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Let {X,} be a stationary Gaussian sequence with EXo = 0, EXy? = 1
and EXoX, = r(n). Let ¢, = (2 Inn)} and set M, = maXosisa X&. It is pre-
sently known that if #(n) Inn = O(1),

zcn(Mn — Cn) _

2cn(Mn — €n) _
Inlnn -

1) lim inf Ininn

-1 and lim sup
with probability 1. Related results are obtained here assuming r(n) = o(1)
and (r(n) In n)~! is monotone for large n and o(1). Subject to some regu-
larity in r(n), it is shown that if #(») In n/(In In n)* = o(1), then a.s.

2en(Mn — (1 — r(n))ben — Zy) _

(2) lim inf Ininn —1 and
—(1 — bo, —
lim sup 2en(Mn — (1 — rm)ten — Zn) _
Inlnn

where Z, is the minimum variance estimate of the mean based on X, - - -,
Xn. Furthermore if (In In n)2/r(n) In n = o(1), then a.s.

3) liMy oo ¥ (n)(My — (1 — r(n))tcn — Z,) = 0.
It is pointed out that (2) and (3) contain laws for M, which more closely

resemble the one given here in (1). Corresponding results for continuous
parameter Gaussian processes are sketched.

1. Introduction. Let {X,} be a stationary Gaussian sequence and let M, be
the maximum term in X;, X;, - - -, X,. A large number of results are now known
which relate the large sample behaviour of M, to the asymptotic behaviour of
the correlation sequence of the process. We give a short review of certain weak
and strong results in this vein in order to point the direction of the present study.

Suppose EX, = 0, EX;? = 1 and EX, X, = r(n). Set ¢, = (2Inn)? and b, =
¢, — (In (4r In n))/2¢,. Consider first the convergence in distribution of M, as
n — oo. Berman has shown in [1] that the classical extreme value distribution
for independent normal variables applies as well to processes with sufficient
asymptotic independence. A precise statement is as follows.

THEOREM 1.1. If r(n)Inn = o(1) then
(1.1) Plc, (M, — b)) x]—>e** as n—oo forall x.

In a previous paper [7] we have considered the convergence in distribution of
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358 YASH MITTAL AND DONALD YLVISAKER

M, when r(n) = o(1) but r(n)Inn = o(1). Given such a setting, a variety of
limit distributions is possible. In particular we note here that Berman’s result is
about the best of its kind, for already if r(n) Inn = y for n = N, the limit dis-
tribution is not the extreme value distribution of (1.1). It is suggestive of what
is to follow, that the normal is itself a limit distribution according to

THEOREM 1.2. Suppose r(n) is convex and o(1). If (r(n) In n)~" is monotone for
large n and o(1), then
(1.2)  Plr(m)~*(M, — (1 — r(m)*b,) = x]
1
(2m)t

s.etdy  as n—oo forall x.

—

—

The convexity condition is stronger than is necessary to obtain such a result
and (1.2) represents a quite general phenomenon. This point has been remarked
on in [7] and it will surface again through weakened assumptions in Section 2.
On the other hand, the normal limit does depend crucially on some type of
smoothness in the decrease of r(n) to zero (cf. [7]).

We turn next to a relevant strong convergence result about M,. Pickands
found in [8] what he termed the Iterated Logarithm Law for maxima. His con-
ditions for validity were subsequently weakened by Mittal [5], so that one may
now state

THEOREM 1.3. If r(n) In n = O(1) then with probability 1,

2cn(Mn - C'n) = —1
Inlnn

26n(M'n —_ C'n)
Inlnn

(1.3) lim inf, ., and limsup, . =1.

In the present work we are going to obtain strong laws akin to (1.3) when
r(n) = o(1) but r(n) In n £ O(1).

Section 2 begins with an assumed form (2.1) for r(n) and a related represen-
tation of the underlying process. This material follows some recent work of
Berman [2] that has enabled us to greatly simplify our present tasks. Based on
the representation of the process, we define a sequence {I,} of random variables
which is to figure in the conclusions of the theorems of Sections 3 and 4.

