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THE LOCAL LIMIT THEOREM FOR THE
GALTON-WATSON PROCESS

By S. DuBuc AND E. SENETA

Université de Montréal and Australian National University

The usual form of local limit theorem is extended to an arbitrary
supercritical Galton-Watson process with arbitrary initial distribution.
The existence of a continuous density on (0, co) for the limit random vari-
able W, in the process initiated by a single ancestor, follows from the
derivation.

1. Introduction. Let {Z,}, n = 0, be the Galton-Watson process initiated by
a random number Z, of initial individuals, the probability generating function
(pgf) of the law of reproduction being f(s) = Y 5., p,s* and the pgf of the in-
itial distribution a(s) = > 5., a,s*, where a, = P[Z, = k]. To avoid trivialities
we suppose that the reproduction law is not degenerate, and also that aq, # 1.
We assume m = f'(1—) satisfies 1 < m < co.

Before formulating our principal assertion, we need certain known results.
Let g be the probability of extinction of a process which begins with Z, = 1.
In this case, Heyde [11] has shown that, for a sequence {c,}, n = 0, of constants
(¢, > 0) used by Seneta [16], Z,/c, converges almost surely to a proper non-
degenerate random variable W, since {exp(—Z,/c,)} is a martingale; we work
with these same constants. Dubuc [7], [8] and Athreya [1] have demonstrated
that there exists a nonnegative function w() on (0, o) such that §{ w(u) du =
P[W > 1] if t € (0, c0); indeed, according to Dubuc, the density w(r) > 0 and
is continuous in ¢ € (0, co). We shall designate by W, the sum of k independent
copies of W. W, takes the value 0 with probability ¢*, but otherwise P[W, > 1] =
{7 wi(u) du, where w, is a continuous function defined on (0, co); specifically,

WD) = T (g w0
where w*/ is the jth order of convolution of the function w. We need two
further characteristics of the process. The period L of a Galton-Watson pro-
cess is the greatest common divisor of integers of the form A — s, where pn# 0
and p, # 0. We say the process is of type (L, r) if L is the period and r is the
residue (mod L) of any k for which p, # 0. (The more usual definition of r as
the first integer k for which p, + 0, though not in general equivalent, can just
as easily be used in the sequel also.) The general form of local limit theorem,
under the assumptions of the preceding paragraph, is:

THEOREM. If the supercritical process is of type (L, r) and if {y,} is a sequence
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of integers such that y,[c, — t, a positive number, then
lim,_., (c,P[Z, = y,] — L 2iker, GwWi(1)) = 0
where I, = {k: k > 0 and kr* = y, (mod L)}.

This local limit theorem has a chequered history. Several authors have sought
to demonstrate it under more restrictive hypotheses. In 1957, éistyakov [4]
gave such a theorem for the analogous continuous-time (Markov) branching
process, and stated a corresponding discrete-time version, but an incorrect esti-
mate cast the issue into doubt. (He later claimed [5] that the result could be
salvaged.) Imai [12] made an effort in the same direction in 1968, but this
turned out to need his correction [13] also. Finally, and still under a finite
variance condition, Athreya and Ney [2] have proved such a local limit theorem
in 1970; but their proof will fail if L > 1. The same authors have observed
that Dubuc [6], in the course of study of the Green’s function of the Galton-
Watson process, had demonstrated a local limit theorem. In their book [3],
they subsequently establish the local limit theorem under the hypotheses that
2i-1peklogk < oo, L =1, a;,=1. Athreya [1] mentions the possibility of
relaxing the first of these.

Two concluding remarks are in order. At no extra labour, we shall actually
derive, in Lemma 9, the existence (by construction) of a continuous density
w() on (0, oo) for W, and do not make use of its existence prior to this. Follow-
ing the proof of our theorem in the final section, we mention a trivial analogue
of it for the subcritical case (0 < m < 1).

2. Lemmas and the limit density. As usual, we write f,(s) for the nth func-
tional iterate of f(s). Put g(§) = E(exp —éW) for & a complex number with
positive real part. We know that g(§) = lim, ., f,(exp —£/c,); that ¢, /c, < m,
Cp1/C, T mand c, | co as n— oo.

