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ON CONVEXITY OF MEASURES!

BY YoserF RINOTT

The Weizmann Institute of Science, Israel
and Cornell University
A simple geometric proof and some applications are given to results

of C. Borell providing necessary and sufficient conditions that a density in
R~ generates a measure satisfying a convexity property of the type

P(0Ao + (1 — 0)A) = (O[P(A0)l* + (1 — O) P} /s

1. Introduction. Let P be a probability measure defined on the Borel sets in
R". We say that P belongs to the class _ if for all § €[0, 1], 4,, 4, C R*

1) P(0A, + (1 — 0)4,) = (0[P(4)T + (1 — O)[P(A)]}”
whenever the sets involved are measurable. Here
04, + (1 — 0)A, = {0a, + (1 — 0)a,: a,e 4,,i =0, 1}.

C. Borell [3], proved that if a measure satisfies the convexity property (1) for
some s € [—oo, 1/n) then it is absolutely continuous with respect to Lebesgue
measure in R*. Borell gave necessary and sufficient conditions for (1) in terms
of the density (Theorem 1, below). The case s = 0 in which the right-hand side
of (1) is interpreted by continuity as [P(4,)]°’[P(4,)]"~’ was considered by Prékopa
[8]. In the case s = 1/n, (1) holds for Lebesgue measure and is known as the

Brunn-Minkowski inequality. (For s = —oo the right-hand side of (1) is’

min {P(4,), P(4,)}.) A host of applications and examples for these results have
already appeared in [2], [3], [4], [5], [6] and [9].

In this paper we give a simple new proof of Theorem 1 for the cases s € [— oo,
1/(n 4+ 1)) using a convexity argument that reduces the problem to special cases
(Lemma 1 and Lemma 2) which can be computed in an easy way. We believe
our approach throws some light on Prékopa’s and Borell’s somewhat obscure
and lengthy proofs. Some new applications are given.

2. Characterization of convex measures.

THEOREM 1. Let P be a probability measure on R™ generated by a density f, i.e.,
P(A) = §, f(x) dx for any Borel set A C R*. Pe _#, if and only if there exists a
version g of the density f such that

gva-m s convex (—oo X 5<0),
logg is concave (s=0),
g¥/ s concave (0 < s < 1/n).
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REMARK. The idea of the proof is to replace integrals of f over sets in R* by a
certain measure # (to be defined below) of epigraphs in R**'. We prove directly
that the measure y is in _# and Theorem 1 follows by a simple geometric prop-
erty of the epigraphs. As a result of the embedding in R"*! our proof is valid
only for the cases se[—o0, 1/(n 4 1))

To prove Theorem 1 we need the following lemmas.

LeMMA 1. Let p be the measure defined on R*** by du(x,, + +,x,,,) = e *nt1dx, - - .
dx,.,. Then for A,, A, C R**', 0 €[0, 1] we have
2) 104, + (1 — 0)4) = [1(A)[1(A)T -
LEMMA 2. Let p be the measure on R*** defined by
Ay ooy ) = [F T Ty sy, X > 0.

Then for se[—oo, 1/(n + 1)), s = 0 and 0 [0, 1]

3) w04, + (1 — 0)4) = {0[p(A)]) + (1 — ) p(A)I}” -

REMARK. The lemmas can be obtained by first proving them for rectangular
sets, i.e., products of intervals, for which the p-measure can be computed
directly. The result will follow for any sets using the Hadwiger-Ohman argu-
ment referred to by Borell [3]. We have included a different proof at the end of
this section.

Proor oF THEOREM 1. We start with the “if” statement, and the case s = 0.
For a real valued function g defined on R* and a set 4 C R™ we define the epi-
graph in R**

E,9) ={(x,a): xeA4,aecR and g(x) < a}.

Denoting
A* = E,(—log f), A* C R
we have for the measure u defined in Lemma 1,
4) P(A) = p(4%)
and the convexity of —log f implies
(5) [04, + (1 — ))A]* 204, + (1 — 0)A*.

Taking ¢ measure of the sets on both sides of (5) and applying Lemma 1 and (4)
we obtain
P A, + (1 — 0)4) = [P(A)[P(A)]’
completing the proof for s = 0. '
For 5 < 0 repeat the above argument with

A* — EA(fs/<1;-sn)) .
Relations (4) and (5) and the rest of the proof continue to be true in this nota-
tion where g is now defined as in Lemma 2. For s > 0 define

A* — HA(fa/(l—sn))
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where the hypograph H,(g) is defined here to be
H,(9) ={(X,@): Xed,aecR and 0 =< a < g(x)}

and the proof follows as above.
In order to prove the “only if”’ statement we start with the case s = 0, so that
P, generated by f satisfies

(6) P64, + (1 — 0)4)) = [P(A)'[P(A)]" -
Let B,(x) be the sphere in R* centered at x with radius 1/k. Define
1
1) = ey S48 ds

where the integral is taken over the sphere B,(x), and | B,(x)| denotes its Lebesgue
measure.

