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REFLECTION GROUPS, GENERALIZED SCHUR FUNCTIONS,
AND THE GEOMETRY OF MAJORIZATION

By Mogrris L. EATON! AND MICHAEL D. PERLMAN?

University of Minnesota and University of Chicago

Let G be a closed subgroup of the orthogonal group O(n) acting on R~.
A real-valued function fon R” is called G-monotone (decreasing) if f(y) =
f(x) whenever y < x, i.e., whenever y € C(x), where C(x) is the convex hull
of the G-orbit of x. When G is the permutation group &, the ordering <
is the majorization ordering of Schur, and the <,-monotone functions are
the Schur-concave functions. This paper contains a geometrical study of
the convex polytopes C(x) and the ordering < when G is any closed sub-
group of O(n) that is generated by reflections, which includes &, as a spe-
cial case. The classical results of Schur (1923), Ostrowski (1952), Rado
(1952), and Hardy, Littlewood and Polya (1952) concerning majorization
and Schur functions are generalized to reflection groups. It is shown that
a smooth G-invariant function f is G-monotone iff (r'x)(r'Vf(x)) <0 for
all xe R* and all r e R* such that the reflection across the hyperplane
{z|r’z =0} is in G. Furthermore, it is shown that the convolution (relative
to Lebesgue measure) of two nonnegative G-monotone functions is again
G-monotone. The latter extends a theorem of Marshall and Olkin (1974)
concerning %, and has applications to probability inequalities arising in
multivariate statistical analysis.

1. Introduction. Let O(n) denote the group of n X n orthogonal matrices
acting on R", and suppose G is a closed subgroup of O(n). For xe R™ let
C(x) = Cy(x) denote the convex hull of the G-orbit {gx | g € G} of x. The group
G determines a partial ordering < on R" as follows:

DerINITION 1.1. y < x iff y € C(x).

Geometrically, y < x implies that y is in some sense closer to 0 than x (although
C(x) need not contain 0—see Lemma 2.1). When G is the permutation group
S, acting on R", the ordering < is exactly the majorization ordering of Schur
(see Example 4.1; also see Rado (1952), Berge (1963), or Marshall and Olkin
(1979)). When G is the group <7, generated by all permutations and sign changes
of coordinates acting on R", the ordering = is related to the weak majorization
ordering of Marshall and Olkin (1979).
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DEerINITION 1.2. An extended real-valued function f: R* > [—o00, 0] is G-
monotone decreasing, abbreviated as G-monotone, if y < x implies that f(y) = f(x).

Since x € C(gx) and gx € C(x) for every g € G, a G-monotone function is neces-
sarily G-invariant. When G = &,, the G-monotone functions are the so-called
Schur-concave functions.

DErINITION 1.3. Let 5 = %, denote the class of all G-monotone functions
f: R*— [0, oo] which are integrable over R* with respect to Lebesgue measure.
Clearly, .5, is a convex cone of functions which is closed under minimum and
maximum. A central question concerning % is the following:

QuesTioN 1.1. Under what conditions on the group G < O(n) is 5, closed
under convolution (integrating with respect to Lebesgue measure on R")?

Our primary motivation for posing this question has been an attempt to ex-
tend the following result, essentially due to Anderson (1955) and Mudholkar
(1966) (see also Sherman (1955)). Notice that no restrictions on G £ O(n) are
imposed here:

THEOREM 1.1. Letf,, f, be nonnegative Lebesgue-integrable functions on R* which
are G-invariant. Suppose that K,(c) = {x|fi(x) = c} isa convex set for each ¢ > 0,
i =1,2. Then the convolution f, x f, is in F 4.

An important application of Theorem 1.1 has been the derivation of proba-
bility inequalities leading to unbiasedness and monotonicity properties of the
power functions of statistical tests for multivariate hypotheses (e.g., Anderson,
Das Gupta, and Mudholkar (1964), Cohen and Strawderman (1971), Eaton and
Perlman (1974)). In these applications one studies convolutions of the form

(L)) = $af(y — x) dx

where f is a probability density on R and 4 & R" is the acceptance region of a
statistical test. To apply Theorem 1.1, 4 and {x|f(x) = ¢} must be convex sets.
In many testing problems, however, 4 is not convex. For example, Matthes
and Truax (1967) have shown that for testing problems in multivariate exponen-
tial families with nuisance parameters, the class of acceptance regions 4 having
convex sections is essentially complete; however, such regions need not be con-
vex. Nonetheless, /, may be G-monotone. If .57 is closed under convolution,
monotonicity results for power functions still can be obtained.

The convexity and invariance assumptions in Theorem 1.1 imply that f; e &7,
i =1,2,butf; e . #;need not imply that K;(c) is convex. The convexity assump-
tion is crucial in the proofs of Anderson and Mudholkar, which are based on
the Briinn-Minkowski inequality. Without some restriction on the group G, the
convexity and invariance assumptions on f; in Theorem 1.1 cannot be weakened
to the condition that f,;e &, i = 1,2. For example, take G = {+1]}, f; =
Iy, —g, Where @ = {(x;, -+, x,): 0 < x;, .-+, x, <2}, and f, = I, where B is
the unit ball; then f,, f,e &, but f, « f, is not G-monotone. (Throughout this
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paper, I without subscripts denotes the identity transformation on R", while 7,
denotes the indicator function of the set A4.)

In a recent paper Marshall and Olkin (1974) have proved that & is closed
under convolution when G is the permutation group &,. It is easy to show
that & is closed under convolution when G is the group of all sign changes
on coordinates; when n = 1 this has been proved by Wintner (1938), and the
general case is an easy consequence. Also, if G acts transitively on &, =
{x:||x|| = 1}, then Cy4(x) = {y: ||y|| £ ||x||} and either Theorem 1.1 or a direct
argument shows that &, is closed under convolution. Thus, there is reason to
believe that a non-trivial answer to Question 1.1 may be obtainable.

A second question of interest is that of characterizing the smooth G-monotone
functions f in terms of the gradient vector Vf. When G = .&,, for example,
Schur (1923) and Ostrowski (1952) have shown that a & -invariant function f
having a differential is &%,-monotone (i.e., Schur-concave) iff

(1.1) (= x) (L - U <o, I<ijsn.
ox;  0x;
For a proof see Berge (1963) or Marshall and Olkin (1979).

It is important to note that when G = &, both the convolution theorem of
Marshall and Olkin and the differential characterization (1.1) of Schur-concave
functions can be proved by applying a basic lemma of Hardy, Littlewood, and
Polya (1952, page 47) concerning majorization. This lemma states that if y < x
then y can be obtained from x by successive applications of a finite number of
transformations of the form 27 + (1 — 2)S,;, where 0 < 2 < 1 and §,; is the
permutation which interchanges the ith and jth coordinates. Geometrically,
this implies the existence of a polygonal path from x to y such that the endpoints
of each directed line segment in the path differ in exactly two coordinates.
Furthermore, if for a given segment these two coordinates are, say, the ith and
jth, then the line segment is perpendicular to the hyperplane (subspace) H,; =
{ze R*|z; = z;}, and the initial point of the segment is further from H,; than
the terminal point. The lemma enables one to show that a function is -
monotone by showing that it is monotone on these special directed line segments.
For example, (see the proof of Theorem 2.1 of Marshall and Olkin (1974)), this
reduces the convolution theorem for &, to the monotonicity of the convolu-
tion of two symmetric unimodal functions of a single real variable, which has
been proved by Wintner (1938).

The hyperplanes H,; are intimately related to the permutation group .&,, in
that the set of reflections S;; across the H,, generate 5%, i.e., any permutation
is the product of permutations interchanging only two coordinates. The main
purpose of this paper is to extend the theory of majorization and Schur functions
from &, to an arbitrary reflection group G, i.e., a subgroup of O(n) generated by
reflections (across (n — 1)-dimensional hyperplanes containing the origin). For
such G we study the generalized majorization ordering = of Definition 1.1 and
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the generalized Schur (concave) functions of Definition 1.2. Furthermore, we
establish the convolution theorem for ../, and differential characterizations
of G-monotonicity extending (1.1). These results rely on Lemmas 4.2 and 4.5,
which are extensions of the basic path lemma of Hardy, Littlewood, and Polya
to finite reflection groups.

Section 2 contains preliminary results. There it is shown that for any sub-
group G < O(n), the convolution theorem and a differential characterization of
G-monotonicity will follow provided that G contains enough reflections and
that a path lemma for G can be established (see Corollary 2.1 and Proposition
2.3). It is also shown that if the convolution theorem and differential charac-
terization are valid for G,, - - -, G, actingon R™, - .., R™ respectively, then these
results also hold for the direct product G, X --- X G, acting on R™* "+,
thereby providing a useful reduction of the two problems. ‘

The structure of groups generated by reflections is reviewed in Section 3.
Section 4, the core of this paper, is devoted to a detailed study of the ordering
< and the geometric structure of the convex polytopes C(x), which leads to the
basic path lemmas for finite reflection groups, Lemmas 4.2 and 4.5. As inter-
esting by-products of this study, we obtain two new results about the geometric
and algebraic structure of finite reflection groups, Proposition 4.1 and Theorem
4.3. The convolution theorem for ., and the differential characterizations of
G-monotonicity are summarized in Section 5.

2. Preliminary results. Throughout this paper R denotes Euclidean n-space
and G is a closed subgroup of the orthogonal group O(n) which preserves the
usual inner product (x, y) = 3 x,y; on R*. Elements of R are represented by
column vectors. Subsets of the unit sphere &, _, = {x e R": ||x|| = 1} will be
denoted by A and II, with or without subscripts. The transpose of a vector or
matrix a is denoted by a’.

DEerINITION 2.1. If re %7, ), the linear transformation S, = I — 2rr'is called
a reflection.

Clearly S, e O(n), S, = S_,, and S, = S,/ = §,7'. Geometrically, S, reflects
points across the (n — 1)-dimensional hyperplane (actually subspace) H, =
{xe R*|r'x = 0}.

DEeFINITION 2.2, If S, € G, r is called a root of G. The root system of G is
A; = {re F,,1S, €G).

REMARK 2.1. If re A, then also gr e A, for each g € G, since S,, = ¢S, ¢’ € G;
95,9 = ¢S,97'is a conjugate of S, in G. ’

DEFINITION 2.3. A nonnegative function ¢ on R' is symmetric and unimodal
about 7, € R if ¢(n, + 1) = ¢(n, — ) forall e R*and ¢(5, + 7) is nonincreasing
for = 0.