Section 3 deals with “moderate” correlations—those which are suitably
bounded above and below as n — co. The main result there is that

(1.4) liminf 26iMo — (L= r()ie, — L) _ 1 apq
Inlnn A
lim sup 2c(M, — (1 &= r(n))le, — 1) _
Inlnn

with probability 1.
In Section 4 we treat large correlations—those for which r(n) In n/(In In n)*
O(1). The conclusion of Theorem 4.1 is that

(1.5) lim,_, r-¥(n)(M, — (1 — r(n))tc, — 1,) =0
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with probability 1. Now /I, is a normal variable with variance r(n) so a con-
siderably strengthened version of (1.2) is visible in (1.5).

The results indicated in (1.4) and (1.5) refer to a particular representation of
the process through which the 7,’s are defined. In Section 5 we point out that,
with a few exceptional cases, (1.4) and (1.5) apply in general if /, is replaced by
Z,, the Markov estimate of the mean, or X,, the least squares estimate of the
mean. It is also noted there that iterated logarithm type laws for M, follow
from (1.4) and (1.5) (see (5.11) for the statement of one of these).

The results mentioned above at (1.1), (1.2) and (1.3) have analogues for con-
tinuous parameter Gaussian processes (see [10], [7] and [6]). In such extensions,
one requires a local condition on the process as well as some form of asymptotic
independence. The local condition is generally reflected in the conclusions ob-
tained and ensures that the extensions are nontrivial. We will not carry through
such a full-fledged program here although it is possible to do so. We do however
handle the continuous parameter problems of Section 2 with no extra effort. In
Section 3 we simply state a continuous version of Theorem 3.1 while in Section
4 we sketch a proof of a version of Theorem 4.1.

2. Preliminaries. The object under study is a stationary Gaussian process
with mean zero and correlation function r. Through the present section the
indexing parameter r may be real-valued or merely integer-valued. We first state
and discuss our assumptions on the function r. A particular representation of
the process is then krought forward and some simple consequences of it are
noted for future use.

Let f be a density function on the real line and set

A, ={(x,))| =00 <x < 0,05y < oo and fix +1) > y}.
The function r has the special form
@1)  r) = §Za f(X) A Sx + B dx = §20 1 Ly (% ) Luy(x y) dy dx

= |4, N A .

In (2.1) it will be further assumed that
(2.2) Forlarge t, A, N A, AN A, for 0<s<t.
Lastly, a growth condition is imposed on r through
2.3) For large ¢, (r(f)lnf)~' is monotonein ¢ and o(1).

In connection with (2.1), Berman has shown in [2] that r is a characteristic
function and that this might be viewed as a generalization of Pélya’s result that
suitable convex (on [0, co)) functions are positive definite. In particular, convex
functions are realized in (2.1) by choices of decreasing densities supported on
[0, c0). In such cases (2.2) is automatically satisfied. As a simple indication of
the greater freedom available under (2.2), take f to be supported on [0, co) and
suppose there is a Q so that f(x) = f(Q) on [0, Q] with f decreasing on [Q, co).
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(2.2) now applies as soon as t = Q. The corresponding r is convex on [Q, o)
but need not be so on [0, co).

With regard to (2.3), observe that the o(1) character of the function (r(f) In )~
is natural in light of (1.3). That this function be monotone for large ¢ proves
useful through the inequalities below. For large s and ¢t = s,

2.4) 0 - = (R -1),
In s
(ii)y r(s) — r(r) = r(s)In Int
Ins

The first of these inequalities is immediate from (2.3) while the second follows
as in the derivation of (2.15) of [7].

We shall make use of a representation given in [2] of a Gaussian process with
correlation function (2.1). Let Z be a white noise process on the plane, set
(2.5) X, = (4, § Z(dx x dy)

and observe that this process has correlation function r. If (2.2) is now invoked
for large T, we may define random variables Y,7, 0 < ¢t < T, and I, through
(2~6) X, = “AtnmonAT)v Z + SSAonAT Zz

=1 —-rMyWYy’s +I,.

The factorization (2.6) of X,, 0 < ¢ < T, into the independent factors Y,” and
I, is to be used crucially through Sections 3 and 4. The covariance properties
of these new processes are as follows: for large T
r(s —t) — r(T)

1 —~rT)
(2.7 (i) EX, I, =r(T) for +<T andif I, isdefined,
ElLX, = EILI, = r(T) .