LeMMA 1. IfReé = 0 and & + 0, then [g(§)| < 1. AsO — + oo, g(—if) — q.

Proor. Clearly |g(§)] < g(Reé); <1 if Reé > 0. If Reé =0 but &€ = 0,
the result that [g(§)] < 1 follows from a standard argument based on g(mé¢) =
f(9(%)) (e.g., Stigum [19], Lemma 1). The second result also follows from the
functional equation, after Sevastyanov transformation to render ¢ = 0 (Stigum,
Lemma 2). []

LeEMMA 2. Foreache > 0,sup{|f(e?)|:n=1,2,.--5¢/c, < |0] < n/L} < 1.

PROOF. f,(e"/*n) converges to g(—it) uniformly for ¢ in a finite interval (Loéve
[15], page 191). Thus we can find a numberr e (0, 1) and an N such | f,(e?*/*»)| < r
ifn > Nande < || < me. Nowife/c, < 0| < ¢/c,_,, thenfork = N, |fi (") < r.
If D, = {s: |s| < r}, then the sequence {f,}, p = 0, converges uniformly on D,
to the constant function ¢, whence there exists an R < 1 such that |f,(w)| < R
for |w| < r, and p = 0. Hence |f,,,(¢"”)) < R. Thus we have shown that
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|f2(e?)] < R if ¢fc, < 10| < ¢/cy_,, n = N. On the other hand, {¢: ¢/c, , <
|0] < =/L} is a compact subset, with does not contain the Lth roots of unity, of
the unit disc. It is thus easy to find an § such that |f,(e?)| < S<1,n =1,
and ¢fcy_, < |0| £ n/L. [

In the sequel we shall need the sequence of intervals
J, ={0: mcyL~c,' < |0] £ me, L7c;1y}, k=1.

LEmMMA 3. If p = f'(q) # 0, there exists a constant A (depending only on a(s)
and f(s)) such that |a(f,(€”)) — a(q)| £ Ap*~* for n =k and all 0 in J,. If
f'(q) = 0, then for each ¢ > O there exists a constant A, (depending only on ¢, a(s)
and f(s)) such that |a(f,(€?’)) — a(0)| < A,e"~* for n = k and all 0 in J,.

Proor. Consider first the case a(s) = s. By Lemma 2, U5y, {f(¢"): 0 €}
is contained in a compact subset of {z: |z] < 1}. Now, on K, the sequence
(f»(2) — q@)u~* converges uniformly; so that there exists a constant B such that
|fo(2) — q| < Bu? for ze K and p > 0. Hence |f,,,(¢) — q| < Bp» for all
0eld,.

In the case of arbitrary a(s), we have again by Lemma 2, that {f,(e*): 0 € J,,
n = k} is contained in a compact K, of {z: |z| < 1}. The function a(s) being
continuously differentiable on K;, we have |a(w) — a(q)| < C|w — ¢| for all
w e K,. Thus |a(f,(e)) — a(q)| < BCy*~*if n = k and 6 € J,.

The second part of the lemma follows analogously after observing that in
this case ¢ = 0 and f,(z) = 0(¢?) for any ¢ > 0, the 0 being uniform in z varying
in a compact of {z: |z| < 1}. []

LEMMA 4. The function (1 — g(s))/s is slowly varying as s — 0+, where g(s) =
E(exp —sW), s = 0.

Proor. Demonstrated in the course of proof of Theorem 1 of Seneta [17],
pages 409-410. []

LEMMA 5. There is function V(s) slowly varying as s — 0+, such that for all
5€(0,1), and all n, 1 — f, (e=») < sV(s).