ProrosITION 2.1. Suppose f,, f,€ -/ = &/, and suppose r € A,. Let

h(x) = §an filx = YY) dy = (fix fi)() -
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For fixed x € R* the function ¢(n) = h(x + nr), n € R, is symmetric and unimodal
about —r'x.

Proor. First note that

X+ gr =3x 4+ 8,.x) + (n + r'x)r.
If we set 3 =  + r'x, it is sufficient to show that

Po(B) = h(3(x + S, x) + Br)

is symmetric and unimodal about 0. Set u = 4(x + S, x), so

$o(8) = § fu + Br — y)fa(y) dy -

Let v,, - - -, v, be an orthogonal basis for R” such that r = v, and let a; = vy,
soy = >.»,a,v;. Then

2.1 $o(B) = Yan1 [\ oW + (B — ay)v, — T} i)
X filayv, + 23 av,)da))da, - - da, .
Next, for 7 € R! define

fir) = filw + rv, — Ty,

fz(T) = fi(rv, + 23 ayvy) .
Note that S,v, = —v,, S,v, =, for 2 <i < n, and S,u = u. Since f; is G-
invariant and S, € G, this implies that fi(y) = fi(—7), i = 1,2, i.e., f; is sym-
metric about 0. To show thatf2 is unimodal about 0, it must be verified that
fi(r1) = fu(r,) whenever 0<7,<7,. Sincef, e 7, it suffices toshow that z, € C(z,),
where z; = r,v, + 27 a;v;, j = 1,2. However, z, = Az, + (1 — 2)S,z,, where
A= (1, + 12)/(2r2) € (0, 1). In exactly the same way it is shown that f-is uni-
modal about 0. Thus, by Wintner’s theorem,

{m fl(:B - a'l)fz(al) da,
is symmetric and unimodal about 8 = 0. The result now follows from (2.1).
The following corollary is a main tool for proving the convolution theorem

for finite reflection groups. Notice that the hypotheses of this corollary imply
that y € Cy(x).

CoroLLARY 2.1. Consider x, y € R*. Assume there exists a sequence of points

2y, Zy5 -+ 2, SUCh that z, = y, z,, = X, and
zj_l:[l,l—l—(l—/'l.)S,,]zj, l1<j<m,
where 0 < A; < landr;el;. Iff,,f,€ . ;and h = f, x f,, then h(y) = h(x).

Proor. By Proposition 2.1 the function ¢(7) = h(z, + yr,) is symmetric and
unimodal about », = —r/z,. Hence, ¢(y) = ¢(0) for any point 7 in the inter-
val J with endpoints 0 and —2r/z,. However, z; , = z; + p*r,, where p* =
—=2(1 — 2))riz;eJ, s0 h(z;_;) = ¢(n*) = ¢(0) = h(z;). Therefore h(y) = h(x),
as claimed.
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We turn now to the characterization of smooth G-monotone functions f via
conditions on the gradient vector Vf. The following is a necessary condition
for G-monotonicity.

ProrosiTION 2.2 (Eaton (1975)). If f is G-monotone on R™ and if f has a dif-
ferential at x € R, then

2.2) (9x — xyVf(x) =0  forall geG.
PROOF. Since f is G-monotone,
$(a) = f(1 — a)x + agx) = f(x)
for all a e [0, 1]. Expand ¢ in a Taylor series about a = 0, s0
$(a) = ¢(0) + ¢'(0)x + o(a) .
Since ¢(a) = $(0) and ¢'(0) = (gx — x)'Vf(x), we have
a(gx — x)Vf(x) + o(a) 2 0.

Dividing by « and letting a — 0 yields (2.2).

When G = &4, (2.2) implies (1.1) (take g to be the permutation interchanging
x;and x;), so (2.2) is both necessary and sufficient for &,-monotonicity (=Schur
concavity) of a smooth &, -invariant function on R*. The sufficiency of (2.2)
for G-monotonicity can be verified for a variety of particular groups, but the
sufficiency in general is an open question. The following proposition will be
applied in Section 5 to show that if G is a reflection group, the validity of (2.2)
for all x € R" is a necessary and sufficient condition for the G-monotonicity of a
smooth G-invariant function f. We shall use the identity

(2.3) (S,z — z)Vf(z) = =2(r'z)(r'Vf(2)) .

PROPOSITION 2.3. Let x, y satisfy the hypotheses of Corollary 2.1. Suppose f is
a G-invariant function possessing a differential on R*. If

(2.4) (rf2)(ryVf(2)) = 0

forall 1 < j<mand all z in the polygonal path y = z,—> 2z, — -+ >z

then f(y) Z f(x)-

Proor. Fixj, 1 <j< m, and for —} < 6 < 4 define

2(0) = ¥(z; + S,;2;) + 0(S,,2; — 25)
r(9) = f(z(9)) -
Note that 2(}) = z;, z2(4 — 4;) = z;;,and —} < 4 — 2, < }. Since

1(—=09) = f(S,;2(9)) = f(2(9)) = 1(9) »
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7 is symmetric about 0. Also, for [ — 4, < d < 4,
r'(8) = (S,,2; — 2, Vf(2(6))
— 5 [8,,20) — 2O Vf(=(a)
1

[ri'2(O))[r;Vf(2(9))]

Il

IIA
S o

We conclude that
flzi) =13 = 4) =103 — 4,) 21} = 1)
and hence that f(y) > f(x).

ReMARK 2.2. If fis G-invariant and smooth, then

(2.5) Vilgz) = gVf(2)
for all g e G. Therefore,
(2.6) [(gr)(92)][(grY'Vf(g2)] = (r'2)(r'Vf(2))

for all g e G, which often simplifies the verification of (2.4) (see Corollary 5.3
and (5.4)). We also remark that in Proposition 2.3 the assumption that f pos-
sesses a differential everywhere on R™ obviously can be weakened. For example,
the differential need only exist in a neighborhood of the polygonal path from y
to x.

In the next two propositions it is shown that when G is a direct product
G, x --- x G, acting on R x ... x R™ coordinate-wise, G-monotonicity and
the convolution theorem for .57, are consequences of the corresponding proper-
ties for each G,. It suffices to consider k = 2. Let G, < O(n;) act on R™, i =
1,2, so that G, x G,actson R™ x R™ via (g, 9,)(X;, X;) = (9, X;, ,%,). The easy
proof of the next proposition is omitted.

PROPOSITION 2.4. Considerf: R" x R™ — [— o0, o]. The following are equiva-
lent:

(i) fis G, x G,-monotone;
(ii) (a) f(-, x,) is G,-monotone, for each x, € R"s;
(b) f(x,, +) is Gy-monotone, for each x, € R™.
PROPOSITION 2.5. Suppose that & and & ; are closed under convolution. Then

F 6,xa, i5 closed under convolution.

ProoF. Suppose ¢, ¢: R™ x R™ — [0, co] are both in &7, and consider
h=¢x¢,ie.,
h(xy, X3) = § gng § o @Y1 Y)P(X2 — V1o X3 — Ya) dy, dy, .

Fix x, and write
h(e, x3) = §ma k(e y2) dys
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where

k(xy, y2) = §pm @Yo po)P(x — y1s X, — o) dy,
Since ¢(+, y;) € 5 and ¢(+, X, — yy) € A 5, also k(+, y,) € A g, Since F; is
a convex cone, A(., Xx,) € J‘TGI. Similarly, h(x;, +) € faz. By Proposition 2.4
we conclude that & e ;701,(02.

This section concludes with some preliminary results about the structure of
the convex sets C(x) = Cy(x), with implications concerning the boundedness
and continuity of functions in .5 ; and their convolutions. As before, G denotes
a closed subgroup of O(n) acting on R*. If V is a subspace of R", V is called
G-invariant if gV = V for every ge G. Let V(x) = Vy(x) denote the linear sub-
space spanned by the G-orbit of x (equivalently, by C(x)). Then V(x) is the
smallest G-invariant subspace containing x.

DEFINITION 2.4, Suppose V is G-invariant. We say G acts effectively on V if
M (V) = {0}, where M (V') is the subspace of V' defined as

2.7 My(V) = {xeV]gx = x forevery geG}.

We abbreviate M (R™) as M;, and say G is effective if G acts effectively on R",
ie., if M, = {0}.

REMARK 2.3. M, and M;* are G-invariant subspaces. Obviously G acts effec-
tively on M;*, and G does not act effectively on any subspace which properly
contains M;*. The elements of M, are minimal elements under the ordering <
determined by G, since C(x) = {x} for x ¢ M.

DEeFINITION 2.5. Suppose V is G-invariant. We say G acts irreducibly on V if
V contains no proper G-invariant subspace. If G acts irreducibly on R™ we say
G is irreducible.

REMARK 2.4. If G acts irreducibly on V' then M (V') = {0} or V, so G acts
effectively on V except in the trivial case where dimension (V) = 1and G = {/}.

Lemma 2.1,
(i) If 0 e C(x) then O ¢ relative interior of C(x).
(ii) Let V be a G-invariant subspace of R". Then G acts effectively on V iff
0 e C(x) for each xe V.
(iii) Suppose G acts effectively on V, and set d = dimension (V). Then G acts
irreducibly on V iff C'(x) = @ for all0 = x € V, where C°(x) denotes the (d-dimen-
sional) interior of C(x) in V. In this case, 0 € C°(x).

Proor. (i) If x = O the result is trivial. If x = 0 then 0 € C(x) implies that
0= X%,a;9,x for some integer k > 2, where g, G, a; >0, > a, = 1. If
0 ¢ relative interior of C(x), there must exist a nonzero vector a € V(x) such that
the (d — 1)-dimensional hyperplane H, = {y € V(x)| y'a = 0} C V(x) supports
C(x)at 0, i.e., C(x) & {y e V(x)| y’a = 0}. In particular, (gx)a = 0 for every
ge G. Since

0 = (99,7'0)'a = ay(gx)a + X2, ai(99,7'9:x)'a
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it follows that (gx)'a = O for every g € G, so the G-orbit of x, and hence C(x),
is contained in H,, a proper subspace of (x). This is impossible, however, since
V(x) = span (C(x)).

(ii) If G is not effective, choose x ¢ M, x = 0. Then C(x) = {x} so 0 ¢ C(x).
Conversely, if 0 ¢ C(x) for some x € R, let ¢, # 0 be the unique point in C(x)
closest to 0. Since gc¢,e C(x) and ||gc,|| = ||c,|| for each g € G, the uniqueness
of ¢, implies that gc, = ¢,. Thus ¢, € M, so G is not effective.