(i) EY Y7 = , 0<s5,t<T,

In connection with (2.7ii) note that if {B,} is a standard Brownian motion, one
can represent I, as B, ;.

3. Moderate correlations. Let {X,} be the discrete parameter process given
by (2.6), set M, = max,g, X, and ¢, = (2Inn)t. The main purpose of the
section is to prove :

THEOREM 3.1. Assume (2.1), (2.2) and (2.3) and suppose that r(n)In n/(Inln n)* =
O(1). Then with probability 1,

2¢(M,, — (1 — r(n)te, — 1)

(3.1) lim inf 2 = —1 and
Inlnn »
fim sup 26s(Mo = (1 = r(m))ie, = 1) _
Inlnn

For notational purposes we will sometimes write M, — I, = (1 — r(n))}*M,’
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where M, is the maximum of the variables Y,*, 0 < k < n, defined at (2.6). In
these terms we must conclude that with probability 1,
2cn(Mn’ - cn)

(3.2) liminf 2w -"n — 70/ — ] and lim sup
Inlnn

zcn(Mn’ - c'n)
Inlnn

=1.

The proof of Theorem 3.1 is rather long and is broken up into segments as
follows. In Lemma 3.1 it will be shown that the lim inf in (3.2) is at least —1
while the lim sup is at most 1. The most arduous segment is completed in Lemma
3.2 where we find that the lim sup of (3.2) is at least 1. Before beginning these
lemmas note that M,’ is the maximum of n + 1 standard normal variables with
nonnegative correlations between variables (2.7i). By Slepian’s lemma

(3:3) P[M’Sc —_-_-_—(1_6)1“1“”]2 PI:M*SC _(1_—5_)1“_1@_]
e 2¢ = o= 2%

n n

where M, * is the maximum of n + 1 independent standard normal variables. But
the right side of (3.3) — 1 asn — oo by (1.1). Hence M, < ¢, — (1 — ¢)Inlnn/
(2¢,) infinitely often and the lim inf in (3.2) is no larger than —1.

LemMA 3.1. Under the assumptions of Theorem 3.1,

(3.4)  liminf 26Ma” =€) 5
Inlnn

2cn(M'n’ - cn)
Inlnn

and  lim sup 1 a.s.

IA

Proor. We use the method of Pickands [10] to argue that it is sufficient to
establish (3.4) along suitable subsequences. Assume r(n) In n/((In In n)?) < K?
for some K > 2. Fix ¢ > 0 and take n,, = [¢™]. Now let

D, = {Mn — I, < (1 —rn)e, + (1“’“—;)1“_1%} ,
m m m c

(1 4+ 8Ke)InIln N
2¢,

E, = {MN — Iy > (1 — r(N))icy +

for some n, < N < nmﬂ} ,
F,=D,n D, NE,.
We will conclude that the lim sup in (3.4) is < 1 by showivng P(E, i.o.j =0.
This, in turn, is done by showing ‘
3.5) (i) P(F, i.0.)=0,
(i) P(D,° i.0.)=0.
We address (3.5i) first. Note that if F, occurs,

i (1+¢)Inlnn,,,
2c

Pom+1

> Mnm+1 - Inm+1 > MN - In + IN - Inm+

> (1 — r(N))te, + (1 + 8Ke)Inln N
2¢c,

(1— r(nm+1))!cnm+1

1

+ IN - 1""m+1
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for some n,, < N < n,,,,. For that N,

(3:6) Iy —1,,,, <I[1 = r(An)ie,,, — (1 —r(N))ie,]
n 1+ <1n1nnm+1 _ 1n1nN> __4Kelnln N )

2 Copie Cx Cy

The second term on the right side of (3.6) is negative and
(= rtmsa))hpyy — (L= r(N))ey?* 2101y, — 210m,  4e
(1 = r(np))e, . + (1 — r(N))ey Cx Cy

if r(n)c,? is nondecreasing for n > n,,. Thus the occurrence of F,, for large enough
m means there is an N, n,, < N < n,,,,, so that

