277),
where 0 < ¢ < 471,

(i) and (ii) satisfy [D], and [D],, while (iii) satisfies [ D], and [D],’.
Condition [D] is assumed from now on.

CoROLLARY 5.11. For each h > 0, the set R, is stochastically closed with respect
to the discrete-time transition function A,. A, is 2-recurrent on R,.

THEOREM 5.12. Foreach bounded set A ¢ R, lim,_ A,(a, A)=1im,_,A,*(a, A)=
0 for 2-a.e. a € R,.

Proor. It follows from (5.4) and (5.11) that for each 2 > 0 there is a 4-null
set B (depending on A,) such that

(5.13)  lim,_, A,,(a, A) = O for every bounded set 4 ¢ ZZ, and every a ¢ B.

Also the Kolmogorov backward equation for A, implies that A,(a, 4) is uniformly
continuous in ¢. From this and (5.13) the result for A, follows. The proof for
A,* is similar.

6. A limit theorem. In this section p; with or without subscript denotes a
probability measure on (&, ).

Consider the Markov process &,(&,, +) defined in (3.8). Suppose that g, is the
initial distribution of §,. Then the distribution of &, at time ¢ is given by

(6.1) t(E) = \s p(dE)W (&, E)  forevery Ee.7,

where W, is defined in Proposition 3.8.

(It is assumed that the initial value &,is picked according to g, independent
of w € Q,.) From Theorem 4.7 we know that if y, is a Poisson process on R,,
then g, is an equilibrium state i.e., p#, = y, for every + > 0. Our problem in
this section is to find a reasonable condition on g, such that z, will converge to
equilibrium.

DEFINITION 6.2. Let k = 1,2, .... A kth order product density of p is a
finite nonnegative Borel measurable function f, on (S,, <%, n S,) such that for
every nonnegative Borel measurable function g on (S, <, N S,),

E(p, g, k) = § -+ §s, 9(xs, e X) [l ey ) dxy - dx,

where E(y, g, k) denotes the expectation of § - - - §5, g(x;, - - -, x,)&(dx,) : - - §(dx,)
with respect to p. Obviously if f, exists, it is unique (up to a 2-null set).

The following lemma will be useful. Its proof follows readily from Fubini’s
theorem.
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LEMMA 6.3. Let{f,},—, ... be product densities of p,, and g a nonnegative measur-
able function on (S,, <&, N S,). Then

E(/"t’ g, k) = S U Ssk G(xl’ Tt xk)fk(xl’ Tt xk)dxl e dxk ’
where p, is defined in (6.1) and

G(xl, cee, xk) —_ S . Ss,, g(yl’ .. "yk)Qt,k(xl’ cey Xy dyl’ cee, dyk) .
DeriNITION 6.4. For k =1,2, ..., and M= 1,2, ..., let V,, be the set
{(xp, -5 x) €S, |x, — x;)] < M for some i,je{l, ---,k}}. Then a k-tuple
(%1, « - -5 x,) & V) Tepresents k particles with distances greater than M from each
other.

THEOREM 6.5. Let the transformation T satisfy the condition [D] in Section 5
(see also (5.9)). Suppose that the initial distribution p, of the Markov process
§(&, w) satisfies the following conditions.

(i) For some p > 0, E, (§(A)) = p|A| for every A e Z5,.

(ii) po has product densities {f,},_, . ... such that

(a) foreachk =1,2, ...,f, < a, for some a, > 0, and

(b) there exists a double sequence {0,,},—1s,... y=1,... Of positive numbers such
that for each k, 0,,, —» 0 as M — oo, and p* — 9, < fi(xy, - -+, %) < p* + 0,y
for every (xy, - -+, x,) & V,y. Then as t — co p, converges weakly to v, the Poisson
process on R, with intensity p.

REMARK. Notice that (iib) is a kind of mixing property, insuring almost
independence at great distances.

Proor. First let us show that for each bounded Borel measurable function
g on R, with compact support,

(6.6) lim, ., E(p,, 9, k) = p*§ -+ §5, 9(x, -+, x;) dx - - dx,
1°. For k = 1, (6.6) follows easily from Lemma 6.3 and (6.51)
2°. k = 2. It is enough to consider non-negative g only. Let 4 be a compact

support of g. Using Lemma 6.3, (6.5ii), and the fact that 2 is invariant for
Q, 1, it is not hard to show that