(iii) Suppose W is a proper G-invariant subspace of V. If 0 & x e W then
C(x) < W, so C%x) = @. Conversely, suppose G acts irreducibly on V' and fix
0 # xe V. That C%x) = @ follows from the fact that V(x) is a G-invariant
subspace of ¥ and is spanned by C(x). Finally, part (i) implies that 0 e C%(x).

REMARK 2.5. Each x e R* may be represented uniquely as x = x* 4 x**,
where x* e M,t and x** ¢ M;. For each ge G one has gx = gx* + x**, so
C(x) = C(x*) + x** € M+ + x** = M,* + x, and dimension (C(x)) < dimen-
sion (M,;*) = n* < n. Since G acts effectively on M;*, Lemma 2.1 implies that
0 ¢ relative interior of C(x*), hence x** ¢ relative interior of C(x). Conversely,

C(x) N M, = (C(x*) + x**) 0 My © (M + x**) 0 M, = {x**} .

Therefore, C(x) N Mg = {x**}, so x** is the unique minimal element in C(x)
under the ordering <. Finally, Lemma 2.1(iii) implies that if G acts irreduci-
bly on M,* then dimension (C(x)) = dimension (C(x*)) = n* for every x ¢ M.

REMARK 2.6. Lemma 2.1(ii) implies that if G acts effectively on R", a G-
monotone function decreases along every ray emanating from 0.

If f,, f, are nonnegative, Lebesgue-integrable functions on R”, their convolu-
tion f, * f, is also integrable, but need not be continuous. By means of Lemma
2.1, additional boundedness and continuity properties for f,, f, and f, x f, can
be deduced when f,, f,e€ % ;. We consider only the case where G acts effectively
and irreducibly on R*, but similar arguments apply in other cases.

PROPOSITION 2.6. Assume that G acts effectively and irreducibly on R*. If fe &,
then f is bounded outside every neighborhood of 0. If f, fy € F ; then f, x f, is con-
tinuous on R* — {0}.

Proor. For each x # 0, Lemma 2.1(iii) implies that 0 e C%x), where C°(x)
is the (n-dimensional) interior of C(x), so

(2.8) d(x) = inf {||z]|: ze dC(x)} > 0.

It can be shown that 6 is a continuous function on R"*, so

(2.9) . r(e) = inf{o(x): ||x]| = ¢} >0

for every ¢ > 0. However, y < x whenever ||x|| = ¢ and ||y|| < 7(¢), so by Re=
mark 2.6,

(2.10) sup {f(x): ||x|| = ¢} = inf {f(y): [YI] = r()} -
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Thus if fe 7, (2.9) and (2.10) imply that

(2.11) sup {f(x): [|x]] = ¢} < oo
for every ¢ > 0, as claimed.

Next, suppose f;, f€ F ;. Fix 0+ xeR"and let B = {ze R": ||z|]| < ||x||}.
Then for all y € R* — {0} such that ||y — x|| < ||x|| we have

(2.12) (fr*x)) = [ * ([ilp))(y) + [fi* (fal5)1(p)
= [(fi1se) * [o1s](¥) + [fi * (falp)1(D) -

By (2.11), however, f, I, and f,I,. are bounded on R", hence the two convolu-
tions on the right of (2.12) are continuous (apply Theorem 4.3c of Williamson
(1962)). Thus f, « f, is continuous in a neighborhood of x.

ReMARK 2.7. If G is reducible then for f, f,e &, f, * f, may be + oo on all
or part of a G-invariant subspace. For example, take G to be the 4-element group
generated by sign changes of coordinates on R?, and let f,(x,, x,) = fy(x,, X,) =
|x,x,| "t exp{—x* — x,°}. Then(f] * f;)(x,, x,) = + oo whenever x, = Oorx, = 0.

3. The structure of reflection groups.

DEeFINITION 3.1. A closed group G < O(n) acting on R™ is called a reflection
group if there exists A* C &, | such that G is the smallest closed subgroup of
O(n) containing the set of reflections {S, |r e A*}.

REMARK 3.1. Clearly, G is the closure in O(n) of the group generated alge-
braically by {S,|re A*}. Also, any reflection group G obviously is generated
by {S, |7 € A).

A complete enumeration of the finite irreducible reflection groups can be
found in Theorem 5.3.1 of Benson and Grove (1971) (hereinafter abbreviated
as B-G); see also Coxeter (1963) and Coxeter and Moser (1972). Examples of
reflection groups include O(n) itself, the permutation group ., (cf. B-G, pages
65-66), the group of all sign changes of coordinates in R, the group <%, gener-
ated by all permutations and sign changes of coordinates in R™ (cf. B-G, pages
66-68), and the symmetry groups of regular polyhedra.

ProposITION 3.1. Suppose G is a reflection group acting on R* and suppose M is
a proper G-invariant subspace. Let Ay = A; N M and A, = Ay 0 M*. For rel,
let S,V denote the restriction of S, to M, and for r € A, let S,'® denote the restriction
of S, to M*. Let G, be the reflection group generated by {S,"” |re A}, i= 1,2, so
that G, acts on M and G, acts on M*. Then there is an isomorphism G — G, x G,
such that if x = x, + x, with x, e M and x,e M*, and if g — (9,, 9,), then g(x) =
91X + Gy X,

Proor. The proposition follows from the elementary fact that M is invariant
under a reflection S, if and only if either e M or re M+. Thus, A; = A, U A,.
The remainder of the argument is similar to that on page 56 of B-G (with their
IT, replaced by our 4;, i = 1, 2).
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PROPOSITION 3.2. Suppose G < O(n) is a reflection group acting on R*. Then G
is isomorphic to G, x G, x --- x G, actingon M, ®OM,D --- DM, (1 £k < n),
where M,, - - -, M, are mutually orthogonal subspaces of R™ with Y, dimension (M,)=n,
and G, is a reflection group acting irreducibly on M.

PRrRooOF. Apply Proposition 3.1 until the component groups have no invariant
subspaces.

REMARK 3.2. G is effective iff G, = {I} for each i = 1, ..., k. The permu-
tation group 7, does not act effectively on R*, for M, = {xeR"|x; = x, = -«
= x,} is of dimension 1, but &, acts effectively on MS = {xe R"| I x, = 0},
an (n — l)-dimensional subspace of R (see Definition 2.4).

By Propositions 2.4, 2.5 and 3.2, in order to establish the convolution theo-
rem and the differential characterization of G-monotonicity for reflection groups,
it suffices to establish these results for irreducible reflection groups. In view of
the next theorem and Remark 3.3, these results are easily established for infinite
irreducible reflection groups.

THEOREM 3.1. If G < O(n) is an infinite irreducible reflection group then
G = O(n)

Proor. See Eaton and Perlman (1978).

REMARK 3.3. Theorem 3.1 shows that when G is an infinite irreducible reflec-
tion group, C(x) = &, _, for each x € &/, ;. In particular, the only G-monotone
functions are the decreasing radial functions.

In the remainder of this section we briefly review those geometrical properties
of finite reflection groups G acting on R™ which will be applied in Section 4 to
study the structure of C(x) and obtain the basic path lemmas. The geometry of
finite effective reflection groups acting on R", called Coxeter groups, is discussed
in Chapter 4 of B-G, and that discussion carries over to non-effective finite
reflection groups G with only trivial changes. Indeed, if one defines n* = dimen-
sion (M;*) < n and identifies M,* with R*, then G acting on R™ is a Coxeter
group, and G acts trivially on M;. We have stated our results for general (not
necessarily effective) finite reflection groups in order that these results be directly
applicable to the permutation group .&,, which does not act effectively on R",
and hence that these results be direct generalizations of the classical results
concerning majorization.

A unit vector r ¢ .&,_, is called a root of G if the reflection S, is in G; the root
system A = A, of G is the (finite) set of all roots of G. Note that r e Aiff —re A,
and r € A implies that gr € A for every g € G (see Remark 2.1). Clearly A C M;*;
in fact span(A) = M,*. Define the open set T = T, C R" by

T=T,={teR*|r't+ 0 foreach relA} =N {H,|rel},

SO
T = (H,|reh}.
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Note that T + M, = T and T° + M, = T°, i.e., T and T* are cylinder sets paral-
lel to M, with bases in M ‘. For te T let A,* C A denote the set of all t-posi-
tive roots, i.e.,
At ={reld|r't >0},

andlet A, = —A,*. Clearly A = A,* U A,~and |A,*| = }|A|, where | 4] denotes
the cardinality of a finite set 4. Let K, C M,* denote the closed convex cone
generated by A,*, so that K, is a pointed polyhedral cone, and let II, (S A,*)
denote the set of t-positive roots which determine the extreme rays (= frame
vectors) of K,; thus, K, is also generated by II,. By Theorem 4.1.7 of B-G, II,
contains exactly n* (= dimension (M;*) < n) roots, say II, ={r,, ---, r,.}, and
these form a basis for M+ = R*"; II, is called the t-base for A, By Proposition
4.1.50of B-G, r/r; < 0if i + j.

A main result in the theory of finite reflection groups is that {S, |1 < i < n*}
comprises a set of fundamental reflections for G, i.e., a minimal set of reflections
generating G (B-G, Theorem 4.1.12). Furthermore, every reflection in G is
conjugate to some S,i, i.e., every root re A is of the form r = gr, for at least
one g € G (B-G, Theorem 4.2.5).

Let II,* = {s,, - - -, 5,.} © M,* be the dual basis to II, in M;*, i.e., r/s, = 9,;
for 1 <i,j < n*. Let F*x & M;* be the relatively open convex cone generated
by II*, i.e.,

Fr ={3Xm 4512, >0,1<i<n%),

and let F,* & M,* be the closure of F,*, so
=N A A =201 i e

Equivalently,
F*={xeM|r/x > 0,1 <i< n*}
and
*={xeM|r/x 20,1 <i < n¥

={xeM'|Zx =0 forall zeK)}
= dual* (X)),

where dual* (K,) denotes the dual cone of K, in M;*. By Theorem 4.2.6 of B-G,
's;,=z0for 1 <i,j<n* so

F* < dual* (F,*) = dual* (dual* (K,)) = K,

(see Rockafellar (1970), Theorem 14.1); hence F,* is also a pointed polyhedral
cone.
Define the open convex cone F,  R" by

Fi=F*® My = {3 A4, +ulueMy i, >0,1 <i < n¥}
and let F, = R* be the closure of F,, so

F,=F*®M,= {3 s +ulueMy i, =0,1<i<n*).
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Equivalently,
(3.1) Fo={xeR"|r/x > 0,1 <i < n¥}
and _

F,={xeR" r/x 20,1 <i < n*}
(3.2) ={xeR"|zZx = 0 forall zeK,}

= dual (X,),
where dual (K,) denotes the dual cone of K, in R*. The cone F, is pointed iff
M, = {0}, i.e., iff G acts effectively on R".
The convex polyhedral cone F, has the following properties (B-G, Theorem
4.2.4):

(3.3) F, isopenin R"*;
(3.4) F,ngF, =@ if I#£9eG;
(3.5) R* = U {¢F.|geG} .

