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PREDICTION THEORY AND ERGODIC SPECTRAL
DECOMPOSITIONS!

By BENNETT EISENBERG
Lehigh University

Linear prediction theory for a stationary sequence X, ordinarily begins
with the assumption that the covariance R(n)=E(Xmn Xm)= " eitn dF(Z)
is known. The best linear predictor of X, given the past X_i, X_z, -« - is
then the projection ¢ of X, on the span of X_i, X—z, ---. The predxctlon
error is E(|Xo — ¢[%).

In practice R is not known but is estimated from the past. If the pro-
cess is ergodic and the entire past is known this causes no problem since
then the estimate R of R must equal R. But if the process is not ergodic
then R does not equal R. In this paper we consider the relationship between
prediction using Rand R. One conclusion is that if the process is Gaussian,
it doesn’t matter whether R or R is used in constructing the best linear
predictor. The predictor is the same and the prediction error is the same.

1. The ergodic spectral decomposition. Assume X,(») is a second order
strictly stationary process on (Q, &, P) with TX,(0) = X,(t0) = X,;(®).

Let _# be the ¢ field of invariant sets modulo a null set. Define the estimate
R(k) of R(k) as

. 1
thaoo 'N‘ Z'fmv _"((0) —-n—k(w) )

which exists a.s. by the ergodic theorem. T he first theorem describes the ergodic
spectral decomposition.

THEOREM 1.

1. R(k) = E(X, .. X,| 7).

2. R(k) is a positive definite sequence a.s.

3. E(X,,,X.|R(j), j =0, £1, £2, ---) = R(k).

4. FQ) = E(FQ, »)), where R(k, w) = |, ei?* dF (4, w).

ProoF. (1) This is a version of Theorem 6.28 in Breiman (1968) obtained by
substituting X,,,, X, for X,.
(2) This follows from the positivity of conditional expectation. Namely,

S CCR(k — j) = E(Z Cu X |R) = 0 as.

This holds simultaneously for all finite sets of rational C,, - -, C, and then by
continuity for all Cy, - - -, C,.
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3) R(j) forj =0, 1, +2, ... are measurable with respect to .. Hence
E(X, X, |R(j), j =0, £1, £2, .. .)
= E(E(Xn+k“‘7n|j) I ﬁ(.])’ J=0, %1, £2,...)
= E(R(K) | R(j), j = 0, 1, £2, ---) = R(k).
(4) § e dF(4, w) = R(k, w) is measurable for each k and since E(R(k, w)) =
R(k) we have
§ (§ €% dF(2, w)) dP(0) = § €'k dF(2) .
Taking limits of linear combinations ¥ C,e'** we get
§§ 9(2) dF(2, w) dP(w) = § g(2) dF(R)
for bounded measurable g(2). In particular letting g(1) be the characteristic
function of [z, 2,] we have
§ £(2,, @) dP(w) = F(4)) . 0

Theorem 1 is closely related to the decomposition theorems of von Neumann-
Choquet, Blum-Hanson, and Varadarajan under varying conditions on the
measure space. In the language of Varadarajan (1963), pages 203-205, we
have that for fin L'[dP], § fdP = {{ f(«') dB (') dP(w), where B, are ergodic
measures and § f(o') dB,(0') = E(f|*). For f= X, X, this says R(k) =
§§ X, X,dB, dP, where § X, X,dB, = R(k, ).

‘ExaMPLE. Let X, have covariance R(n) = 3] |A,|%"* where the sum is over

a finite set of 2. The spectral representation of X, then becomes

X (0) = X A,e¢ (o) and
1 & 1 — , — ;
N D XX = 20 20n N DN A A €m0 (), (w)ett

which approaches 3, |4,%|¢,(v)[*¢"** = R(k, »). Thus F has point masses of
magnitude |4,[’|¢,(w)|* at the same set of 2 as F. In fact, from the ergodic
spectral decomposition F(2) = § F(4, ») dP(), we see this is the only possible
type of decomposition for a process with discrete spectrum.