ProoF. Since {exp—Z,/c,} is a martingale when Z, = 1, then (the function
t — t* being concave for s € (0, 1)) {exp —sZ,/c,} is a supermartingale for s € (0, 1).
Then f,(e=*/°n) = E(e~*%a/*») = E(e~*") = g(s); where 1 — f, (e=¥n) < 1 — g(s),
and Lemma 4 yields the conclusion. []

LEMMA 6. Let ¢(§) = (5 e ¢' du(t) where & is complex with nonnegative real
part, and p(+) a probability measure on [0, oo). Then there exists a universal con-
stant C such that |¢(ia) — ¢(ib)| = C(1 — ¢(|b — al|)) for any pair (a, b) of real
numbers. :

PROOF.  [$(ib) — $(ia)| = |55 (e™ — ) dpu(r)| < 2 §5 [sin (b — a)t/2)] de(t).
Thus C = 2 sup {|sin (x/2)|/(1 — e~*): x = 0} < oo, will serve; for

|6(i6) — ¢(ia)| = C {7 (1 — e~*=*) dp(t) = C(1 — ¢(|b — a])) - 0
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LemMA 7. If w,,,(0; f; @) = sup {|a( f,(€1)) — a(f.(e%2))|: |6, — 0, <3, 0, € J,},
and 11 = f'(q) # 0, then there exists a function V*(x) defined on (0, co) and such
that (a) V*(x) is slowly varying as x — 0+; (b) V*(x) is bounded on every interval
(¢; ), € > 0; (c) for each n = k and 6 > 0

(05 f, a) < ¢, ou™*V*(c,0) .

Proor. Consider first the case a(s) = a,(s) =s; and put w,,(0; f) =

0,05 f> @). 1f 0,, 0,¢eJ,, Lemma 6 yields

[fe(e™) — file'™)] = C(1 — fie™?)) .
When ¢,6 < 1, by Lemma 5, 1 — fi(e7%) < ¢,0¥(c, ). It then suffices to put
Vi(x) = CV(x) if x <1 and V,(x) = C if x > 1, to obtain |f,(e¥1) — f,(ei%)| <
¢, 0Vy(¢c,0). Now, we know that there is a constant Ey such that | f,(z,) — f,(z,)| <
Eyp?|z; — z,| if z, and z, vary in a compact subset K of {z: |z| < 1}. If K is a
compact containing {f,(e”): 6 € J,} and we put V*(x) = E, V,(x), then

|fu(e'™) — fu(e™)] < o= V*(c,5) .

For a general pgf a(s), we observe that {f,(e"?): n > k, 6 € J,} is contained in
a compact K, of {z: |z] < 1} in view of Lemma 2. If F = sup {|a(z,) — a(z,)|:
z;€ K}, then o, ,(3; f, a) < Fo,,,(3; f). [

LeMMA 8. If ¢(§) is the Fourier transform (characteristic function) of a finite
- measure, p(+), on %, with lim (|§| — c0)¢(§) = g, and the sequence

(1727) {2 ($(§) — q)e*¢ d§

converges uniformly to a (necessarily continuous) function w(t) on every interval [a, b]
not containing the origin, where {z,} is any fixed sequence of positive numbers with
T, — 00 as n— oo, then dp(t) = qd,(t) + w(t) dt where 5,(+) is the Dirac delta
Jfunction (ascribing unit mass of the origin, zero mass elsewhere).

ProoF (motivated by page 284 of [9]). By the uniform convergence
Saw(n)dr = \; (lim, ., (1/27) § ($(6) — q)e="¢ d&) dt
= lim, . (1/27) {2 {(8(§) — g)(e™™* — e=**)ji} dt ;
= (a, b)),
if a, b are continuity points of y(+) (Loéve [15], page 186). []
LeMMA 9. If 0 < a < B, the sequence of functions
(1/27) §Z2.71 (@(fule®'*n)) — a(g))e="¢ d§
converges uniformly on [a, ] to the function 37, a,w,(t).

Proor. We verify the uniform convergence first, identifying the limit subse-
quently. Put k,(¢, 1) = (1/2a)(a(fu(¢"/*)) — a(g))e~*¢, and I, ,(?) for its integral
over & such that §/c,eJ,_, fork =0,1, --., n — 1.
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(a) We first examine the case where 0 < mf’(g) < 1. Making use of the in-
equality |§® h(§)e=" d§| < |b — al||h||., We see since

I () = §Zii=tenien=t_ ko(&, 1) dE + SFaiminfanci—r k(€ 1) df

—reqL ™ Loy /cp—f—1
that |7, ()| < ¢,L™(¢,/c,—i-1)Ap* in view of Lemma 3.
Now, since n¢,L~'c,/c,_;, T nc,L='m* as n — oo, with (a(f,(e"*'*»)) — a(q)) —
a(g(—i€)) — a(q), uniformly in § for any finite fixed interval, it follows that

lim,_,, ]k,n(t) = (1/271') S:ng:ix’,ﬁﬂ (a(g(_lg)) — a(q))e—ite ds
+ (1/27) Sﬁg’i:},ﬁﬂ (a(g(—i&)) — a(q))e* ds .