A set F satisfying (3.3), (3.4) and (3.5) is called a fundamental region for G in
R*. A set F is a fundamental region for G in R* iff F* = F n M,* is a funda-
mental region for G in M;*, so if t € T then F,* is a fundamental region for G
in M;t. If F is a fundamental region for G then so is gF for each ge G. The
fundamental reflections S, 1 £ i < n*, are the reflections through the bounding
hyperplanes H, of F,. Thus (B-G, page 46) every finite reflection group G acting
on R is generated by the reflections through the n* (< n) walls of a convex poly-
hedral cone F; G acts effectively on R* iff F has n walls. Figure 4.3 of Coxeter
and Moser (1972) will help the reader visualize these geometric properties of G.
We pause to illustrate these concepts with the permutation group .&,.

ExaMpLE 3.1. Let G = &, acting on R". The subspaces M_, and M; have
been described in Remark 3.2; note that n* = n — 1. The root system of &%,

(cf. B-G, page 66) is
(3.6) A, =fe,—e|1 Si#Ej<nfc M,

where e, is the ith coordinate vector (we temporarily drop the convention that
a root have length 1), so

(3.7) T=T, ={t=(t - 1)t # 1, 1 Sizjsn).
If we select te T such that¢, > ¢, > ... > ¢, then
(3.8) Afr={e,—e|l i< j<n},

M, = {e, — eqy|l Si<n—1=n%;

- The

n—

note that II, is a basis for M7 . Setr, =e, — e, , soll, = {r, ---,r
closed convex cone K, C M generated by II, is given by
(3.9) K, ={Xerle, = 0}

={x=(0,x)| 2 x,=20,1<ksn—-1, 37, x,=0}.
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(This last representation of K, is closely related to the classical definition of
majorization—see Example 4.1.) The reflection S, is the permutation which
interchanges the coordinates x; and x,,. Itisa well- known factthats,,.-.,S,
generate .7, and hence constitute a set of fundamental reflections for ﬁ . Next,
(3‘10) th{xz(xl""’xn){x1>x2>"'>xn}
is a fundamental region for .&%,. The convex polyhedral cone F, is open and is
not pointed, for F, contains the 1-dimensional subspace M, . Note that T is
the union of the n! images of F, under .&%,. (This discussion of .7, is continued
in Examples 4.1 and 4.4.)

The following facts about fundamental regions for a Coxeter group G will be
used frequently. Let t,7eT and geG, and let II, = {r, - -+, rpe

Facr 3.1. teF,CT.

Proor. Since I, £ A,*, r/t > 0 for 1 <i < n*, soteF,. Next, since A =
At U A, every root r in A is a nonzero linear combination of r,, - - -, r,. with
coefficients either all nonnegative or all nonpositive. Thus for x ¢ F, (3.1) im-
plies that r'x = 0, so xe T.

Fact 3.2. Ift e F, then F_ = F,.

Proor. Since 7 ¢ F,, (3.1) implies that A,* < A .*. Hence A,* = A * because
|A*] = 3]A] = |A.*|. ThusIl, =1II,s0 F, = F..

Facr 3.3 (B-G, Proposition 4.2.2). A}, = gA,*; I, = gll,; K, = gK,; F,, =
gF,; th = gF't.

FAct 3.4. F, = gF, for some ge G. The collection 7 = % ; = {gF,|g € G}
consists of distinct fundamental regions and does not depend on teT. Also, T =
U{F|Fe X}, and R* = J {F|F e ). Each point in the G-orbit of t lies in
exactly one member of 7.

Proor. Fact 3.3 and (3.5) imply that z ¢ F,, for some g e G. Furthermore,
t € T implies that 7 ¢ 0F,, sot € F,. By Fact 3 2,F, = F, = gF, Thesecond
statement in Fact 3.4 follows from the first and (3.4). The third statement fol-
lows from Fact 3.1 and (3.5), while the last statement is obvious.

Fact 3.5. Let x,ye R*. Then x,yeF for some Fe S iff (r'x)(r'y) > 0 for
eachreA.

Proor. Clearly, [(r'x)(r'y) > O for each re A] iff [x,ye T and A,* = A *]
iff [x,ye T and F, = F ] iff [x, y € F for some F ¢ .%].

LemMA 3.1. Let x, y € R™ be distinct. The following are equivalent:

(i) x, yeF for at least one F ¢ .57
(ii) for every re A, x and y lie on the same side of H,, i.e., (r'x)(r'y) = 0;
(iii) for everyre A, either H, N [x, y]" = @ or[x,y] & H,, where [x, y]([x, y]°)
is the closed (open) line segment connecting x and y;
(iv) for every re A, H,  n [x, y]° is not a single point.



REFLECTION GROUPS AND MAJORIZATION 843

Proor. The equivalence of (ii), (iii), and (iv) is elementary. The implication
(i) = (ii) follows from (3.2) and the fact that every re A is a nonzero linear
combination of r,, ..., r,. with coefficients either all nonnegative or all non-
positive, where {r,, - - -, r,.} = II, with 1 ¢ T selected so that F, = F. Conversely,
assume that (ii) holds and choose f ¢ T such that z = }(x +y) ¢ F,. Sincer/z >0
for each r, e I, and r/z = 4(r/x + r/y), (ii) implies that r/x > 0, so x, y e F,.

The following technical lemma will be applied repeatedly in the proof of
Lemma 4.1.

LeEMMA 3.2. Suppose that pe A, x,e T, x, = S,x,, and v, € H,. Furthermore,
assume that

(i) vefF,;
(i) v, eF,, (= 5,F,);
(iii) (p'vo)(p"vs) < O;
(iv) v, ¢ H, for each r € A such that H, # H,;
(V) (r'v)(r'v,) = O for every reA.
Then v, e F, .

Proor. It must be shown that r/v, = 0 for each r, ¢ II,. Assumption (ii)
implies r/v, = 0. If r/v, > Othen r/v, = 0 by (v), as required. If r/v, = 0 then

v,e H,. Therefore H, = H, by (iv),sor, = xpand §, = S,. Hence by (iii),

(3.11) (r/vo)(r/v,) < 0.
Also, since x, ¢ H, and x, = S, x,,
(3.12) (rix)(r/x;) < 0.

Finally, (i) and Lemma 3.1 imply (r,x,)(r;/v,) = O0; however, by (3.11) and the
assumption x, € T, this implies that

1(3.13) (r!xp)(rvy) > 0.

Taken together, (3.11), (3.12) and (3.13) show that (r/x,)(r/v,) > 0. However,
r; € II, implies r/x, > 0, so r/v, > 0, which completes the proof.

This section concludes with several comments about the dimension of the
convex sets C(x) = Cy(x) when G is a finite reflection group acting on R*. Let
n* = dimension (M ') < n. If xe T = T, then C(x) contains the line segments
[x,S,x], 1 <i<n*, where {r,...,r,} =1, Since xeT, the vectors
x — 8, x = 2(r/x)r;, | £i < n*, are nonzero and linearly independent. Thus,
dimension (C(x)) = n* when xe T.

If x ¢ T little can be said at this point about dimension (C(x)) (see Remark
4.6). From Remark 2.5, however, if G acts irreducibly on M! then dimension
(C(x)) = n* for all x ¢ M;. For example, consider G = .&,. Since there does.
not exist a proper subspace M of M3_suchthat A, = (A, n M) u (A, n M*)
(see Remark 3.2 and (3.6)), it follows that 7, acts irreducibly on MZ_(see the
proof of Proposition 3.1). Therefore, dimension (C(x)) = n* = n — 1 for each
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x¢ M, . The representation x = x* 4 x** of Remark 2.5 here takes the form
X=(x,—%, -, X, — %)+ (%, -+, X), where x = (x;, -- -, x,)and X = n7' 3] x,.
From Remark 2.5, x** = (%, ---, X) < x for every x € R*, and x** lies in the
((n — 1)-dimensional) relative interior of C(x) whenever x* + 0.

4. The structure of C(x) and the basic path lemmas. Throughout this section
G denotes a finite reflection group acting on R*. The notation of Section 3 is
continued here: for te T let II, = {r,, - - -, r,.}, where n* = dimension (M;"),
and let K, & M, denote the convex cone generated by II,; F, is the dual cone
of K, in R*, and the fundamental region F, is the interior of F,. The results in
this section are based on the following fundamental geometric property of reflec-
tion groups.

LemMA 4.1. Ifu,veF = F,and g€ G, then

4.1 (gu)yv < w'v.

REMARK 4.1. When G is the permutation group &, and F, is given by (3.10),
(4.1) reduces to a well-known rearrangement inequality: if u, = u, > ... > u,
and v, 2 v, = --- =2 v, and if (y(1), - - -, y(n)) is a permutation of (1, - - -, n),

then Z U, )V; = Z Uuv;.

Proor oF LEMMA 4.1. By continuity, it is sufficient to show that (4.1) holds
whenever ue F = F,(= F,), ve F, and ge G. By means of Lemma 3.1 it is
easy to show that (4.1) holds for g = S,, re A. To demonstrate (4.1) for arbi-
trary g € G, we will find a finite sequence of reffections {S, |1 < j < k} with
p;€A, such that g =S, S, ---S, and such that the sequence of points

51
{x;]0 < j < k} defined by x, = v and x,,, = Spjﬂxj satisfies

= k—1.

4.2) X < x/'v, 0=

A

Since x, = gu, this will imply (4.1).

Cramm 1. There exists z € gF (= gF, = F,,) such that the line segment L =
[u, z] satisfies L N H, N H, = @ for every pair of distinct hyperplanes H,, H;
such that r, Fe A.

