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A RELATION BETWEEN BROWNIAN BRIDGE AND BROWNIAN
EXCURSION

By WM VERVAAT
Katholieke Universiteit, Nijmegen

It is shown that Brownian excursion is equal in distribution to Brownian
bridge with the origin placed at its absolute minimum. This explains why the
maximum of Brownian excursion and the range of Brownian bridge have the
same distribution, a fact which was discovered by Chung and Kennedy. The
result is proved by establishing similar relations for “Bernoulli excursions” and
“Bernoulli bridges” constructed from symmetric Bernoulli walks, and exploiting
known weak convergence results. Some technical complications arise from the
fact that Bernoulli bridges assume their minimum value with positive probabil-
ity more than once.

1. Introduction and corollaries. Let W be standard Brownian motion, W,
Brownian bridge and W2 Brownian excursion, i.e., the C[0, 1] — valued random
variables defined by

(WO(t))0<t<l =d(W(t) - tW(l))0<t<1’
(WOG)(t))O<t<1 =d((7+ _T—)_%lW((l —)T_ +t7+)|)0<,<1'

Here 7_ is the last zero of W before 1 and 7 the first after 1, and =, denotes
equality in distribution. Chung (1976) and Kennedy (1976) noticed that the
maximum of Brownian excursion has the same distribution as the range of
Brownian bridge:

(1) maxXoe, < Wo' (1) = maxog, o Wo(1) — ming, o, Wo(1);
but so far no probabilistic explanation was found for this identity. The main result
of the present paper is

THEOREM 1. Let 7,, be the location of the absolute minimum of W,,. Then 7, is
unique with probability 1 (w.p.1) and
(2 Ws> =, W(r, + <mod 1) — W(7,,).

Formula (1) follows immediately from (2) by application of the continuous

function f max,,, f(f) on C[0, 1] to both sides of (2). Another corollary is
obtained by means of the continuous function f> [ f(¢)dt on C[0, 1], namely

() JAWER(1)dt = S5W )t = ming.oc Wo()
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144 WIM VERVAAT
Hence, as W, =, — W,
E[{Ws(t)dt = E max g, Wo(1)
=sEmax, W) = %(%w)é

The last formula follows also from Durrett and Iglehart (1977, Proposition (3.4)) or
from Chung (1976, formula (6.2)). The distribution of [{W2(f)dt seems to be
unknown (see, however, Chung (1976, Section 6) for results about moments). In
order to obtain results from (3) one would need the joint distribution of the two
terms on the right-hand side. This does not seem a simpler problem than the
original one.

2. The main lines of the proof. Let (S,)>, be a symmetric Bernoulli walk
starting at the origin (S, = 0 w.p. 1). By linear interpolation between the integers
we extend (S,)5%, to a random continuous function S(*) on [0, 00). As a particular

case of results of Liggett (1968) we have
THEOREM 2. In C[0, 1]

[@n)~25(2n)

S = 0] —>,W,.

Here and in the sequel —, denotes convergence in distribution as n — co. The
left-hand side is a shorthand notation for the conditional distribution of

(2n)‘%S(2n-) over CJ[0, 1], given S,, = 0. As a consequence of a result of Kaigh
(1976) we have

THEOREM 3. In C[0, 1]
[2n) 2 S(2n")

82 =0,8 > 00n (0,2n) | >, W&

Proor. Kaigh (1976, Theorem 2.6) obtains the theorem with S # O instead of
S > 0 for more general lattice random walks. The change into S > 0 for a
symmetric Bernoulli walk is obvious.

When we compare Theorems 2 and 3 to the sides of (2) in Theorem 1, the
following approach suggests itself.

Let T be the unit interval [0, 1] with the endpoints identified, and let for
f € C(T) r,(f) be the first time at which the minimum of f is attained. Set for
feqT)

7(f) : = f(r(f) + + mod 1) — f(,,(f))-

Then 7 maps C(T) into C(T). Clearly « is continuous at those f that assume their
minimum. value only once. In the next section we will show

LemMA 0. W, assumes its minimum value only once w.p.1.
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It follows that 7 is continuous at W, w.p. 1. Now (2) reads
We =m(W).