Since (¢,/Ca_ip—1) < M"Y, 315 SUPsy |[h,n()]| < o0, and Lebesgue’s dominated
convergence criterion, together with Weierstrass’ M-criterion, shows that

§eol S ka5 1) dE + X323 L (D)
= VUL k(6 ) dE + STIE K6, 1) dE 4 Vog ot k(€. 1) dE
= VS k(€ 1) dE
converges uniformly in all ¢ to
lim, ., (1/27) §%, (a(g(—i€)) — a(g))e** d¢ ,

(where 7, = mc,L~'m*), in which expression the convergence is also uniform
in t.

(b) The case f’(q) = 0 (i.e., p, = p, = 0) is treated analogously.

(c) The most difficult case is f’(g)m = 1; we shall employ the known in-
equality (derived via the device of, e.g., Zygmund [20], Section 2.21):

152 h(E)e¢ d&| < [/l + (b — a)/2o(zld, h, a, b)
where
(0, h,a,b) =sup{lh(t,) — h(t):a<t, <, <b and ¢, —t, < 7}.

To use the inequality, let us majorize the quantities |/, ,(¢)| for values of  outside
the interval [—e¢, ¢], ¢ > 0. By Lemmas 3 and 7 we obtain

A < [171Ap* + (1/2)co L7 a |t " mpt V¥ (e, 7]t e, ™)

from which it follows easily that Y3, sup,., sup s |1,.(f)] < co. This yields
the conclusion of (a), except that the convergence is now only uniform outside
every neighbourhood of ¢ = 0. ‘

If we put a(s) = s we now deduce from this conclusion and Lemmas 1 and
8 that W has a limit distribution with probability ¢ at the origin and continuous
density w(r) over (0, oo). The result of Lemma 9 with arbitrary a(s) follows
again from Lemmas 1 and 8 by recognizing that a(g(—i€)) is the characteristic
function of a(q)d,(t) + X @, wi(9). 0

3. The local limit theorem. We now prove the theorem of Section 1. In-
itially consider the distribution {a,}, K = 0, to be such that a, =0 if k %
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(mod L), where j is a fixed integer in [1, L]. If the process is of type (L, )
and if jr* # y (mod L), it is easily seen that P[Z, = y] = 0 (e.g., Dubuc [10]).
Let {y,} be a sequence of positive integers such that jr* = y, (mod L) and
lim, ., y./c, =t > 0. Then

P[Z, = yu] = (1/27) {2, a(fu(e”))e~"" df .

If we put @ = exp(2xi/L), it follows that f{lws) = w"f(s) for any complex number
s of the unit disc, whence f,(0s) = 0""f,(s) and f,(0™s) = w™"f,(s). Then
V2 a(fu(e))e™" df = Y0t SEntiiii a(fu(e))e ¥ df
= Dk @i (L, a(f(e))e=5n0 df

= L §7h, a(f(e"))e=n" df .

-

If g + 0, then py =0, r =0and y, = 0 (mod L). If ¢ = 0 and a(0) + 0, then
J=Landy, = 0(mod L), whence {*%, a(q)e-"*»’ dd = 0. Thus

PlZ, = ya] = (Lf27) {251 (a(fu(e")) — a(q))e~"* df .
Lemma 9 yields the conclusion of the theorem.
The case of arbitrary initial distribution is now tractable by linearity. []

In the process where 0 < m < 1 and Z, = 1 (an arbitrary initial distribution
introduces complications), let g(s), s € [0, 1] denote the pgf of the proper non-
degenerate limit distribution as n — oo of PlZ,=i|Z,>0],i=1 (see, e.g.,
[3] 1.8). It is known from other contexts [18] that ¢, = {1 — L0}, n=0,
provides a sequence with properties analogous to those in the supercritical case.
Of present interest is the local limit result: if {y,} is a sequence of positive in-
tegers such that y,/c, —t > 0 as n — oo, then P[Z, = i| Z, =y, i =1, has
limit distribution with pgf exp{—#(1 — g(s))}. This result, obtained in 1967 by
Joffe and Spitzer [14] under the assumption 37 p,k log k < oo (see also [3], page
45), requires no substantial extension of their proof.