Proor. Let {P, P, ---, P,} be the set of all (n — 2)-dimensional subspaces
H,n H;such thatr,7e A, H, + H,. Let L* = [u, gu] and let Q be the (n — 1)-
dimensional hyperplane perpendicular to L* and containing gu. Denote the pro-
jection operator onto Q along L* by #. Since each 7P, is of dimension at most
n — 2, there exists ze Q N (gF) such that z + gu and [gu, z] N =P, is either empty
or the single point {gu} for1 <i < M. Let L = [u, z],so =L = [gu, z]. If there
existed some point we L N P, thenzw e nL N =P, = [gu, z] N =P, == {gu}. This
would imply we L* n L N P, so w = u, but this is impossible since ue F C T
implies u¢ P, Thus L n P, = @ for 1 < i < M as claimed.

Because u and 7 are in different fundamental regions, L must intersect at least
one H,, re A, by Lemma 3.1. Let H/'n’ cee, Hﬁk’ p; € A, be the hyperplanes
intersected by L as one moves from u to z, listed in order. By Claim 1 the Hﬁj
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and their order of appearance are uniquely determined. The intersection L N H;,
consists of a single point, denoted by v;. Set x, = u and x;,, = Sﬁjﬂx, fc.
0 <j <k — 1. Notice that each x; e Fx], C T. To complete the proof of Lem-
ma 4.1 it remains to prove that g = §; §; _ ---S; and that (4.2) is true.

First, note that by construction [x,, v,]’ " H, = @ for all re A. Hence by
Lemma 3.1, x, and v, are in F‘,O(: F). Thusx, = S; X, and v, = §; v, are in
le =S; F”o' Apply Lemma 3.2 (with (o, x,, X5 Vo, Vs, v,) of that len}ma replaced
by (15 X X15 X, ¥, V,) here) to see that v, e F, . Since x; and v, e F, and v, =
S$;,Vs X, and v, lie in sz. Apply Lemn3a 3.2 (with (p, x,, x,, ,, V;, V,) replaced
by (05, Xy, X35 ¥y, ¥y, ¥y)) tO see that v, € F, . By induction we find that

x,., and wv; lie in F, .

x; and w; liein F,

for 1 £j< k. Thus x, and v, e F, . By definition of v, [v,, z]°’'N H, = @
for all re A, so (r'v,)(r’z) = 0. Thus a final application of Lemma 3.2 (with
(0, Xo, X1, Vo, ¥, v,) replaced by (6, X, _;, X, V,_;, Vs, 2)) shows that z € ka' How-
ever, since z € F,,, it must be that ka = F,,. Since x, = Sﬁk ce S;,lu, we con-
clude that g = S; ... S;. (This argument presumes that k > 2; if k = 1 only
the final application of Lemma 3.2 is required, with v, taken to be x,.)

Lastly, we shall establish (4.2). Since

X = S/';j+1xj = X; — 2(p;+1xi)pjfx s
it must be shown that
(4.3) (X )(Fraa0) 20, 0<j<k—1.

For 1 < i < k consider the triangle with vertices x,_,, v;, and x,. If I + i, the
hyperplane~H/.)l does not contain x,_,, vy, OF Xy, and H; cannot intersect [x;_;,,]°
(since v, e F, _ ) or [v, x;] (since v; € F, ). Hence

(44) len[xi—l’xilzg’ l_glrﬁlg_k
For 0 < j < k — 1 consider the polygonal path
A].Z V—o>Xy—> Xy — - ~>xj

and define ¢(w) = p},,wforwe A,. Since x, = uand v lie in F (= F,), Lemma
3.1 implies that ¢ has no zero on [v, x,]°, and (4.4) implies that ¢ has no zero
on the rest of A;. Hence ¢ does not change sign on A, so ¢(v)¢(x;) = 0. Thus
(4.3) holds and (4.2) is established, so the proof of Lemma 4.1 is complete.

LemMA 4.2 (First Path Lemma). Suppose x,ye F = F,. The following are
equivalent.

(i) ye Clx);
(i) x—yekK,ie,x—y= 3w crwherell, = {r, ... ,r,}andeachc, > 0.
(ili) x —y = Yk, .1, for some integer k, where each 7, > 0, each r;, e II,,
andzi =y + Zg=x7]ir(i)€F;f0r l<j<k

()
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The implication (ii) = (i) remains valid if the assumption that x, y € F, is weakened to
x,y e F,. The implication (i) = (ii) remains valid if x, y € F, is weakened to x € F,.

Proor. Clearly (iii) = (ii). That (ii) = (iii) when x, y € F, follows by dividing
the line segment [x, y] C F, into sufficiently small subsegments and arguing as
in the proof of Theorem 2 of Marshall, Walkup, and Wets (1967).

To show that (iii) = (i), set

0 = 9;41/2(M541 + T 25) »
so that
z; = (1 = 0)(z; + a1l iian) + 08, (25 + Dealiien) -

Since 0 < d < } this implies that z, € C(z;,,), | < j < k— 1. Similarly y e C(z,),
so that y e C(z,) = C(x).

Next we show that (i) = (ii), assuming only that x e F,. Since y e C(x) we
have y = 3¢, 2,9,x, where G = {g, |1 £ a < |G|}, 2, =20, 3 4, = 1. Apply
Lemma 4.1 with u = x e F, and v € F, to deduce that

(22 AeGoax)v S X0 .

Thus (x — y)'v = 0 for each v € F,, so x — y is in the dual cone of F,, namely X,.

It remains to show that (ii) = (i) if x, ye F,. (This implication is already
established for the case x, y € F,.) Since ¢ is an arbitrary point of F,, without
loss of generality we can assume that x, y and ¢ are distinct points and consider
the triangle which they determine. Choose x,, € [x, t]° C F,andy, €[y, {]’ C F,
so that x,, —» x, y, —y, and x,, — y,, is parallel to x — y. Thus x, — y, €K,
and x,, y,, € F, so y,, € C(x,,), i.e.,

(45) ym = ZLtGrl-l Za(M)gax» ’

where (4,™, ..., A{®) lies in the probability simplex A c R, Since A is com-
pact there is a subsequence {m’} c {m} and a point (4,, ---, 44) € A such that
A" —> 2, aam — o0, 1 < @ <|G|. Replace m by m’ in (4.5) and let m’ — o
to obtain that y e C(x).

REMARK 4.2. When x, y € F, and y € C(x), the sequence {z,} constructed in (iii)
satisfies the hypotheses of Corollary 2.1. However, the implication (i), (ii) =
(iii) in Lemma 4.2 is not valid if it is only assumed that x, y € F,, even if the
requirement that z; e F, is weakened to z; ¢ F, in (iii). For example, take n = 2
and consider the group %, generated by permutation and sign changes of coordi-
nates in R’, i.e., the group generated by the reflections S, _,, and S, , where
e, = (1,0), e, = (0, 1). The group 7, acts effectively on R?, so n* = 2. This
group has eight roots: +e,, +e,, +e, e, and |G| = 8. Fort = (2, 1), we find
that I, = {e,, ¢, — &)}, A,* = {e,, &5, 6, + &}, and F, = {(x,, x,) | x, = x, = 0}. If
0 # xeF,and y = 0 (e dF,), then (i) and (ii) hold but (iii) fails, for z, = y,7,,,
cannot lie in F, if 5, > 0 and r,, e Il,. (Although (iii) fails, there is a polygonal
path between x and y satisfying the hypotheses of Corollary 2.1—see Lemma
4.5.)
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REMARK 4.3. Lemma 4.2 implies that for x,yeF,, y < x iff x — yeK,, so
the ordering = induced on F, by G is the cone ordering determined by K, (see
Marshall, Walkup, and Wets (1967) for special cases of this remark).

ExaMmpLE 4.1. Return to Example 3.1 where G = &, and let K, and F, be as
in (3.9) and (3.10). Assume that x = (x,, ---, x,) and y = (y,, - -+, y,) are in
F,ie, x> =X, )=+ =y, By Remark 4.3 and (3.9), y = x iff
Shax,= Nk, yforl <k <n—1land X7t x, = Xr,y;. Next, for arbitrary
z=(z, -+, 2z,) in R* define z = (z,,, -- -, z,) Where z,, = .- = z,, are the
ordered components of z. Since z = gz for some g € &, it follows that C(z) =
C(2). Therefore for arbitrary x,ye R*, ye C(x) iff ye C(%), so y = x iff
Thixy =Xk yyforl <k <n—1and 3r,x, = XX, yu- Thus when
G = &, the ordering < is exactly the classical majorization ordering.

Lemma 4.2 shows that the structure of C(x) is related to that of the convex
polyhedral cones K,. This relation is explicitly stated in the following corollary.

COROLLARY 4.1. For x € R*, choose t = t(x)e T such that xe F_(F, is not
unique unless x € T, in which case F, = F,). Then

(4.6) Clx) = N{olx — K)lge Gl = N{(ox — K,1)[9€ G},
where x — K, is the convex cone with vertex x defined by
x— K. ={z|z=x—u,uek}.

Proor. By Lemma 4.2 ((i) = (ii)), C(x) £ x — K,. Since C(x) is G-invariant,
this implies that C(x) £ N {9(x — K.)|9eG}. Conversely, suppose that
yeN{9(x — K.)| g € G} and choose g € G such that y e gF, (by (3.5)). Since
x,g°yeF, and x — g~y e K, Lemma 4.2 ((ii) = (i)) implies that y € C(x), as
required.

Corollary 4.1 states that C(x) is an intersection of the congruent convex poly-
hedral cones g(x — K.), g € G. The vertices of these cones are the points gx in
the G-orbit of x, and are not necessarily distinct unless x € T. The second path
lemma for reflection groups, Lemma 4.5, requires the determination of the edges
of the convex polytope C(x), namely, that each edge is parallel to some root
re A, the root system of G. The case x € T will be considered first (Theorem
4.1). Here we may take 7(x) = x and rewrite (4.6) as

(4.7) Cx) = N{9(x — K.)[9e G} = N {9x — K,.|9€ G},

where now the points {gx| g € G} are distinct, It will be shown that the edges
of C(x) emanating from gx lie along the extreme rays of g(x — K,), so C(x) and
g(x — K,) coincide in a neighborhood of gx.

