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EXPLICIT CONSTRUCTION OF INVARIANT MEASURES
FOR A CLASS OF CONTINUOUS STATE
MARKOV PROCESSES

By S. HALFIN
Bell Laboratories

An explicit construction of invariant measures for a certain class of
continuous state Markov processes is presented. A special version of these
processes is of interest in the theory of representation of real numbers (-
expansions). Previous results of Rényi and Parry are generalized, and an
open problem of Parry is resolved.

1. The stochastic properties of the Tomlinson (1971) filter in data transmis-
sion systems give rise to questions regarding the steady state properties of the
process:

Y,.,=8Y,+ Z, (modlL)

where the Z,’s are independent identically distributed random variables, each
attaining a finite number of values, 8 > 1 a constant and all the Y,’s assume
values in an interval (a,, a, + L).

The process (Y,) is a Markov process with a continuous state space. By trans-
forming the variables, one obtains the same type of process with the interval
[0, 1] and L = 1 which will be the assumption used in what follows.

The case where Z, = 7 (a constant) is of interest in the theory of representa-
tion of real numbers. The case z = 0 gives rise to the so-called B-expansions.
Rényi (1957) showed in that case there exists an invariant measure for the pro-
cess which is equivalent to the Lebesgue measure. Parry (1960) gave an explicit
expression for that measure, and in a later paper (1964) he derived an expression
for an invariant measure for the case z = 0. He did not, however, prove that
his measure is nonnegative, and left this question open.

The process can be regarded as a repeated random choice of functions from a
givenset. Let ¢,(x) = fx + z, (mod 1) be a finite set of functions, where z, are
the different values of Z. At each step n a function ¢;, is chosen from this set
according to a set of predetermined probabilities, and a transition from state x
to state ¢, (x) occurs. Such a situation, for a general finite set of functions
Gyy v vy ¢,,, was treated by Dubins and Freedman (1966). They proved that an
invariant measure exists if all the ¢,’s are continuous. Their result was extended
by Yahav (1973) to the case where the ¢,’s are general concave functions. In
the present work we present an explicit formula for a density function of an
invariant measure for the process. It turns out to be a Saltus function [5],
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860 S. HALFIN

which reduces to Parry’s function in the case k = 1. Moreover, we show that
the function is nonnegative, and thus in particular we answer a question which
was posed in Parry (1964).

2. Let K mappings of R into [0, 1) be given:
#(x) = Bx 4+ z, (mod 1) i=1,.--,k,

where z,, - - -, z,, B are constants. 8 > 1.

With each mapping ¢, we associate a probability p, = 0, such that p, + ... +
P = 1.

Let a discrete time Markov process T(x, 4) be given by
(2.1) T(x, A) = 3¢z pila($u(%)}
for any Borel set 4. I, denotes the indicator function of 4. For any measure
ponR,
(2.2) (eT)(A) = L pop($7(A)) -
We do not require the measures to be nonnegative.

We are interested in finding a T-invariant measure ¢. Such a measure would
certainly vanish outside [0, 1).

3. Let g be a Saltus function [5] on R, with the sequence y,, y;, - - - as jump
points, with jumps vy, v, - - -.
Z ,vnl < (S 2
i.e.
(3'1) g(x) = Zx>yn vn .

It is well known that such functions possess left and right limits at each point,
and are right continuous.

Next we derive necessary conditions for a Saltus function to be a density
function for an invariant measure. We note that one may assume 0 < y, < 1
for all n, since otherwise the corresponding v, must be 0. Without loss of gener-
ality we assume y, =0, y, =1,0< y, < 1,i=2,3, ... and y, # y; for i #J.

LemMaA 3.1. If p,(A) = §, 9(x) dx is an invariant measure, then for every n = 2
we have

1

(3.2) v, = —

B

Proor. Let 4, be the interval [y, — ¢, y,), where 0 < ¢ < y,. Then

7 H(A4) = U¢i(z)=y” [x — —‘% , x) .

Z{"=1 pz Zg&i(yj):vn /U.‘l' .

Using (2.2) and dividing by ¢ we get

3

%#Q(As) = 21 Pi Digpmr=v, '61” H (l:x - B’ x>> '
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(We assume that ¢ is so small that for each union the intervals for different x’s
do not overlap.)
Sending ¢ to 0, and using the existence of a left limit we get:

9(yy-) = % T Pr B gyiares, 9(57)

Similarly, we get that the same formula is satisfied for g(y,*) in terms of the
g(x*)’s. Finally by subtracting, and noting that
9(x*)y —g(x7) =0 if x=#y,
=, if x=y, i=0,1,...
we get (3.2).
Next we rewrite (3.2) in the following form:
(33) Aan = Z?:zang 7 + a0V, + a,, v, n = 2a 3, cet .
LemMA 3.2, The coefficients a,; satisfy:
(1) a,; = 0 for all n and j.
2) Xesae,;,<1,j=0,1,
Proor. Foreachj,j=0,1,
a,; = p; if ¢uy;) =y, forsome i
=0 otherwise.

Thus the a,; are nonnegative, and

Dimealny = 2k P = 1
completing the proof.