Now (6) implies

f[ul0x + (1 = 0)y) = i’ (X)/°(¥)
and therefore the function g defined by g(x) = lim inf,_, f,(x) satisfies g(fx +
1 — 0)y) = ¢°(x)g*%(y), i.e., g is log-concave.

By differentiation of the integral argument we have f = g almost everywhere
implying f is log-concave a.e., completing the case s = 0.

For s #+ 0 we conclude by a similar argument that P e _#; implies f* is convex
for s < 0 and concave for 0 < s < 1/n. In particular f is continuous for —oo <
s < 1/n (and it is easy to see that f can be uniformly approximated by an a.e.
continuous density g satisfying g(fx + (1 — #)y) = min {g(x), g(y)} in the case
§ = —oo).

Consider the sets 4, € R**!, i = 0, 1, defined by 4, = B, x (a;, o) Where B,
are spheres in R*, a, > 0. Denote by v the Lebesgue measure of B,. Then a
direct computation shows that if

le/: 4%
o a

then the sets 4, will satisfy (3) of Lemma 1 with equality for s < 0 (define 4, =
B, x (0, a;) for s > 0). If f*@=*» is not convex (in the case s < 0) we can construct
A, as above With A, C E, (f*=) but 6.4, + (1 — )4 D Eppyrann(f**™)
and as in the proof of Theorem 1 we obtain from the above relations

P(0B, + (1 — 0)B)) < p(0.4 + (1 — )4) = ([ A)]* + (1 — O (AT}
< AO[PBY)" + (1 — OPBYIT"
so that P ¢ _#, thus proving the “only if” for s < 0, and similarly for s > 0.
This completes the proof of Theorem 1.

Prékopa’s [7] original proof of the case s = 0 of Theorem 1 was based on the
following integral inequality, a “reversal” of Holder’s inequality, which we
derive easily from Lemma 1.
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CoROLLARY 1. Let f,, f, be positive functions on R™ and for t in R let
r(t) = sup {fu(X)fi(%1) : 0%, + (1 — )%, = t} .

San 7(t) dt = [§n foV7(X) AX]'[§ o i/ 077(x) dX]"
Proor. For any two functions gy(x), g,(X), X € R* define
(90 O g.)(t) = inf{0g4(%o) + (1 — O)gu(x,): 0% + (1 — O)x, = t}.
Setting g,(x) = —log f,(x), g,(x) = —log f,¥4-9(x) we have

Then

r(t) — e~ @O |
Since ([10], Section 5)
™ Epn(90 O 91) = OEga(95) + (1 — O)Ea(9:)
we obtain invoking the measure y in Lemma 1, (2), (4) and (7)
Sen 1(t) dt = p{Em(90 O 91)}
= H{OEgn(95) + (1 — O)Epn(9:)}
= {HEpn(90) N { L Ern(90) 1}
= [an fo/7(X) AXT[§ on 1070 (x) dX]=0 .
COROLLARY 2. Let f; i = 0, 1 be nonnegative functions defined on R*. Let g, =
[:¥%7*™ and define
h(t) = (9, O 9:)(t) = inf{fgy(x,) + (1 — ﬂ)gl(xl): 0x, + (1 — 0)x, = t}
then for s < 0
Van BO7(t) dt 2 {0(an fu(X) dX)" + (1 — O)(§zn fo(X) dX)} .
Proor. Invoking the measure x defined in Lemma 2 we have by (3) and (7)
$an ROTH() dt = p{Epa(h(1))}
= H{OEgn(9o) + (1 — 0)Ers(9,)}
= {01°(Egn(90)) + (1 — O)pr*(Epn(g))}
= {0(3n fo(X) d%)" + (1 — O)(zn fu(X) X)) .
ProoF oF LEMMA 1. Part of the method of proof is close to that in the proof

of the Brunn-Minkowski inequality in [1]. For a set 4 C R**! let T (2) denote
the n dimensional section of 4 on the hyperplane {x,,, = z}, i.e.,

T,2) ={(x1, - > Xpy'2) €A (X1, - -+, X,) ER"} .