REFERENCES

[1] ATHREYA, K. B. (1971). On the absolute continuity of the limit random variable in the
supercritical Galton-Watson branching process. Proc. Amer. Math. Soc. 30 563-565.

[2] ATHREYA, K. B. and NEy, P. (1970). The local limit theorem and some related aspects of
supercritical branching processes. Trans. Amer. Math. Soc. 152 233-251.

[3] ATHREYA, K. B. and NEy, P. E. (1972). Branching Processes. Springer-Verlag, Berlin.

[4] Cistyakov, V. P. (1957). Local limit theorems for branching processes. Teor. Veroiatnost.
i Primenen. 2 360-374. (Translated in Theor. Probability Appl. 2 345-364.)

[5] éISTYAKOV, V. P. (1965). Letter to the Editor. Teor. Veroiatnost. i Primenen. 10 597-598.
(Translated in Theor. Probability Appl. 10 538-539.)

[6] Dusuc, S. (1970). La fonction de Green d’un processus de Galton-Watson. Studia Math.
34 69-87. :

[7]1 Dusuc, S. (1971). Problémes relatifs i I’iteration des fonctions suggérés par la processus
en cascade. Ann. Inst. Fourier (Grenoble) 21 171-251.

[8] Dusuc, S. (1971). Processus de Galton-Watson surcritiques. Séminaire d’ Analyse Moderne
No. 7. Departement de Mathématiques, Université de Sherbrooke. Sherbrooke,
Canada.



496 S. DUBUC AND E. SENETA

[9] DuBuc, S. (1971). La densité de la loi-limite d’un processus en cascade expansif. Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete 19 281-290.

[10] Dusuc, S. (1974). Ftats accessibles dans un processus de Galton-Watson. Canad. Math.
Bull. 17 111-113.

[11] Heypg, C. C. (1970). Extension of a result of Seneta for the supercritical Galton-Watson
process. Ann. Math. Statist. 41 739-742.

[12] Imar, H. (1968). Notes on a local limit theorem for discrete time Galton-Watson branch-
ing processes. Ann. Inst. Statist. Math. 20 391-410.

[13] Ima1, H. (1973). Remarks to a local limit theorem for Galton-Watson processes. Ann. Inst.
Statist. Math. 25 453-455.

[14] JoFFE, A. and SPITZER, F. (1967). On multitype branching processes with p < 1. J. Math.
Anal. Appl. 19 409-430.

[15] Lokve, M. (1963). Probability Theory, 3rd ed. Van Nostrand, Princeton.

[16] SENETA,E. (1968). On recent theorems concerning the supercritical Galton-Watson process.
Ann. Math. Statist. 39 2098-2102.

[17] SENETA, E. (1974). Regularly varying functions in the theory of simple branching pro-
cesses. Advances in Appl. Probability 6 408-420.

[18] SENETA, E. (1975). Characterization by functional equations of branching process limit
laws. In Statistical Distributions in Scientific Work (G. P. Patil, S. Kotz, J. K. Ord,
eds.) 3 Characterizations and Applications, 249-254. Reidel, Dordrecht.

[19] Sticum, B. P. (1966). A theorem on the Galton-Watson process. Ann. Math. Statist. 37
695-698.

[20] ZyGMUND, A. (1955). Trigonometrical Series. Dover, New York.

CENTRE DE RECHERCHES MATHEMATIQUES DEPARTMENT OF STATISTICS
UNIVERSITE DE MONTREAL AUSTRALIAN NATIONAL UNIVERSITY
CASE POSTALE 6128 P.O. Box 4

MonNTREAL H3C 3J7 CANBERRA, A.C.T. 2600

CANADA AUSTRALIA