2. Applications to prediction. The best linear predictor of X, based on X_,,
X_,, --- is the ¢ in the closure of the span of X_,, X_,, --. such that
E(l¢ — X)) = inf E(j¢ — X,|*), ¢ of theform 3}, a, X _,. The prediction error
E(l¢ — X,|*) is known to be exp({*, log F’(2) dA) where F’ is the derivative of
the absolutely continuous component of F.

PRrOPOSITION. exp(§ log F’ d2) = E(exp(§ log £’ d2)).

ProoFr. A

inf E(j¢ — X|Y) = inf E(E(jp — X,'| R))
> E (inf, E(p — X' R)),

where the inf is over ¢ of the form Y} a4, X_,. []
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COROLLARY. If exp(§=, log £” d2) = O then for almost every F in the ergodic
spectral decomposition of F, exp({=, log Fdi) = 0.

If X, is assumed to be Gaussian much more can be said.

THEOREM 2. If X, is a mean zero stationary Gaussian sequence with covariance
R, then

(1) For almost every R the best linear predictor of X, is the same as the best linear
predictor under R.
(2) The prediction errors are the same under R and R for almost every R.

The proof relies on the following lemma.

LEMMA. Assume T is an operator on a Hilbert space H of functions f(w) induced
by a measure preserving transformation having discrete spectrum. (T need not be
ergodic). Assume U is an operator on a Hilbert space K of functions g(w") induced
by a weakly mixing transformation. Then the functions invariant under T @ U are
of the form f(w) where f(w) is invariant under T.

Proor. Let Tf; = f, for jin M and Tf; = e'*if, for j not in M. Let g, be
an arbitrary basis for K. Then H ® K consists of functions }; a;, f;(®)g:(®’),
Zlapl < oo MTQU X ap f(@)gu(@') = I a;cf(@)gu(e’) then

Ziinn A f{@UI(@) + X jnovin e 45283 (@) UgL(@)
= Diina G [HO)IU@) + 2 jnovin we e [1(@)91(@) -

Since the coefficient of f;(w) must be the same on both sides we have
U a;9(0)) = X a9« for jin M, eU(3, a;,9,(¢") for j not in M.
Since U comes from a weakly mixing transformation this says 37, a; g,(0') =

constant for j in M and 7, a,,9,(¢’) = 0 for j not in M. In other words any A
invariant under 7 ® U is of the form };; ., b; fi(®). [

PrROOF OF THEOREM 2. Write F(2) = F,(d) + F,(2) where F, is continuous
and F, discrete. Then X, = T, + U, where U, has spectral distribution F, and
T, is independent of U, with spectral distribution F,. U,(«’) is weakly mixing
and by results in Blum-Eisenberg (1974), the underlying transformation 7' of T,
has discrete spectrum. Hence by the lemma the subspace of functions A(w, ')
invariant under the transformation 7'® U consists of functions f(w) invariant
under T. The U, process is thus independent of the g-field generated by the T,
process and the invariant sets .. Hence

E(T, + UXT, + Uy)|*)
= KT, T,|7) + BT, 0| &) + EUT,| F) + EU, | %)
= Ry(k) + E(U)E(T,| ) + E(UYE(T,| 7)) + Ry(k)
= Ry(k) + Ry(k) -
That is, the components of the ergodic decomposition of R are R,(k) and R (k).
But T, has discrete spectrum so R, must have spectral measure concentrated
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on the same points as R,. Now the best predictor of a process with discrete
spectrum and continuous spectrum can be found by filtering out the discrete
spectrum component and predicting its future perfectly and then adding the
predictor for the continuous spectrum component. But the best predictor for
a process with covariance R, or R, is the same since it depends only on the
location of the atoms in the spectral measure. The prediction error will be zero.
Since R, = R, the predictors for the continuous components will be the same
and have the same prediction error. []
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