(6.7) E(p, 9, k) < (0 4+ 00 § -+ §s, 9(x1, -+, X)) dxy - - dx, + Gy(r)

where G,(f) is an integral whose absolute value is bounded by a constant
multiple of
Disiisk) SBU Quilxy, - vy x5 A)dx, -+ - dx,,
where B,; = {(x,, - -+, x;) €S, |x, — x;| < M}. Let us consider a typical term
in the sum when i = 1 and j = 2. Call this G,,(f). We may assume that 4 =
A, x --- x A, where the 4;’s are one-dimensional bounded intervals. Then
denoting {(x;, - - -, X;): X, - - -, X, all distinct} by S;_,, we have
Glz(t) = s e SAnSk Q?ﬁk(xn sy X V2M X S;c—ﬂ) dxl e dxk
= IT%s | Al §8cayxapns, Qialxss Xa3 Vay) dx, dx, .
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The inequality holds because QfF,(x,, -+, X, Vyy % Si_a) = QFa(xy, Xo5 Vay).
From Theorem 5.12, lim, ., Q¥,(x;, Xy; Vyy) = lim,_, A,*(jx, — x|, (0, M]) = 0
for Z-a.e. (x,, x,) € S;, and so lim,_,, G,,(r) = 0. This together with (6.7) shows
that

(6.8) limsup, .., E(z,, 9, k) < p*§ - -+ §s,9(x; + -+ x) dx; - - - dx,

by letting # and M tend to infinity respectively in (6.7). Similarly, we can prove
that lim inf,__, E(y,, g, k) = right-hand side of (6.8). Hence (6.6) holds.

Now to finish the proof of the theorem, let f be a continuous function with
a compact support B on Ry, §(f) = {, f(x)é(dx) and p* = E,(£(f)*). Under

the Poisson process v, £(B) is a Poisson variable. Hence
lim sup, _, [v*®|7*k=* < Clim sup,_,, [E,(§(B)*)]"*k* < oo, where |f| < C.

Also it is clear that ¢ is a finite sum of terms of the form E(y, g, k). Accord-
ingly from (6.6) lim,_, #, = v*®, and so the distribution of &(f) under g,
converges to that under »([1] pages 181-182). The theorem then follows from
([6], Theorem 2.1).

7. The lattice model. In this section we will discuss briefly a similar model
in Z,, the set of all integers. All of the results can be carried over without
trouble. We will state two main results without proofs.

7.1 Notations. Let Z stand for Z, x R, with the product topology and
measure 4 = product of the counting measure on Z, and 1. &, & Q; and &,
are defined as in Section 2 with R, replaced by Z, and R, by Z. T denotes a
bijective transformation on Z, such that T(ij) = i for every i outside the set
{keZ,: —m < k < m} forsome m > 1. Z, represents the set of all n-dimension-
al lattice points.

Then as in Section 3 we can define Markov processes {X,(x, »)} and {£,(€, w)}
under the Poisson process P, and Z with respect to the measure i. Let
Se={(r, ---sn)eZyir,#r;fori+j}, k=1,2,.... For (x, ---, x,) and
> 5 yi) iDL Sy,

Qt,k(xv s Xy Yyt Vi) = Po{w: Xi(xp, @) =y, -+, XXy, ®) = yi}
describes the motion of k particles initially at (x,, - - -, x,). Denote by A, the
transition function of the distance process defined by Q, , as in the continuous
case.

THEOREM 7.2. Let N be the set of all positive integers. For every finite subset
A of N and every ue N, lim,_, A,(u, A) = 0.

RemArk. Unlike the continuous case, this is true for any bijection T
mentioned in (7.1).

Next we state the corresponding limit theorem in the lattice model. For
n=1,2,...,and M =1,2, ..., let

Vau ={(ry -+, r)e8,  |r;, —r;] £ M forsome i,j,1 <i,j<n}.
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THEOREM 7.3. Let T be a transformation defined in (7.1), p, the initial distribution
of the Markov process {€,(§, w)} and p, the distribution of §, at time t. Assume that
t, satisfies the following conditions.

(i) There exists 0 < p < 1 such that E, (§(x)) = p for every x € Z,.
(ii) There exists a double sequence {0,y},_, s ... y=1,,... Of positive numbers such
that for fixed n, 0,,,, — 0 as M — oo, and

o — anu = /«‘o({fz E(rl) =1, ...,S(r”) — 1}) < p" + 5»1}1’
for(ry, -+, 1) & Vo

Then as t — oo, p, converges weakly to a probability measure p on (E, &) defined
by p({§: () =1, ---,&(r,) = 1}) = p~, for every (r,, ---,r,)€S, and every
integer n = 1.

REMARK. A result related to Theorem 7.3 is obtained recently by Liggett
[°]-
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