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TEUGELS’ RENEWAL THEOREM AND STABLE LAWS

By N. R. MoHAN
University of Mysore, India

Let {Sa}, n=1,2,.-. denote the partial sums of a sequence of
independent, identically distributed nonnegative random variables with
common distribution function F having finite mean g, and let H(t) =
2im=1P(S» < t). Further, let F be nonarithmetic. It is shown in this paper
that as ¢ — co H(f) — t/p is regularly varying if and only if F belongs to
the domain of attraction of a stable law with exponent @, 1 < a < 2.

1. Introduction. Let {X,}, n = 1,2, ... be a sequence of independent, iden-
tically distributed nonnegative random variables with common distribution func-
tion (df ) F and finite mean p. Further, F isassumed to be nonarithmetic. Define
Su= NtaXe M) =max(n:S, <0, 120, Hr)=EN(@) = 55, P(S, < 1)
and Fy(x) = p7* (2 {1 — F(y)}dy. H is called the renewal function and F, is the
stationary df.

When F has finite variance ¢° then from Smith’s key renewal theorem we have

(1.1) lim, ., (H(t) — t]p} = (0* — 12)/242
while if F has infinite variance Teugels (1968) established that as t — oo
(1.2) H(t) — t]pp ~ P=L()p( — 1)(2 — @)

assuming

(1.3) 1 — F(f) ~ t7°L(?) as t— o0

where 1 < @ < 2 and L is some slowly varying (s.v.) function at infinity. He
also assumes a supplementary condition (see (8) in [6]) on H(¢)/t which we show
to be unnecessary. A remark to this effect has also been made by Erickson
(1970). Further, Teugels did not consider the case a = 2.

In Section 2 we show that H(r) — t/p will be regularly varying with exponent
6,0 < 6 < 1if and only if Fe D(2 — ), where by F e D(a) we mean that F
belongs to the domain of attraction of stable law with exponent a.

2. Renewal theorems when F ¢ D(a), | < @ < 2. From Doeblin’s necessary
and sufficient conditions (see Feller (1966)) it is easy to deduce that F e D(a),
a < 2 if it satisfies (1.3); while if a« = 2, that is, the limit law is normal, then

U(r) = (5 y*dF(y) is s.v. at co or equivalently (Feller (1966))
(2.1) lim, ., U(t)~'#{1 — F(t)} = 0.
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LeEMMA 2.1. FeD(a), 1 < a £ 2, if and only if for some s.v. function L(?),
ast— oo

(22) B(r) = (o {1 — Fy(y)}dy ~ £7°Ly(1)

Proor. Firstlet 1 < a < 2. If F satisfies (1.3), then by Theorem 1, VIII. 9
(Feller (1966)), as t — oo we have 1 — F,(t) ~ t*~*L(f)/(« — 1)p and B(¢) ~
e L(t)/(a — 1)(2 — a)p from which (2.2) follows upon setting L,(f) =
Lf(a — )2 — a)p.

Let now (2.2) hold. Since for any a > I, lim,_, §¢* {1 — Fy(y)}dy/B(?) =
a=%—land ({1 — Fy(y)}dy < (a— DH{1 — Fy(1)}, we have (&> * —1)/(a—1) =
lim inf,_, {1 — F,(1)}/B(t). Letting a—1 we get 2 — a < liminf, {1 —
F,(t)}/B(f). Taking a < 1, it is not difficult to see that (1 — &~ %)/(1 — a) =
lim sup, ., f{1 — Fy(#)}/B(f) and hence that 2 — a > limsup,_., {1 — Fy(#)}/B(?)
upon letting @ — 1. Combining the two, we have, as t — oo

(2-3) m{l — Fy(n)} = §¢ {1 — F()}dy ~ p(2 — a)t'="Ly(1) .

Proceeding exactly as before it can be shown that (2.3) implies 1 — F(f) ~
w(a —1)(2 — a)t=*L,(t) as t — oo which is (1.3) with L(f) = p(a — 1)(2 — a)L(?).

Let now a = 2. If F satisfies (2.1), then for given ¢ > 0 there existsa T = T'(¢)
such that forall ¢+ > T, 1 — F(f) < ¢U(f)/t* and hence ¢ {7 {1 — F(y)}dy/pU(?) =
et {7 y~*U(y) dy/pU(r). By Theorem 1, VIIL. 9 (Feller (1966)), the right side
tends to ¢/p as t — oco. Since ¢ is arbitrary we get lim,_, {1 — F,(#)}/U(t) = 0.
In view of this and the equations

(2.4) B@:%WW—HM@+W—EW

(2.5) U@ =2 5o ){1 — F(y)}dy — £{1 — F(1)}
we see that (2.2) holds with L,(¢) = U(r)/2p.