Lemma 3.2 asserts that the matrix 4, where 4 = (a,;) n,j =2,3, .-+, is
substochastic. Hence, regarding 4 as an operator on the space of absolutely
summable sequences, 8 > 1 cannot be an eigenvalue. This proves the following
theorem:

THEOREM 3.3. For any given v, and v,, there exists at most one Saltus function
with jumps v, and v, at 0 and 1 respectively, for which y, is an invariant measure
for T(x, A).

4. In this section we construct a Saltus function which generates a nonnega-
tive finite invariant measure for T. Let[a, b) be any interval such that0 < a <
b < 1, and let ¢ be any real number.

LEMMA 4.1. Let p be the measure having the density cly, ,;,, then uT has the
density

4.1) C fu=S

—‘B— Sk pd(m + el + (— 1)5i17(¢i(a),¢i(b))}

where:
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If ¢(a) = ¢i(b) then =($(a), $.(b)) = [$u(a), $:(b)) and ¢; = 0. If 0 < ¢,(b) <
pi(a) then t(p,(a), p(b)) = [$:(b), $:(a)) and ¢, = 1. If ¢,(b) =0 then ($,(a),
040)) = [$:(a), 1) and ¢, = 0, and finally, m is the integral part of (b — a).

ProoFr. Let

D; = [¢4(a), $:(b)) if ¢ia) = $(b),
= [0, ¢,(b)) U [p.(a), 1) otherwise.

One can directly verify that for any y € [0, 1) the set ¢,7'(y) N [a, b) consists
of m + 1 or m points, depending on whether y € D, or y ¢ D,, respectively. Since
¢ is nonatomic, and ¢,~! of a finite set is finite, we can consider only points y
which are interior to D, or interior to [0, 1) — D,. If 4, is a small interval of
length g around y, then ¢,7(4,) n [a, b) will consist of m + 1 or m intervals of
length d/8 each, again depending on whether or not y € D,, respectively. Apply-
ing (2.2) we get (#T)(4,) = Tk, pid(c/B)(m + &,) where

=1 if yeD.
Thus
Jur = % 2t pdmly ) + Ip}.
The conversion to the form (4.1) is done by replacing /), with Iy, ,, — Iy 1,_p,
whenever D, is composed of two disjoint nonvoid intervals. This completes
the proof.

Next, we define a sequence of functions:

4.2)  fo= Iy,

1 o
— gt -
fi Zil,---,itzlgijgk Pi v Pi(— 1) tl’“’%'“¢il‘°"¢i:"'¢il‘”’

o
I = 1, 2, ey
where 7 and &,...;, are defined the same way as in Lemma 4.1.

Each f, is a Saltus function with finite number of jumps, whose total of abso-
lute values is bounded by 2/8. Also |f,| < 1/8°.

Let
f=2X% /i
then f is a Saltus function for which the total of absolute values of jumps is
bounded by
w 2 _ 28
Zt=0 Fi - ﬁTl M
As in Section 3, let us denote
v = f(0%) = f(07) = f(0)
v = f1%) = f(17) = =f(17).
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LEmMA 4.2.
=1, f1)=1.

Proor.

fO) = (1) =1.

For t > 1, f(0) = 0 and f(17) = 0. This follows from the definition of r.
Since the series )] f; is uniformly convergent, it follows that f(x~) = Y12, fu(x")
for all x. Thus the lemma is proved.

THEOREM 4.3. Let y1, be the measure generated by f. Then p, is a finite invariant
measure for T.

Proor. Applying Lemma 4.1 to each component of f, we get:

Sur = € fo + fen ¢, a constant,

where 1, is the measure generated by f,. Summing up to N, we get:

(4.3) f=omyr = T fur = (Dioclfo + T8 S,
= fzf;oyt + (X — Dfs + fvia -

Noticing that for any finite measure z

§ f;z = fyT >
we get by integrating (4.3) that

1
1 — Xiee] = 1§ fosl & —=>

- ﬁN+1

thus Y122,¢, = 1. So
f(2?=o/‘t)T = fz?:o n = f
which completes the proof of the theorem.

Theorem 4.3 yields as a special case (k = 1) the result stated in Theorem 6 of
Parry (1964). Next we show that f is nonnegative, and thus solve in the affir-
mative, the question which was posed in Remark 2 (a) of Parry (1964).

THEOREM 4.4. [ is a nonnegative function.

Proof. Let f* = max (f, 0). It is well known that if the measure generated
by f is invariant, so is the measure genefated by f+. Clearly f* is also a Saltus
function with its set of jump points being a subset of those of f. From Lemma
4.2 it follows that f+ and f have the same jumps at 0 and at 1. Thus by Theo-
rem 3.3, f+ = f. This completes the proof.

It is worth noting that for 8 > 2 Theorem 4.4 is quite trivial, for then:
1 1

zf—ZLlfl=1- 2% =1l—-_——-2=0.
[2fo= BEalfl =1 = D =1- 51
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The same argument shows that:

(a) For g >2,f>00n][0,1).
(b) lim,_, f = f;

Thus for large 8 the invariant measure is approximately uniform on [0, 1).
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