Recall that a subset 4 of a convex polytope C & R* is called a face of C if
there exists an (n — 1)-dimensional supporting hyperplane Q for C such that
A =0 n C. A l-dimensional face of C is called an edge, and a 0-dimensional
face is called an extreme point, or vertex. (The reader is referred to Griinbaum
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(1967) or Rockafellar (1970) for basic results concerning convex sets and
polytopes.) ‘

THEOREM 4.1 (Structure of C(x) when x € T). The convex poiywpe C(x) has ex-
“actly |G| extreme points (vertices), the members of the G-orbit of x. Exactly n* edges
emanate from the vertex x, namely, the line segments [x, S, x] where{r,, - .-, r,.} =
11,: Similarly, the n* edges emanating from the extreme point gx are exactly the
g-images [9x, gS, x] = [9x, S,, gx] of these segments. The edge [gx, 9S, X] is
parallel to g(x — S, x) = 2(ri’x)gri, a nonzero vector in the direction of the root
gr.€ A. The polytope C(x) has exactly }|G|n* edges.

ExAMPLE 4.2. Take n = 2 and consider the group <, of Remark 4.2. For
x =(2,1)eT, C(x) is an octagon whose edges are line segments with slopes
either 0, 41, or oo (see Figure 1 of Eaton and Perlman (1974)). Hence, each
edge of C(x) is parallel to one of the roots of G.

ProoF oF THEOREM 4.1. Since [|gx|| = ||x|| for each g € G, each point gx must
be an extreme point of C(x) and these points gx, g€ G, are distinct. As the
endpoints of each edge of C(x) are extreme points of C(x) (Griinbaum (1967),
Theorem 5, page 33), each edge emanating from x must be of the form [x, gx]
for some g. Since gx € C(x) € x — K, it must be that

(4.8) X —gx=rcr, = NrcX(x — S”x) R

where each ¢; = 0 and ¢,* = ¢,/2(r/x) = 0. Since x # gx at least one ¢, must
be positive, say ¢, > 0. By the definition of an edge there exists a nonzero vec-
tor a € R* such that

4.9) zel[x,g9x]=ad'z=1,
zeC(x) N [x, gx]'=ad'z< 1.
From (4.8) and (4.9) we have that
0= 2 Xl —ds, x).

Since ¢,* > 0, it follows that 'S, (x) = 1, i.e., S, x € [x, gx]. Clearly, S, x # x
since r’x > 0, while S, x ¢ [x, gx]°since S, x is an extreme point of C(x). Hence
S, x = gx. Thus each edge of C(x) emanating from x is of the form [x, S, x]
for some r; e II,.

Conversely, it remains to show that each segment [x, .S, x]is an edge of C(x),
1 <i < n*. This follows from the facts that

2(r/xyr; = x — Srix e C(x) S K,

and that r, determines an extreme ray of the cone K,. The rest of Theorem 4.1
follows readily.

When x ¢ T, x = S,x for those roots r ¢ A such that xe H,, so the structure
of C(x) is different than in the case xe T. Now C(x) will have fewer than |G|
vertices, since the G-orbit of x contains fewer than |G| distinct points; also, the
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number of edges of C(x) emanating from each vertex may be greater or smaller

than n*. It will still be true that each edge of C(x) is parallel to some root of

G (Theorem 4.2), although not every root need be parallel to some edge.
Before proceeding we present two preliminary lemmas.

LEMMA 4.3. Let xeR", geG, Fe 7. If x, gx e F then x = gx.
Proor. By Lemma 4.1 and the Cauchy-Schwartz inequality,
X" = llgxIl* = (9x)g9x = ¥'gx = |Ix]]*.

This implies that x = gx, as claimed.
efiDne
={9|9¢€G, gx = x},

a subgroup of G, and define
={F|Fe S/, xeF},

a subcollection of the set of fundamental regions for G. By (3.5), %7, is non-
empty; in fact, when x¢ 7T, %7, has at least two members. (When xe T,
&, = {F,} and G, = {I}.) The following lemma is an easy consequence of
Lemma 4.3, (3.4), and Fact 3.4.

LEMMA 4.4. There is a 1—1 correspondence between G, and .%7,. Specifically,
let F_ be a fixed but arbitrary member of 57, as in Corollary 4.1, so that x ¢ F_.

Then
&, ={gF.|geG,},

"G, ={g|9F.e &7,} = {g|xegF}.

REMARK 4.4, Lemma 4.4 implies that G, = {g| 9.7, = %7,}. In Theorem
4.3 it will be shown that G, is itself a reflection group, and that its system of
fundamental regions is essentially .&7,.

In order to study the structure of C(x) when x ¢ T, we must first extend the
definitions of K,, A,*, F,, and II, to this case. Let ¢ = ¢(x) and F, be as in
Corollary 4.1 and Lemma 4.4, and define

K, =N{K|F.e¥,}=N {K,.19€G,} C M;*
(4.10) AY=N{AF|F. e )= N{Ah|geG,) c Mt

F:l: = U {FtlFteVMz} = U{Fgr[ger} ; R'IL.
Next, write II, as

Hr = {pl’ DR} pq’ Aoq+1’ tt pn*} ’

wherep/x =0,1<i<g,and p/x > 0,9+ 1 <i<n* SincexgT, xliesin
at least one wall of F_,s0 ¢ = 1; ¢ = n* iff xe M;. Any other F,e . %, is of
the form F, = gF, for some g e G,, so
(4.11) I, = gIl, = {gos, - -+, 904> 904415 = > 90w} > 9EG,. )
Since gx = xand ¢’ = g, it follows that (gp,)x = 0for 1 < i < gand(gp,)’x >0
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for g + 1 < i < n*. The roots gp;, 1 < i < ¢, are called the x-internal roots in
g1l (9 € G,); the corresponding walls

ng‘ngFr—:‘g(HpinFT)’ l§i§.q’

are called the x-internal walls of gF_and contain x. Therootsgp,,q + 1 <i <
n*, are called the x-external roots in glIl_ (g € G,) and the corresponding walls of
gF, are the x-external walls of gF _; these do not contain x. Under the action of
any g € G,, x-internal (external) roots and walls are sent to x-internal (external)
roots and walls, respectively. (It can happen that gp, = p, for an x-external
root p, and g € G,.) The set of all x-external roots is denoted by IL_, i.e.,

(4.12) I, = {go;|lg + 1 £i<n*geG}c M.

The definitions of K, A,*, F,, and II, in (4.10) and (4.12) do not depend on
the choice of 7 = 7(x), and reduce to the original definitions when x e T, since
in that case G, = {I/} and we may take r(x) = x. We shall show below (se¢ Pro-
position 4.1) that, somewhat surprisingly, all inter-relationships among K,, A+,
F, 1, carry over without change from the case xe T tothecasex¢ T. In par-
ticular, it will be shown that F, is a convex cone containing x as an interior
point, K, is the dual cone of F,, and the extreme rays of K, are determined by
the roots in II,. As in the proof of Theorem 4.1 (see (4.8)), this last fact will
enable us to show in Theorem 4.2 that each edge of C(x) is parallel to some
root of G.

ExaMpLE 4.3. Return to the Coxeter group <%, acting on R* considered in
Remark 4.2 and Example 4.2. If x = (1, 1) ¢ T, we find that G, = {/, §} where
g is the permutation S, _,. We may take z(x) = (2, 1), sothat F, = {(x;, x;) | x, >
x, > 0}and %7, = {F,, §F,}. Furthermore, K, = {(x;, x;)|x, = 0, x, = 0} = F,,
At = {e, e, e + &}, and II, = {e,, ¢;}. Finally, C(x) is the square with vertices
(x1, 1) (not an octagon, as in Example 4.2 where x ¢ Téi,2 was chosen), so
that each edge of C(x) is again parallel to some root of G, in fact, to an x-external
root (+e, or +e,).

Because examples in R’ such as the above do not adequately illustrate the
general case, the reader is urged to consider the Coxeter group G acting on R?,
whose fundamental regions are represented in Figure 4.3 on page 38 of Coxeter
and Moser (1972). Take x to be a boundary point of one of the spherical tri-
angles in that figure (the vertices are particularly interesting) and consider the
quantities G,, %7, F,, K,, A,*, and II,, the last of which requires consideration
of the x-external roots. It will be seen that F_ is a convex cone such that F, < K,,
and that F, may have more than n (= 3) walls, each of which is perpendicular
to some x-external root. It is not as easy to envision the convex cone K, (dual
to F,), to see that the extreme rays of K, are determined by the x-external roots,
nor to see that each edge of C(x) is parallel to some x-external root. (Also see
Example 4.4.)

Return now to the general case and consider the definitions (4.10) and (4.12).
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The set X, is a closed, pointed, convex polyhedral cone in R*, while F_isa closed,
positively homogeneous set. It is not immediately apparent that A * is non-
empty. By Corollary 4.1

(4.13) CxycsN{x—K,. |geG}=x—-K,,

which suggests a relationship between the edges of C(x) emanating from x and
the extreme rays of K,. Recall that for te T, K, = co (A,*), where co (4) de-
notes the closed convex cone generated by a set 4 — R*. Therefore

(4.14) K, =N {co () |ge G} 2 co (N {Aj[geG.l) = co (8, .

Next,

(4.15) dual (K,) = dual (N {K,.|9€G,}) 2 U {dual (X,,) |9 e G}
=U{F,.|9eG}=F,,

where dual (K) denotes the dual cone {z|z’y > 0 forall y € K} of Kin R*. Since
dual (dual (K)) = K (Rockafellar (1970), Theorem 14.1), (4.14) and (4.15) yield

(4.16) co (A,*) € K, < dual (F,) .
The next result shows that all inclusions in (4.14)—(4.16) are in fact equalities.

ProrosiTION 4.1. Let {p;|q + 1 < i < n*} be the x-external roots in II,
(z = 7(x)).

(i) F, = dual(co(IL,)) = {ze R*|z/(gp;) = O forallg +1 <i < n*,geG,}.
Hence, dual (F,) = co (IL,).

(i) II, < A,*.

(iii) co (II,) = co (A,*) = K, = dual (F)).

(iv) The extreme rays of K, are exactly determined by the members of 11, i.e.,
the x-external roots.

PRrooOF.

(i) If ze F, then z = g,u for some g, e G, and some uec F.. Fixp, (¢ + 1<
i < n*) and geG,, and let g, = g’g, € G,. Since g,u and g,x = x both lie in
g,F. =F 4ye> and since p/x > 0, Lemma 3.1 implies that 0 < p,/(g,4) = (9p.)'z.
Thus F, < dual (co (II,)).