Let v,(z) be the n-dimensional volume of 7,(z). Denote m, = u(4,)i =0, 1,
and set B = 04, + (1 — 6)4,. By the definition of # we have

m, = {2, 'vAi(x)e"‘ dx i=0,1.
Fori=0,1and 0 < r < 1 we define z,(r) by the relations

m;t = {50 v, (x)e™* dx

—oo
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and differentiate to obtain

®) m; = vAi(zi)e“i%z_i i=0,1.
T

Now
#(B) = {2, vp(2)e* dz

and we substitute z = 0z,(z) 4+ (1 — 6)z,(7) in the last integral, using (8) to obtain
Om, 1 — 0)m1]dT
Vy(Z)e™*0 vy (z)e ™
1
2 (20
Vi(2)V5"(2)
where the last inequality follows by arithmetic-geometric means inequality.
Since the sections satisfy
T5(0z, + (1 — 0)z,) 2 0T, (2)) + (1 — 0)T ()

we have by the Brunn-Minkowski inequality and the arithmetic-geometric means
inequality respectively: )
(10) vp(02z, + (1 — 0)z)) = {0[7’,40(20)]1/” + (1 - 0)[”41(21)]”"}”

= v (2)V5"(2) -
Thus the last integrand in (9) is = 1 implying

#(B) =z mm~"

%) pB) = 502, + (1 — 0)z1)e-£f’zo+<1—0>z11[

= my’m = G0z, + (1 — 6)z)

thus completing the proof of Lemma 1.

ProOF oF LEMMA 2. We use the same notation as above and with the same
substitution we obtain after invoking the first inequality in (10) (i.e., the Brunn-
Minkowski inequality) and setting 8 = (1 — s(n + 1))/s,

Om, a1 — 0)m1:|dt )
V4,(20)2° v Al(z,)zl‘9
The last integrand is easily shown to be > [0m; + (1 — 0)m;]/* by Holder’s
inequality, proving Lemma 2.

#(B) = GL0VL + (1 — O)0]"(0z, + (1 — 0>zl>ﬂ[

3. Applications.

(1) Consider the problem of testing hypotheses concerning a location parame-
ter 7 of the density f(x — %), X, € R*. Let H, be a convex subset of R*, and
let 4 be a convex acceptance region, Let the measure P generated by f be in
A, for some s €[ —oo, 1/n). If the test determined by A: ¢(x) = 1 — y,(x) is
a-similar on the boundary of H, then it is an unbiased level « test.

(2) In the above setting suppose P is in _#, for some s € [ — oo, 1/n) and satis-
fies (1) with a strict inequality (this would follow if the density satisfies one of
the convexity conditions of Theorem 1 strictly). If H, is not strictly convex
then tests which are a-similar on the boundary of H,, with convex acceptance
region 4, do not exist.
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(1) and (2) follow from the fact that the power function (%) of a test based
on a random vector X with joint probability measure P e_+;, and having a
convex acceptance region 4, i.e., () = P(X — 5 € A) satisfies:

807, + (1 — O)py) = {08 (70) + (1 — O)B(p)}”
= min {8(%,), B(7)}»

which holds with strict inequality in (2). If the power function is continuous,
(2) implies that level @ unbiased tests do not exist. Asanexample considern = 2,
7 = (7, ,)- If fis a bivariate normal density then a convex set in R* can never
be an acceptance region of an unbiased test of level a for H, like |,| + |7,| < C.
(3) Let X, ---, X, be random variables having a joint probability measure
in _#, for some s €[ —o0, 1/n). Define »(t,, - - -, t,_,) by the implicit relation

P{X1>t1""’X >t'n—19X'ngv(t1’"',tn—l}:a

= n—-1 =
(0=a<1fixed). Then u(t,, - - -, t,_,) is concave on the convex region R*~! where
itis defined. (The special case of bivariate normal distribution was provedin[11].)

(4) Let X =X, ---, X, be as in (3) and let ¢ be a concave function on R".
Set G(f) = P(¢(X) = ¢). Then

GO, + (1 — 0)r,) = {B[G(1)] + (1 — O[GEH)T}” -

In the case of s = 0 it would follow that log G(¢) is concave which is equivalent
to the distribution having an increasing failure rate (IFR) in the context of reli-
ability theory. Choosing ¢(x) = min x, we see that a system which consists of
a series of components with joint log concave density, is IFR.

If ¢ is convex in x € R" then the function F(f) = P(¢(X) < ¢) will satisfy

(11) F@n + (1 —0)t) = {0[F(#)]" + (1 — O[F(®)I}"

Thus the distribution function of the range statistic max X; — min X, and the
sample standard deviation {3}, (X; — X)*}}, for example, satisfy (11). ¢ can
also be taken to be vector valued, i.e., ¢(x) = (4(X), - - -, ¢n(X)) With each ¢,
convex.

(5) If X(r)is a Gaussian process then the joint density of X(z), - - -, X(2,) is log
concave. It follows as in (4) that the distribution function of »}7_, X*(¢;)(t;,—t;_,)
is log concave. When {z,}7_, is a sequence of partitions becoming dense in (0, 1),
the above sum approaches W = {} X*(f) dt in distribution implying that the dis-
tribution fuaction of W is log concave. Similarly the variable U = sup,.,, |X(?)|
has a log concave distribution function since (assuming the process is defined to
be separable) the variable U can be approximated by max;_, ... . |[X(#;)|. Uand
W are the limiting distributions of certain statistics for testing goodness of fit.
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