Ly—1I,, < — 2Ke lcn In N < - 2Ke lcn Inn,,, .
N

m+1
Thus F,, implies

2K:In1

Tm+1
Now 7,  — Iy has normal independent increments so by III, Theorem 2.2 of
[4], the probability of this latter event is no more than

2Pl:(l""m+1 —5)> 2Ke lcn In nmﬂ}

m+1
<op[ Jown =l 2KeInlnn,,, ]
(r(1m) — r(Pms))t ~ Cp, (M)} (In 1y /Inn,) — 1)

< 20(—em?)
and the last bound is summable in m. Thus (3.5i) is established. For (3.5ii),

PO S P[ M, 2 e, + (LE 00N
C

"m

<n, <1 —d (cn + (14+¢)lnln ”m>> < e-(l+e) Inlnng,
" 2c, -
and this too is summable. The latter portion of (3.4) has been verified.
To establish the first half of (3.4), we proceed through the subsequence {n,}
asabove. That this is sufficient (corresponding to (3.5i)) is shown by a parallel
argument to the one just given. These details will therefore be omitted. We

complete matters by indicating an analogue to (3.5ii). Namely, if

G,,,={M;, >, _(l+e)ln1nnm}’

then P(G,’° i.0.) = 0. But since r(n) In n/((In In n)?) is bounded,

3.7) P(G,) < P[M, <b, —cr(n,)t]

where it is to be recalled that b, = ¢, — In (47 In n)/(2¢,). Now the right side
of (3.7) appears as (2.13) in [7] and is shown there to be O(e-"»"»*) under the
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assumption that r, is convex. This can be extended to apply when r, is positive,
and monotone for large n, as is noted in the remarks at the end of Theorem 2
of [7]. Thus we claim the right side of (3.7) is summable in m, which is all we
need in order to finish the proof.

The establishment of (3.1) or (3.2) will be complete once we demonstrate:

LemMA 3.2. Under the assumptions of Theorem 3.1,
26(M, —¢) 51 g
Inlnn -
Proor. Recall that M,’ = max,,., ¥," = max,,., (1 — r(n))~"}(X, — I,) and
let 6,(¢) =0, =c,+ (1 —¢)Inlnn/2c,. We show that
3.9) PlYi<0;,,i=0,1,--+,j,j=n,--+,N]
—0 as N — oo for any fixed (suitably large) n and ¢ > 0. This proceeds
through a series of reductions at (3.10), (3.11) and (3.13). Let L = L(N) =
[et»¥a-vanin M) and observe that (3.9) is bounded above by
P[X; — Tagsnr = (1 — 1((29 + 1)L))*05041)1
i=29L, -+, (29 4+ 1)L, g =0,1, .-, [3[N/L] — 3]
= P[(X, — Iy) = (1 — r((29 + 1)L))*0 3041y
+ (Tagrvz — In)s i = 29L, - -+, (29 + 1)L, ¢ < [3[N/L] — 1]
S P[(X, — Iy) = (1 — r((29 + 1)L))0 g1y
+ A(r(L) — r(N)) i = 29L, - -+, (29 + D)L, ¢ < [BIN/L] — £]]
+ P[max, (I — Iy) > A(r(L) — r(N))*] .
Now I, — I, has normal independent increments so
Plmax, (Jug41y. — Iy) > A(r(L) — r(N))}]
= 2P[(Ip — Iy) > A(n(L) — r(N))}] = 2Q(—2)

and this is small by choice of 2. It therefore suffices to show that

(3.8) lim sup

(010 P| (=W)X - Iy 5 (F{CLEDD Y,

(O i+ g2 [33] 4]

— 0 as N — oo for any fixed ¢ and 2. Moreover the bounds in (3.10) may be
simplified by noting that

r(L) — r(N) = r(L) — r((2q + 1)L) + r((2q +.1)L) —1(N)

In (29 + 1)L InN

< r(Q2q + HLy(2EH T DL 29 + )L)ln 2N

< (g + no)(RELE ) +r(2q + Wyl
In N In N

<@g + DO (5 — 14 V) = g + DLYo(1)

< (lnhlln (g + DL? )
(29 + L
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in which we have used (2.4) and the assumed bound on r(n). The two terms in
each bound in (3.10) may now be coalesced into one if ¢ is suitably modified in
0 ags1z = Ougi1y(e)- Thus it is sufficient to show that

(3.11) PI:YiN = <l — ;((_Zt]r(—;)l)L) >% 0 ag11)1

N EA|

—0as N — oo for any ¢ > 0.

