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AN UNEXPECTED EXPECTATION

By GORDON SIMONS!
University of North Carolina

It is shown that, while the value of the expectation E(X + Y) always
depends on the random variables X and Y only through their marginal dis-
tributions, the same kind of statement cannot be made for E(X + Y + Z).

Because of the linearity property for expectations, it is generally accepted that
the values of expectations such as E(X + Y) and E(X + Y + Z) depend on the
random variables within their parentheses only through their marginal distri-
butions. Below, it is shown that this conclusion is valid for E(X -+ Y) but is
not valid for E(X + Y + Z). Specifically, we shall illustrate three random vari-
ables X, Y and Z, which have fixed marginal distributions, with the property
that X 4 Y + Z = 0 almost surely under one possible joint distribution and
X + Y 4 Z > 0 almost surely under another possible joint distribution. We
shall begin by showing that such paradoxical behavior is impossible in the case
of two random variables.

THEOREM. If E(X + Y) is defined (in the sense that E(X + Y)* andor E(X + Y)~
is finite), then its value depends on X and Y only through their marginal distributions.

REMARKS. Of course the theorem’s conclusion is obvious when the formula
1) EX+Y)=EX+ EY

is applicable. The strength of the theorem is that the conclusion holds even
when EX and EY are not defined, or when one of them equals +co and the
other equals —co. The theorem partially generalizes a result previously reported
by the author (1976) which states that E(X — Y) = 0 when the expectation is
defined and one of the following two conditions holds:

(a) X and Y have the same distribution.
(b) X and Y are symmetric random variables.

(Neither (a) nor (b) implies X — Y is a symmetric random variable.) It should
not be inferred from the theorem that the existence of E(X + Y) depends only
on the marginal distributions. This clearly is not the case.

Proor. For any random variable W, let W* denote the truncated random
variable which equals —c, Worcas W < —c¢, —¢c < W < c or W > ¢, respec-
tively. Observe that (X° + Y*)* 1 (X + Y)*and (X° + Y*)~ 1 (X + Y)~asc¢— oo.
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Thus, by the monotone convergence theorem,
EX+Y)>EX+Y) as c—oo

when the latter is defined. The conclusion then follows from (1), which holds
for the truncated random variables X° and Y*. []

To see that the theorem does not generalize to three random variables, con-
sider the following two ways of defining X, Y and Z. Both ways result in the
same set of marginal distributions. Let U denote a uniform variable on [0, 1] and
observe that 1 — U and ¥V = |2U — 1] are uniform variables on [0, 1] as well.

First definition. X = Y = tan (r/2)U and Z = —2X.
Clearly X + Y4+ Z=0and EX + Y+ Z) = 0.
Second definition. X = tan (z/2)U, Y = tan(x/2)(1—U)and Z = —2 tan (z/2)V.

By standard trigonometric identities, it follows that ¥ = cot (z/2)U and that
Z = tan (n/2)U — cot (7/2)U when 0 < U < % and equals cot (z/2)U — tan (z/2)U
wheni < U< 1. ThusX + Y + Z = 2 tan (r/2)U = 2X when 0 < U < 4 and
equals 2 cot (7/2)U = 2Y when § < U< 1. It follows that X + Y+ Z > 0
almost surely. It is an easy matter to calculate E(X + Y + Z) which equals
(4/m)log2.

We have no explanation why the theorem given above should hold for two
random variables but fail for three. In spite of this, the theorem does say some-
thing about the three random variable case. Let X’ = X + Y and V' = Z. It
follows from the theorem that the value of E(X + Y + Z) = E(X’ + Y’), when
defined, depends on X’ and Y’ only through their marginal distributions. This
means that the value of E(X + Y + Z) depends on X, Y and Z only through
the bivariate distribution of X and Y and the marginal distribution of Z. A
similar observation can be made for E(W + X + Y + Z). We do not know
whether more than knowledge of the bivariate distributions is needed when the
number of random variables is raised to five.
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