NOTE

CORRECTION TO "AN INTEGRAL EQUATION IN AGE-DEPENDENT BRANCHING PROCESSES"

By H. WEINER

University of California at Davis

The monotonicity conditions of the theorems ([1]) of Sections 2 and 3, respectively, are sufficient conditions but not necessary conditions, as shown by the following counterexample due to Professor David Miller. Let for $t \ge 0$,

(1)
$$m(t) = te^{-t} + \int_0^t m(t-u)e^{-u} du$$

and

$$m(0)=0,$$

with solution

(3)
$$m(t) = 1 - e^{-t},$$

which is monotone increasing, but the monotonicity condition of Theorem 2 is violated.

The necessity fails since the renewal representation of Section 2,

$$R(t) = E\left[\sum_{i=1}^{N(t)} Y_i\right],$$

does not necessarily hold if the $\{Y_i\}$ are not either strictly positive or strictly negative.

REFERENCE

[1] Weiner, H. J. (1965). An integral equation in age-dependent branching processes. Ann. Math. Statist. 36 1569-1573.