The variables in (3.11) consist of blocks of length L + 1 drawn from a sta-
tionary sequence with correlation sequence (r(k) — r(N))/(1 — r(N)). These
blocks are separated by a distance of L so that correlations between blocks are
never more than (r(L) — r(N))/(1 — r(N)). Compare this family of random
variables with the following family. Let

. 17N
i=2gL, ---,(q + 1)L, qg[_z_[f]_%]

where the variables &,, and U have a zero mean multivariate normal distribution
for which
r(j—1i —r(L

Efialse = . 1 —)r(L)( ) ’ E,§;, =0 for p=+gq,

EE,U=0, EU*=1.
(This construction depends only on the fact that (r(k) — r(L))/(1 — r(L)) provides
a valid correlation sequence and it is already that of Y,* by (2.71).)

By construction, the covariance matrix of Z,, is at least as large as that of the

Y,” in (3.11). Hence Slepian’s lemma applies and (3.11) is no larger than

1 —r2 1)L \?
\:Ziq < 0(2q+1>L< lr(_q"(_lj\_[) ) > ,

i=24L, (2q—|—l)Lq<\: [ ]

= P|:$iq =< Ougn < 1 _lr(_zqr(-Z)l)

N[D—l

Il

) - (P

(21.3) i=2qL, -, (20 + 1)L,q§[_;_[il_]_%]]¢(u)du
so(-jem(iy)

b 00 (PO 4 S (20

i=2qL, -+, 29+ 1)L, g = B—[%]—%ﬂ
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For the first term on the right-hand side of (3.12) note that

¢ (Inln N)! ( 1 — r(L) >,

2 ¢y \(L)y—r(N)
& (Inln N)} (1 — r(L))}
=2 ¢ r(N}(InN/(InL)— 1)
~ ¢ (Inln Ny} (1 — r(L))

2 Cy KlInln N/(In N)}(In N/(In L) — 1)}

> _E__(lnlnN)Q——)oo.
4K

In the second term on the right side of (3.12), the bound on &,, may be collected
into one term if ¢ is modified in 8 ,,,,,;, = 04,.1,,(¢). Thus it is sufficient for the
lemma to conclude that

[(3[N/L]-% . - r((zq + I)L) b
(3.13) TIGE /= ]P[Ezq = 0(2q+1)L< 1 — (L) ) i

i=2qL, -, (2q + I)L]

—0as N — oo forany ¢ > 0.
Consider (3.13). If the variables &,, were totally independent, this probability
would be

(3.14) T334 @541 (B (1= {ELEDDY,

Now (3.14) does go to zero as N — oo for any ¢ > 0 as may be easily demon-
strated by taking logarithms and invoking standard estimates of normal tail prob-
abilities. The proof of the lemma is finished by showing, via a form of Berman’s
lemma [1], that the difference between (3.13) and (3.14) also goes to zero as N—oo.
According to Lemma 1.5 of [11] and writing 7(k) = (r(k) — r(L))/(1 — r(L)), the
difference between (3.13) and (3.14) is no more than

(3.15) T8 Zha F(R)L exp[—(1 + 7(k)) 0 hoq4n2] -

We first bound the inner summation in (3.15). Let L, = L,(N) = [N7] for some
0 < 7 < 1 to be determined and let L, = Ly(N) = e»¥@-¥/tnln¥) for § > 0 to
be determined. We have

Lk F(k) exp[—(1 + F(k))™0%q11)2]
(3.16) < LiLiexp[—(1 + 7)7'0%,14)2]
+ Ly LF(Ly) exp[—(1 + F(Ly))0hqsnyr]
=+ L2f(Lz) exp[—(l =+ f(L2))‘10?2¢1+1)L]

where 7 = sup,,, (r(k) — r(L))/1 — r(L) = (0 — r(L))/1 — r(L) < 1. We argue
successively that the terms on the right in (3.16), when summed on ¢, are each
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o(l) as N — co. First