Conversely, suppose z ¢ F,. By Lemma 3.1 there exists at least one point w
in the open line segment [x, z]° such that {w} = [x, z]° N H, for some (not neces-
sarily unique) r € A. Since A is finite there are only finitely many such points w in
[x, z]’; let w, denote the point closest to x. Therefore [x, z]° N H, = {w} for at
least one root 7, € A, which implies that r/x # 0, while ry/w, = 0. Furthermore,
for every re A, [x, w,]° N H, does not consist of a single point. Thus by Lemma
3.1, there exists some fundamental region F, such that x, w,e F,. This implies
that F,e %7, so F, = F,, for some ge G,. Without loss of generality assume
that r,e A,* = gA_* (otherwise replace r, by —r,) so there exist real numbers
¢; = 0 such that

ro= N{1€i90 + Xilen €190
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(see (4.11)). Since (gp,)’x = O0forl < i < gand(gp;)x > Oforg + 1 < i < n*,
while r/x + 0, it follows that ¢; > 0 for atleastone j > ¢ 4+ 1. Also, wye F, =
gF_ implies that (gp;)w, = 0 for 1 < i < n*. Since r/w, = 0, it follows that
(90;)w, = 0. Finally, since (go;)’x >0 and w,e[x, z]°, we conclude that
(90,)'z2 < 0, so z ¢ dual (co (IL,)). This proves (i).

Next fix F, e %, so F, £ F,. By (i) and (4.16)

II, © co (II,) = dual (F,) < dual (F,) = K, = co(A,*).

Hence each root in II, must be ¢-positive, so I, £ A,*. ThusIl, € N {A,*|F, €
7.} = A+, proving (ii). By (i) and (ii), dual (F,) = co (II,) < co (4,*). Com-
bining this with (4.16) yields (iii). Next, since K, = co (IL,), each extreme ray
of K, must lie along some root in II,. Conversely, to show that each x-external
root go;, (9€G,, ¢4 + 1 < i < n*) determines an extreme ray of K,, note that
ge,eIl, £ K, C K,.. Since gp, determines an extreme ray of K, it must also
determine an extreme ray of K,. Thus (iv) is established.

REMARK 4.5. If x ¢ M, then there exists at least one x-external root, so II,
and A,* are nonempty, K, + {0}, and F, # R*.

Proposition 4.1 (i) implies that F,, defined as the union of convex polyhedral
cones Fg,, g € G, is itself a closed convex polyhedral cone whose interior con-
tains x and whose walls are formed from the collection of all x-external walls.
If we define F, = interior (F,), it is easy to see that for any ge G, F,, = gF,
(indeed, Fact 3.3 remains true when ¢ ( € T) is replaced by x (¢ T)); in particu-
lar, gF, = F, when ge G,. Let ./ be the collection of all left cosets of G, in
G, so that " = {9,G,|1 < a £ d} for some (nonunique) g,, - - -, g, € G, where
d = |G|/|G,|. The G-orbitof xis {g,x|1 < a < d}. Using Lemmas 4.3 and 4.4
it can be shown that the system .7’ = {gF,| g € G} has exactly d members, i.e.,
77 ={F, ,|1 £a <£d}, and that this system has properties analogous to
(3.3)—(3.51; (with t replaced by x) concerning the system % (in (3.4), g = I
must be replaced by g ¢ G,). However, .%7% is not necessarily a system of fun-
damental regions for some finite reflection group acting on R”, since F, may
have more than n walls. (By contrast, it will be shown in Theorem 4.3 that G,
is a reflection group, and .57 is closely related to its system of fundamental
regions.)

We may now apply Corollary 4.1 and the notation we have established (see
(4.13) and the preceding paragraph) to extend (4.7) to the case x ¢ T"

@17)  C=N{rE-K)lsasd=N{gx—K, .|l sa<d.

The points {g,x|1 < a < d} are distinct, and the edges of C(x) emanating from
g.x lie along the extreme rays of g,(x — K,) (see Theorem 4.2), so C(x) and
g.(x — K,) coincide in a neighborhood of g, x. Since the extreme rays of g,(x — K,)
are determined by the roots g,II_, this yields the desired characterization of the
edges of C(x) in the case x ¢ T.

Let v = |II|, the number of x-external roots, sov < (n* — ¢)|G,|. The proof
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of the following theorem is identical to that of Theorem 4.1 (simply replace g by
g, and n* by v in that proof), hence is omitted.

THEOREM 4.2 (Structure of C(x) when x ¢ T). The convex poly:ope C(x) has
exactly d = |G|/|G,| extreme points (vertices), the points {g,x|1 < a < d} of the
G-orbit of x. Exactly v = |Il,| edges emanate from the vertex x, namely, the line
segments [x, S, x] where {r;|1 < i<y} =1 (= {909 +1=i=n*geG,})
are the x-external roots. Similarly, the v edges emanating from the vertex g,x are
exactly the g,-images [¢,X, 9,S,.X] = [9.x, S, ,.9.x] of these segments. The edge
[9.%, 9.8,,x] is parallel to g,(x — S, x) = 2(r:’x)gﬂri, a nonzero vector in the direc-
tion of the root gr; € A. The polytope C(x) has exactly tdv (< 1|G|(n* — q)) edges.

REMARK 4.6. A partial answer to the question raised at the end of Section 3,
concerning dimension (C(x)) when x ¢ T, can be obtained from (4.13), Proposi-
tion 4.1 (iv), and Theorem 4.2: dimension (C(x)) is the dimension of the subspace
spanned by the collection II, of all x-external roots.

Theorems 4.1 and 4.2 lead immediately to our generalization of the basic path
lemma of Hardy, Little\;vood, and Polya (1952, page 47) from the permutation
group to a general finite reflection group G.

LEMMA 4.5 (Second Path Lemma). Suppose y € C(x) = Cy(x), y # x. There
exists a sequence (not necessarily unique) of points z,, z,, - - -, z,, such that z, = y,
z, = X, and

zi =41+ (1 = 2)S; ]2, l<j
where F; € A and 0 < 2, < 1.

ProoF. We appeal to several basic results concerning convex polytopes (cf.
Theorem 18.2 of Rockafellar (1970) and Theorem 5, page 33, of Griinbaum
(1967)). The closed convex polytope C(x) is the union of its faces. Each face
C of C(x) is itself a closed convex polytope, and each face of C is a face of C(x).
There exists a unique face C, of C(x) such that z, = y lies in the relative interior
of C,. Let d, = dimension (C,), s0 0 < d, < n*.

If d, = 0, i.e., if z,is an extreme point of C(x), proceed to the next paragraph.
If d, = 1, select any edge E, of C,. Since E, is also an edge of C(x), Theorems
4.1 and 4.2 imply that E, is parallel to some root 7, ¢ A. Assume that #/z, > 0
(otherwise, replace 7, by —F e A). Define 9, = sup {6z, + 0F, € C;} = 0 and
zy, =z, + 0,F. Then z, = [A,] + (1 — 4)S;,12,, where

f— 51

2(F zy + 0))
satisfies § < 4, < 1. Since z, is in the relative interior of C, and since the line
{zo + 0F | —oco < 0 < oo} is contained in the affine hull of C, (i.e., the d;-dimen-
sional flat containing C,), it follows that 9, > 0, soin fact L < 1, <1 and z, & z,.
Since z, must lie in the relative boundary of C,, there exists a unique face of
C,, say C,, such that z, isin the relative interior of C,. Let d, = dimensicn (C)),

4
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s00 < d, < d, < n*. Ifd, = 0, proceed to the next paragraph. If 4, > 1, since
C, is itself a face of C(x), the preceding argument may be repeated to show the
existence of a root 7, € A and a point z, in the relative boundary of C, such that
2y = [41 + (1 — 2,)S;,]2, for some 0 < 4, < 1.

Proceeding by induction one obtains a finite nested sequence C, > C, D --- D
C, of distinct faces of C(x) and a sequence of distinct points y = z, z,, - - -, 2,
such that (i) dimension (C,) = 0; (ii) 0 < p < n*; (iii) for 0 < j< g, z; is a
relative interior point of C;; (iv) for 1 < j < u, z; is a relative boundary point
of C;;; (v) for 1 <j<p, z;,=[2;1+ (1 — 2,)S; ]z; for some F;eA and
4 < 4, < 1. Therefore z, is an extreme point of C(x), so z, must lie in the G-
orbit of x, i.e., z, = gx for some g € G. However, since G is a reflection group,

there exists a finite sequence 7, ,, - - -, F, of roots in Asuch that g = Sippy "t Sepe
Define z,,,, -- -, 2, by z; = ;20 1+ 1 <j<m, sothat z,_, = 3,25 and
take 4,,, = .-+ = 4, = 0. Then z, = x, so the proof is complete.

The geometric construction used in the proof of Lemma 4.1 to represent an
arbitrary g € G explicitly as a product of reflections in G appears to be a powerful
tool for the study of reflection groups. As an example, this construction yields
an easy proof of the fact that, for each x e R*, G, is itself a finite reflection
group (see Theorem 4.3). This result extends a theorem of Witt (see Theorem
5.4.1 of B-G).

Referring to the notation and terminology introduced in the paragraph con-
taining (4.10) and (4.11), define

I = {0, “res Og)s
the set of all x-internal roots in II_, and define

A, ={gp|1 <i<q,9€G},

the set of all x-internal roots; A, does not depend on the choice of = = 7(x).
"The root system of G, is given by

Ay ={reFlS,eCG)={relds|r'x=0}=4;nG,.
Define

A+ ={rel; |r't > 0} = {all z-positive roots in Ag},
=co (A%,
={zeR"|p/z2>0,1 i< g},
<7, ='{gF. lgeG,}.

Clearly A, < Ag,, 1, = A+nl, R.cK,., and £. D F.. The walls of the
convex polyhedral cone £, are determined by the x-internal walls of F,. In
Theorem 4.3 it is shown that Ex = Agx, S, = "Q/Gz’ and that the quantities ﬁ,,

A+ K., F., and g bear the same relation to G, as II, A+, K, F,, and n* bear
to G.

>
~

>N

N

THEOREM 4.3. (i) G, (acting on R™) is the finite reflection group generated by
{S,|red,}.
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(ii) 127 = co (IAIT) and fI, exactly determine the extreme rays of K., so 1:[, is the
t-base for the root system A . Hence S, , ---, S, is a set of fundamental reflec-
tions for G,, and dimension (M) = q. Furthermore, A, = Ay . The open convex
polyhedral cone F, is a fundamental region for G, in R", its closure is the dual cone
of K. in R*, and .57, is the system of fundamental regions of G, 7, is in 1—1
correspondence with 7.