To prove the converse, notice that for any a < 1, (2.2) implies lim,_, §:, {1 —
Fy(y)}dy/Ly(t) = 0. Since (%, {1 — Fy(y)}dy = (1 — a)f{l — Fy(#)} we conclude
that lim,_, {1 — F,(f)}/L,(t) = 0 while from (2.4) it follows that lim,_, §§ y{1 —
F(y)}dy/pL,(t) = 1. Thus for any a <1 lim,_, (i y{1 — F(y)}dy/§iy{1 —
F(y)}dy = 0. Again, since {}, y{1 — F(y)}dy = (1 — a*){1 — F(#)}*/2 it is clear
that lim,_, {1 — F(¢)}/{¢ {1 — F(y)}dy = 0. This and (2.5) together imply
(2.1). The proof of the lemma is complete.

THEOREM 2.1. Let Q(t) be a nonnegative, nonincreasing bounded function of t = 0
andlet 0 < 0 < 1. Then ast— oo

(2.6) §6Q(t — y) dH(y) ~ 1°Ly(1)] 1
if and only if as t — oo
2.7) 15 Q) dy ~ 17Ly(1) 0<6<1

where L, is some s.v. function with Ly(t) — oo as t — co.
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Proor. If (2.7) holds then it is possible to find a T, such that for all t > T,
(2.8) Q1) < 20971 (1) .
For any ¢ > 0 write
§o Q(r — ) dH(y) = {§6 + §Eh + §{a}Q( — y) dH(y) = 1(1) + J(1) + K(1)
where [x] denotes the greatest integer not exceeding x. Then
1) < Ot — [ef)H((er]) < 2((1 — €)' Ly(1(1 — €))H(e?)

where the last inequality follows from (2.8). If A(r) = {$Q(y) dy then by the
elementary renewal theorem and (2.7) we conclude that

(2.9) lim sup, ., I.(#)/A(t) < 2¢(1 — &)’ /p.
Since K(f) < Q(0){H(t) — H(t — 1)}, and as t — oo tL(t) — oo for every ¢ > 0
and for any s.v. function L (see Feller (1966)) we get, using Blackwell’s theorem,
(2.10) lim,_,, K(t)/A(1) = 0.
To estimate J(f), we notice that
Zklen Q¢ — k){H(k + 1) — H(k)}
= J() = Tin Q0 — k — D{H(k + 1) — H(k)}
since Q is nonincreasing. Using Blackwell’s theorem it is possible to choose a
T, = Ty(s)such that for all t > T, 1/p — ¢ < H(k + 1) — H(k) < 1/p + ¢ uni-
formly in k, [et] < k < [t] — 1. Hence we have for t > T,
@11) (/e — &) S 0 — k)
=J) = (e + )Ly Q1 — k) + Q( — [1]) — Q(r — [er])} -
Further,
Vol Q) dy — Q(t — [1]) + O — [ef]) = Tk O — k) < 1210 Q(y) dy
and hence we obtain
B0 dy — () dy — Q(0) + Q((1 — &) + 1)
= 2k Q¢ — k) = §i0 Q(y) dy -
Dividing throughout by 4(f) and using (2.7) we get
(2.12) lim, ., 21905, Q@ — k)[A(t) = (1 — &)’ .
Diving (2.11) by A(#) and using (2.12) we then have
(2.13) (I/p — e)(1 — ¢)? < liminf,_, J(1)/A(?)
< limsup, ., J,(8)/A(t) < (/e + e)(1 — &)’ .
Since J (1) < ({7 Q(t — y) dH(y), from (2.13) we have (1/p—¢)(1 —¢)’ <
lim inf,__, {§7 Q(¢+ — y) dH(y)/A(t) while from (2.9) and (2.13) we obtain
lim sup, ., {7 Q(¢ — y) dH(y)/ A(t) < lim sup,_., J.(1)/A(?) + lim sup,_., 1,(t)/ A(?)
= e+ —e) + 2¢(1 — &)’ p.
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Letting ¢ — 0, we have lim,_, {§" Q(+ — y) dH(y)/A(f) = 1/¢ from which (2.6)
follows if we use (2.10); and the sufficiency of (2.7) is proved.

Suppose (2.6) holds. Writing §¢ Q(r — y) dH(y) = {{}" + {},,} O(t —y) dH(y) =
I(1) + K(r) we notice, as in the proof of (2.10), that K(#)/t’L,(t) — 0 as t — oo
and hence that

(2.14) lim, .., L(O)/Ly(t) = 1/p: .
If e > 0 is sufficiently small, by Blackwell’s theorem we obtain for some K = K{(e)

T O — K){H(Kk + 1) — H(k) — (1 — o)} + (1 — ¢) T35 O(¢ — k)
= L() = X QU — k — D{H(k + 1) — H(k) — (1/¢ + ¢)}
+ (1 + ) T Q¢ — k — 1).
Dividing these inequalities by #°L,(¢) and taking the limit first as  — oo and then
as e — 0and using (2.14) we get lim,_, Y}{37 Q(r — k)/t’L,(#) = 1. Thisis equiva-
lent to lim, ., §§ Q(y) dy/t’Ly(f) = 1 and the proof of the theorem is complete.