L, Liexp[—(1 + F)"0%e412] :
In N 2

< N +InN— — In(2g + 1
—CXP[TH HIN = Ny Ty D
__?_1nN+__2__M_}
117 17 (InlnN)
2 2 InN
- 1 — InN — In(2g + 1) + 0 —ﬂ
exP[(“” 1—|—F>n e A ((lnlnN)"

Now if y is chosen smaller than (1 — p)/(1 + p) < (1 — o)/(1 —p —2r(L)) =
(1 — A/(1 + F), this term is (2g + 1)~¥?+7 . o(1). Summing over g leaves a term
which is o(1). Secondly,

L,LF(Ly) exp[—(1 + #(Ly)) 00410z
oln N InN 2

InN — _ In(2g + 1
miny TN T Ay Ty Y

gexp[lnN—
T A PN TR Gan Ny
AL T ALy (nln M)

:exp[lnN(Z— 2 >— §lnN
1 4+ F(Ly) Inln N

In N 2
— In (2 ).
+0<lnlnN> 1 4+ F(L,) n (29 + )]

But this can again be handled appropriately since

In N(2 _ __2_> —2laN L) = r(L)
T + ALy 1+ r(Ly) — 2r(L)

éﬁz(—L) r(L)<1nL )
.

2 , 2 InN ]

2 1n Nk (0 In L)

< -
1 —=rL) InL
= O((Inln N)?) .

Finally in the third term of (3.16) use

F(Ly) < 2(r(Ly) — r(L)) < 2r(L,) <ln In f)

2

1
1 o —__>
Kz(ln In L,)? ln< (Inln N)?

InL, (1_ 5 >
Inln N

< 4K,(ln InL)* ¢ < 8K% Inln N
InL, InlnN~ InN

<2
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to obtain

LZF(Lz) exp[—(l + F(LZ))—10?2<1+1)L

g8K25exp[21nN—2_h_lL+1n1nlnN—1nlnN—#ln
(InIn N)? 1 4+ #(L,)
2 InN 2 ]
— In(2g + 1
T r Ry mmNy Ty AT
§8K25exp[21nN<—lg‘l)—>—2 In N ( P(Ls) >
1+ (L) (Inln N2\ 1 + #(L,)
2
—InInN +InlnlnN — _— = __In(2 -}-1]
1+ #(Ly) G+ D
< 8K% exp[16K26 InlnN—Inln N+ o(nlnN)— —2 In(2q + 1)].
1+ #(L,)

This last expression is summable on g to give a term which is o (1) provided ¢ is
chosen sufficiently small. Thus (3.15) is o(1) as N — oo for any ¢ > 0 and, in
conjunction with (3.13) and (3.14), this completes the proof of the lemma.

Next we state a continuous parameter result which corresponds to Theorem
3.1. {X,} is given by (2.6) and it is assumed that for some positive C, r(f) ~
1 — Cjt|* for t close to zero. Under this local condition we may take X, to be
continuous and so set M, = max,.,., X,.

THEOREM 3.2. Assume (2.1), (2.2) and (2.3) and suppose r(t) Int/(Inln ¢)* is
nonincreasing for large t. Then with probability 1,

(3.17) lim inf (M = (A —r@Pe. = 1) _ 1 4
Inln ¢ a 2
lim sup (M, — (1 — r(t))te, — 1,) — 1 +1.
Inln¢ a

The details of proof will be omitted.

4. Large correlations. In the present section the correlations r(n) are no
longer bounded functions of (In In n)’/In n. The conclusions drawn refer to a.s.
limits so full proofs are short by Section 3 standards. Since they are also re-
petitive of those in Section 3, only sketches of proofs are given.