Proor. (i) Let G denote the reflection group generated by {S, |re A,}. Since
A, < Ag,, G < G,. Conversely, suppose g€ G,. Let u = r and F = F,, and let
L = [u, z] be the line segment constructed in Claim 1 of the proof of Lemma
4.1. Since ue F and ze gF, both u and 7 lie in the interior of F, (see (4.10)).
Since F, is a convex cone (Proposition 4.1 (i)), L must lie entirely in the interior
of F,, and hence cannot intersect any of the x-external walls. Therefore the
roots g, - -+, g, in the paragraph following the proof of Claim 1 must be x-
internal roots. Slnce g =S5; S!’k e85 € G, we conclude that G = G,.

(i) Since I, £ A+, co (H )< K. Conversely, if reA+c A+
co (IL,), r must be of the form

*
r= 20160+ 2160

where each ¢, = 0. However, r'x = 0,s0¢,,, = -+- = ¢, = 0,andreco (1T,).
Hence co (11, ) =co A, )= K., and each extreme ray of K. must be determined
by some p, € II.. Sincell, < II, and II, exactly determines the extreme rays of
K., each p, e II. must determine an extreme ray of K,. Thus II. is a r-base for
A%’ and Sm’ .-+, 8, is a set of fundamental reflections for G,. That ZS, = Aa,
follows from this fact and the fact that every reflection in a finite reflection
group (G,) is conjugate to one of the fundamental reflections (B-G, Theorem
4.2.5). The rest of (ii) follows from the definitions.

T

ExampLE 4.4. In order to illustrate the concepts and results introduced for
the case x ¢ T in the second half of this section (i.e., after Theorem 4.1), again
consider G = &,. The notation of Examples 3.1 and 4.1 is continued here.
Suppose x = (x;, -+, X,) & Tg.“. Without essential loss of generality we assume
x e F, where F, is given by (3.10), so x, = ... = x, with at least one equality.
Suppose, for the sake of concreteness, that

x1>...>xa:...:xﬁ>...>xT:...:xa>...>xﬂ,

where a, §, 7, 0 are integers such that 1 < a < 8 < y < 0 < n; the cases where
x has only one, or more than two, “runs” of equal components are treated simi-
larly. It is clear that G, consists of those permutations in &, which permute
the ath, - .., th components amongst themselves and the yth, - .., dth compo-
nents amongst themselves, leaving the rest fixed, so

Gz = ‘%—aﬁl X '*966-—7+1
and

Gl = (B —a+ 1@ — 7+ 1.
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We may choose r = 7(x) = (7y, - -+, 7,) such that r; > ... > 7 so II_is given
by (3.8). Theng = (8 — a) + (0 — 7) and
I ={e—epnla<i<p—1or y<i<is—1
A=A, ={e,—elasi#j<por p<i#j<d);
the latter is the set of all x-internal roots. Clearly G, is the reflection group

generated by {S,|re A,} and also by {S,|re I1.}, as claimed in Theorem 4.3.
The set of x-external roots in II_ is

fe,.— eyl £ifa—-1or i<y—lordgisn—1}

and the set II, of all x-external roots, defined as the set of all G,-transforms of
the x-external roots in II_, is given by
I, ={e, — e, |l fi<a—1or fi<y—lorogi<n—1}

Ul —ela+1 <)<}

Ufe, — e, la<i< p—1}

Ufe,,—elr+1=j=<4}

Ule, —enlr =
Therefore

v=lILl=(@-1)+G—-pFH+n—0+2F—a)+200—-7)
=@-a+0@-7+m-1.

Since II, spans M%,, Remark 4.6 implies that dimension (C(x)) = n*=n — 1
(also see the final paragraph in Section 3). The number of distinct points in the
G -orbit of x is
|G| _ n!
Gl (B —a+ DG —7+ D
‘which is also the number of vertices of C(x), while the number of distinct edges
of C(x) is 4dv. The convex polyhedral cones K, and F, are readily obtained
from II, via the relations K, = co (II,) and F, = dual (K,).

d

5. The convolution theorem and differential characterizations of G-mono-
tonicity. Throughout this section G = O(n) is a reflection group acting on R".

THEOREM 5.1. .5 is closed under convolution.

Proor. By Propositions 2.5 and 3.2, it suffices to establish this theorem for
irreducible reflection groups G,. If G, is infinite and irreducible then, by Theo-
rem 3.1 and Remark 3.3, .5 contains only decreasing radial functions and
hence is closed under convolution. If G, is finite then Corollary 2.1 and Lemma
4.5 imply that .57, is closed under convolution. The proof is complete.

REMARK 5.1. By means of a continuity argument, the closure of % under
convolution when G, is a finite reflection group can be obtained directly from
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Lemma 4.2, rather than Lemma 4.5. Let h = f, x f,, where f,, f, € 576‘, and
first assume that f, is bounded. By Theorem 4.3c of Williamson (1962), & is
continuous on R*. If x, ye T = T, are such that y e C; (), select g € G, such
that j = gye F,. Since y € C;(x), Lemma 4.2 ((i) = (iii)) and Corollary 2.1
together imply that A(y) = A(y) = h(x). The continuity of 4 now implies that
h(y) = h(x) whenever y € C; (x), even if x, y ¢ T. Next, if f, is unbounded, for
M >0 let f, = min{f;, M}. Since M = f, e &, the preceding argument
implies that f, « f, is G,-monotone. Now let M — co and apply the monotone
convergence theorem to conclude that f, * f; is G,-monotone, hence is in & .

CoroLLARY 5.1. If f, = 0 and f, = O are G-monotone, then h = f, x f, is G-
monotone.

Proor. For M > 0 let B, = {xe R": ||x|| < M}. Since
(5.1) £ = min {f, M} - I,
is in &, i = 1,2, Theorem 5.1 implies that z,, = f," « f, ¢ & ;. Now let
M — co and apply the monotone convergence theorem.

COROLLARY 5.2. Suppose that f, = 0 and f, are G-monotone functions on R* such
that their convolution h(x) = (f, * f,)(x) exists (possibly + oo, but well-defined) for
each x € R*. Then h is G-monotone.

Proor. Firstwritef, = f,* + f,~, where f,* = max {f,, 0}and f,~ = min { f,, 0},

so f,* and f,~ are G-monotone and
h=(fixfit) + (fixfir)=ht + h™.
By Corollary 5.1, A* is G-monotone. By the monotone convergence theorem,
h™ = fix fom = limy o (" % fou) »
where £, is defined in (5.1) and f;,, = max {f,”, —M}. Since " and f; ,, + M
are nonnegative and G-monotone, Corollary 5.1 implies that
LM oy = A" x (foy + M) 4+ (constant)

is G-monotone. Hence 4~ is G-monotone, and the proof is complete.
Next we present several differential characterizations of G-monotonicity for
reflection groups, first considering the finite case.

THEOREM 5.2. Suppose G is a finite reflection group, and let f be a G-invariant
function possessing a differential on R". Then a necessary and sufficient condition
that f be G-monotone is that

(5.2) (r'2)(r'Vf(z)) £0  forall reld;, zeR*.

Proor. Necessity follows from Proposition 2.2, while sufficiency follows from
Proposition 2.3 and Lemma 4.5.
When G = &, (5.2) is exactly the Schur-Ostrowski condition (1.1) (see (3.6)
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of Example 3.1). By applying (2.6), a condition easier to verify than (5.2) can
be obtained.

CoROLLARY 5.3. Let G, f be as in Theorem 5.2, and let A, & A, be such that
GA, = A;. A necessary and sufficient condition that f be G-monotone is that

(5.3) r'2)(r'Vf(z)) <0  forall reld,, zeR".

By Theorem 4.2.5 of B-G, A, satisfies GA, = A, iff the set of reflections
{S.|re GA} generates G. This holds if A, itself determines a set of generating
reflections for G (e.g., take A, = II, for some ¢ T), but it also may hold for
other, perhaps smaller, sets A,. For example, when G = &, we may take
A, = {e, — e,} (see Example 3.1) and obtain the following necessary and suffi-
cient condition for & -monotonicity for a smooth &, -invariant function f,
which simplifies the condition (1.1):

(5.4) (z, — z,) ( of _ ﬁl—) <0 forall zeR™.
’ 0z, 9z,

By means of Lemma 4.2, a characterization of G-monotonicity in terms of
Vf can be obtained when it is not assumed that Vf exists everywhere.

THEOREM 5.3. Let G be a finite reflection group and f a G-invariant function on
R*. Suppose that f is continuous on R and possesses a differential on T;. Let F,

be a fundamental region for G and let II, = {r,, . .-, r,.}. A necessary and sufficient
condition that f be G-monotone is that
(5.5) ' r/Vf(z)) £0  forall 1 <ign*, zeF,.

Proor. Necessity follows from Proposition 2.2. Proposition 2.3 and Lemma
4.2 (iii) imply that f(y) = f(x) for all x, y € F, such that y € C(x), and a continuity
argument extends this to x, ye F,. The G-invariance of f now implies that
f(y) = f(x) whenever y € C(x).

When G = &, and F, is given by (3.10), condition (5.5) takes the form

(3.6) ——aié—a—f—é--- U Whenever >2,> > 2,,
azl azz azn

IA

another well-known differential characterization of .&,-monotonicity. For ex-
ample, the function

Sz o005 2,) = — Dligici<n lz; — sz“ , azl,
is & -invariant, continuous on R", possesses a differential on T,, and satisfies
(5.6).
REMARK 5.2. Theorem 5.2 and Corollary 5.3 are also valid if it is only as-
sumed that f is G-invariant, continuous on R", and possesses a differential on
Tg, and if (5.2) and (5.3) are only assumed to hold for all z € T; this is a con-

sequence of Theorem 5.3. Also, Theorems 5.2 and 5.3 and Corollary 5.3 remain
true, with only minor modifications, for functions f defined not on all of R™ but
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only on a convex G-invariant subset of R* having nonempty interior (e.g., a ball
centered at 0).

We conclude with a differential characterization of G-monotonicity for an
arbitrary (not necessarily finite) reflection group G.

THEOREM 5.4. Let f be a G-invariant function possessing a differential on R*.
Then (5.2) and (5.3) are necessary and sufficient conditions that f be G-monotone.

Proor. To show sufficiency, by Propositions 2.4 and 3.2 it suffices to consider
irreducible reflection groups. If G is infinite and irreducible, sufficiency follows
from Theorem 3.1, Remark 3.3, and the fact that for any decreasing radial
function f, Vf(z) is proportional to —z.
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