A direct application of this theorem is the following:

THEOREM 2.2. Ast — oo, H(t) — t|p ~ t*L(1)/pr, 0 < B < 1 where L, is some
s.V. function with Ly(f) — oo as t — oo if and only if F e D(2 — B) such that when
B = O F has infinite variance.

Proor. If Q(f) = 1 — F,(r) then by Lemma 11 of Teugels (1968) we have
(2.15) H(t) — t/p + Fy(r) = §; Q(t — y) dH(y) .

Since Fy(f) — 1 as 1 — oo the proof of the theorem follows from Lemma 2.1 and
Theorem 2.1.

REMARK 1. The connection between F and L,isgiven by {¢{ {1 — Fy(y)}dy ~
#Ly(1), 0 < § < 1, as t — co. From the proof of the theorem it is clear that if
FeD(a), 1 <a <2, wealways have H(r) — t/p ~ (i {1 — Fy(y)} dyjpast — co.
In particular, as seen from the proof of Lemma 2.1, if F satisfies (1.3) with
I < a < 2, this reduces to (1.2) which is Teugels’ renewal theorem.

REMARK 2. The proof of Theorem 2.2 makes use of the fact that Lyt) >
as 1 — oo when Fe D(2). Should it tend to a finite limit, in which case F has
finite variance, the asymptotic value as given by the theorem, taking into account
the fact that Fy(f) — 1 as r — oo in (2.15), will be the limit in (1.1). But then
we have the proof of this case by Takacs (see discussion in Smith (1958)).

The following theorem establishes that (1.1) holds if and only if the variance
of F is finite.

THEOREM 2.3. Ast— oo, H(t) — t/pr — C where C is some finite constant if and
only if the variance of F is finite. -

PrOOF. We need only prove the “only if” part. Suppose therefore that
H(f) — t/p — C. For the special Q of Theorem 2.2 we have from (2.15),
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{6 Q(t — y)dH(y) - C 4+ 1. We now show that this implies {3 Q(y) dy < oo.
From the inequality

107 Q1] — y) dH(y) =z TG Q7] — k){H(k + 1) — H(k)}
and Blackwell’s theorem we obtain limsup,_. 195 Q([1] — k) < #(C + 1)
using the fact that Q(f) - 0 as ¢t — co. This implies {2 Q(y)dy < oo since

090>y dy < X7 Q([t] — k) + 1. But {3 {1 — Fy(y)} dy is finite if and only
if the variance of F is finite. The proof is complete.

REMARK 3. Itis trivial to see that the elementary renewal theorem holds if and
only if the mean of F is finite. We have as t — oo, H(t) ~ (sin na/ma)t*/L(t),
0 < a < 1, for some s.v. function L if and only if 1 — F(f) ~ t~*L(¢), that is,
if and only if Fe D(a), 0 < a < 1 (see Feller (1966)), while Theorems 2.2 and
2.3 above establish the connection between the domains of attraction of stable
law with exponent @, 1 < @ < 2 and the asymptotic value of H(r) — t/u. The
case « = 1 is interesting. From Theorem 5 of Erickson (1970) we have H(f) ~
t/§6{1 — F(y)}dy as t — co if and only if {¢{{l — F(y)}dyiss.v. See also Theo-
rem 1 of Teugels (1968). A random variable with df F satisfying this property
is said to be relatively stable, and the class of relatively stable positive random
variables is wider than the class of random variables for which either the mean
is finite or the random variable belongs to the domain of attraction of a stable
law with exponent 1 (Rogozin (1971)). Hence, in this case, from the asymptotic
value of H(f) one cannot say whether F e D(1).

The following is an improvement of Corollary 2 of Teugels (1968) in that it
not only removes his supplementary condition (see (8) in [6]) but also gives the
estimate when a = 2.

THEOREM 2.4. If FeD(a), 1 < a <2, then as t— oo V(N(t)) ~ 2(a —
De§e{l — F(y)}dy/(3 — a).

Proor. The proof is on lines similar to that of Theorem 6 of Smith (1954)
and hence is omitted.

Notice that if F satisfies (1.3) then the above estimate simplifies to
262 L(t)[ %2 — a)(3 — ), which obtains Teugels’ Corollary 2.
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