We begin with the discrete parameter result of

THEOREM 4.1. Let {X,} be given by (2.6) and assume (2.1), (2.2) and (2.3). If
(Inln r)*/r(n) In n = o(1) then with probability 1,
(4.1) lim, ., r=¥(n)(M, — (1 — r(n))* —1,) =0.
Proor. Set n,, = [e"] for some fixed ¢ and consider the events
D, ={M, —1I, <(1—r(n,)ke, + eri(n,)},
E, = {My — I, > (1 — r(N))icy + 4er}(N) for some n, < N < n,.},
F,=D,nD,, ,NnE,.
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As at (3.5), P(E, i.0.) = 0 follows from P(F, i.0.) =0 and P(D,°i.0.) = 0.
But exactly as below (3.5), F,, implies

max, <yen o (I — In) > erf(np,) .
The probability of this event is summable in m as below (3.6). Further,

(4.2) P(Dmc) é P[M;Lm g c'”‘m _|_ er’}(nm)]
< nm(l — (I)(C,nm + erk(nm))) < e—2nlnng,

for m suitably large, and this will be summable in m. With minor modifications
this same argument reduces the problem of showing

My, — I, < (1 — r(N))tc, — 4ert(N) i.o.
with probability 0 to showing instead that
(4.3) M, —1, <(1-—r(ny)ie, — eri(n,) i.o.

with probability 0. This latter fact is covered at (3.7) and below.
We next state a continuous parameter version of Theorem 4.1 and give a few
remarks about its proof.

THEOREM 4.2. Let {X,} be given by (2.6) and assume (2.1), (2.2) and (2.3).
Suppose r(t) ~ 1 — C|t|* for t close to zero, C > 0, and (Inlnt)*/r(t)Int = o(1)
as t — oo. Then with probability 1,

4.4 lim,_, r~¥(6)(M, — (1 — r(t))tc, — I,) = 0.

The proof of this result is reduced to a consideration of the behaviour of
M, — I, along a subsequence {¢,,} = {e‘"} as was the case in Theorem 4.1. Ar-
guments sufficient to establish analogues to (4.2) and (4.3) may be found in
Section 3 of [7].

5. Variants. Here we point out how Theorems 3.1 and 4.1 apply to a general
Gaussian process with correlation function r. Since I, is not determined by the
process {X,} of (2.6), we identify variables that are so determined and which can
take the role of 7, in (3.1) and (4.1). Subsequently, more recognizable iterated
logarithm type laws are derived from (3.1) and (4.1). Our discussion is limited
to the discrete case but can be carried over to the continuous case as well.

Suppose {X,} is given by (2.6). Let X, = (X;, ---, X,)’ and let 1, be the
(n + 1)-vector with all entries equal to 1. X, will denote the least squares esti-
mate of the mean, X, = 1,'X,/(n + 1), and Z, is to be the Markov estimate of
the mean, i.e., Z, is the linear combination of minimum variance amongst all
c,’X, satisfying ¢,'1, = 1. If we set A(n) = EZ,?, the minimum variance prop-
erty of Z, implies '
(5.1 An)=EZ!=EZ,Z, = EX,Z,, i<n.

A second feature of A(n) is that it is the largest 2 so that EX X, — 21,1,/ is
nonnegative definite. The two properties of A(n), in conjunction with (2.7i),

IA
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insure that for all large n
(5.2) Var (X,) = A(n) = r(n) .

The Markov estimate Z, will take over the role of I, in Theorems 3.1 and
4.1. A difficulty here is that A(n) = EZ,? is not readily computable, but it will
suffice for our purposes to estimate the difference between the left and right-hand
sides of (5.2).

LemMA 5.1. If (2.1), (2.2) and (2.3) apply, Var X, — r(n) = O(r(n)/In n).
Proor. Take &(n) = [(n/2)e""*] to be suitably large. Now
Var (X,) — r(n)

<n 11 ) 2ii=0 D=0 1(j — i) — r(n)

(i) ez =0 = (5 )]+ [(5]) - o]
ez = ((F )]+ [(5]) - )]
e+ 2 wea [0 - r ([2])]

+[r(5]) -]

The first term on the right side of (5.3) is O(r(n)/In n) and the last term is
=< r(n)(In n/ln [n/2] — 1) = O(r(n)/In n) by (2.4i). It remains to be shown that
the same order applies to the second term. Use (2.4ii) and sum by parts to obtain

,% a1 [r(i) — r<[_;_:|>] <

<cC r(E(n)) <c r(mlnn _ 0<r(n)).
T Ing(m) T  (Iné&(n))e Inn

(5.3)

II/\

IA

L r(Em) 2z, In 1

t=&(n)

The proof is complete.

Now consider the covariance structure of I, as given by (2.7ii) and that of Z,
as noted in (5.1). One sees thereby that (r(n)/2(n))Z, is the projection of 7, on
the linear manifold generated by X,. According to (5.2) and Lemma 5.1,

(5.4) E<;E”; z, — ) = r(n) <1__ ;E_Z;) < A(n) — r(n)

<VarX, —r() =0 (%) .

Lemma 5.1 also implies

(5.5) E(EEZ; z, — Zn) <;En; ) An) < (Z(n)r;l)r(n))“‘ <(lrénn))2>.

With these details disposed of, we proceed to a translation of (3.1) and (4.1).
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For (3.1), use (5.4) and (5.5) to conclude that

_ 2 r(mylnn 1
(-6) E< (Zn )> =¢ (Inlnn)* Inn’

In ln

Asthe Z, — I, are normal variables, (c,/In In n)(Z, — I,) —, ;. 0 if the right side
of (5.6) is o (1/In n). Thus (2.1), (2.2), (2.3) and r(n) In n/(In In n)* = o(1) imply

2cn(M'n - (1 - r(n))écﬂ - Zn)

5.7 lim inf = —1 and
Inlnn
tim sup 26s(Ma = (L = r(m)ie, = Z.) _
Inlnn

with probability 1.
Now the conclusion to Theorem 4.1 is that

(5:8)  rim (M, — (1 = rm)ie, — ;E”; Z)+r %(n)(rg"; Zy = 1) =00
Since the two terms in (5.8) are independent, each — 0 with probability 1. Fur-
thermore, E(r~*(n)(r(n)/A(n) — 1)Z,)* = O((1/ln n)*) by (5.5). Thus under the
assumptions of Theorem 4.1,

(5-9) roi(n) (M, — (1 — r(n)ie, — Z,) =45, 0.

The modified results (5.7) and (5.9) apply to processes with correlation » which
are not given specifically by (2.6). Because of (5.1) the sequence {Z,} may be
thought of as {B;,,} so it is probabilistically as pleasant as {/,}. Again, however,
A(n) is not easily computed. Before proceeding, we note that Z, may be replaced
in (5.7) by X, through the same reasoning that led us to (5.7). In Theorem 4.1
we can show that X, is a suitable replacement for /, when it is further assumed
that r(n) is convex for large n. The proof of this is long and will not be given.

Finally it is to be noted that (3.1) and (4.1) conceal iterated logarithm type
laws for M, of the more usual variety. First consider (3.1) and the “excess
term” 2¢,/,/In ln n there. Recall that 7, may be represented as B,,,. The law
of the iterated logarithm for Brownian motion tells us that

2¢c,1, 2c 2¢,rt(n)

1 4+ )2 In In r-i(n))?
iy < L+ a@lninrm)t et

for some N on, with probability 1. Consequently if
r(n)Inlnr-'(n) = o <M>

Inn
(3.1) obtains without the 7, term. This is the case if, for example, r(n) ~
In In n/In n for large n. '
Now consider (4.1) and write

rim(M, — (1 — r(n))te,) _  riml, —10p—
(5-10) 2 In In r(n))! = Gty T @R
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with probability 1. The lim sup of the right-hand side of (5.10) is a.s. < 1 by
the iterated logarithm law. To see thatis > 1 we follow the proof in [3]. There
it is shown that B, > (1 — ¢)(2¢,Inln¢,7")} i.0. for ¢, = ¢" and g sufficiently
close to zero. Forsuchag, let?,” = r(m,) where r(m,) = g™ > r(m, + 1). Then

¢St = rmy 1)+ r(m) = r(my + 1) = g BB D = g g o))
by (2.4i). Minor modifications in the proof given in [3] ensure that B, , >
(1 —¢)(2t,/ In1n¢,/-*)t i.o. Thus under the assumptions of Theorem 4.1,

(5.11) liminf 72 M, — (L—r(m)ie)) _ 1 apq
(2 In1n r-Y(n))t

lim sup /MM, — (1 = r(m)te,) _ 4
P (2 In In rY(n))}

with probability 1.
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