Hence Theorem 1 would follow from the continuous mapping theorem (Billingsley
(1968, Theorem 5.1)), if = applied to the left-hand side of Theorem 2 would be
equal in distribution to the left-hand side of Theorem 3. However, complications
arise from the fact that the left-hand side of Theorem 2 assumes its minimum value
more than once with positive probability. Therefore we have to modify Theorem 2.

Let A be the set of all f € C(T) that have a unique absolute minimum. Then 4
~ is Borel in C(T) (see (12) and (13)). In the next section we will prove the following
two theorems.

THEOREM 4. In C(T)
[(@n)~5(2n")

THEOREM 5. "In C(T)
n[(2n)"25@2n")|S,, = 0, S2m) € 4]

S =0, 52nm) € 4] >, W,.

S5, = 0,5 >00n (0,2n)].

=,[@n)725(n)

Combining Theorems 3, 4, 5 and the continuous mapping theorem now yields (2)
in C(T), and hence in C[0, 1], since C(T) can be identified with the Borel set

{f:A0) = f()} n C[0, 1].

3. Proof of Theorems 4 and 5 and Lemma 0. Consider the symmetric Bernoulli
walk S. For positive integers n we define

B,,={k:0<k <2nS8,= min0<j<2,,Sj},

Tl, n = inf BZm e
T =SUp By,  if By, # {0,2n},
=0 if B,,={0,2n),

$2n = Tran — T2
Ly, (2) = S(7,,2, + 1) — S(7,2,) for 0 <1 < &y,
K, (1) = S(¥) for 0<t <7 ,,
=S(t+¢$,,) for 7,5, <t<2n-§,

7,20 and 7, ,, are the locations of the most left-hand and most right-hand
absolute minima in [0, 2], modified such that on [S,, = 0]

[SCn) € Al =[7,20 = Tr,20] =[82n = 0].

The graph of L,, is the piece of the path between 7, ,, and 7, ,,. When this piece is
left out and the remaining pieces are put together, we obtain the graph of K,.
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LEMMA 1. (a) The random functions K,, and L,, are conditionally independent,
given S,, = 0 and §,,.

()  [KynlSan =0, $3, = 2k]
=, [(S(8)o<i<2n—24|S2n—2x = 0, S(2n — 2k)") € 4]
for 0 < k <n.
(©)  [LonlSsn =0, &3, = 2k] =, [(S(D)o<s <24/ Sp = 0, S > 0 on [0, 2k] ]
for 0 < k <n.

PROOF. Let Ry be the set of possible values of [(S()oci<2n & S2n = 0, $2n =
2k], i.e., the set of paths of length 2n with S,, = 0 and {,, = 2k. Similarly, let R
and R, be the sets of possible values of the left-hand sides of (b) and (c), which
obviously are also the sets of possible values of the right-hand sides. The function
determined by (S())o<;<2n P> (Kyn» Ly,) testricted to [S,, =0, ¢, = 2k] maps Rg
one-to-one onto Ry X R,. Given S,, =0, {5, = 2k, (S(!))o<,<2 assumes its val-
ues in Ry with equal probability, so under the same condition (Kj,, L,,) assumes
its values in Ry X R, with equal probability. Now all assertions of the lemma
follow.

LEMMA 2. Let
Tyn(S) = S(7,2, + + mod 2n) — S(7;2,).
If we let the domain of m,, be the paths of length 2n with S,, = 0 and 7, 5, = T, 3,
then the range of m,, consists of all paths of length 2n with S,, = 0 and S > 0 on
(0, 2n) and the mapping m,, is 2n to 1.

ProOF. Clearly 7,, maps into the claimed range; m,, restricted to the claimed
range is the identity map, thus onto. All pre-images of f under ,, are given by
f(k + +mod 2n) — f(k) for k=0,1,---,2n — 1. They are all different, since
they have their unique minimum at different places.

PrOOF OF THEOREM 5. All possible paths on the right-hand side of Theorem 5,
and on the left-hand side behind =, are equally probable. Application of 7 on the
left-hand side produces the possible paths on the right-hand side by Lemma 2, and
moreover with equal probability, since, for fixed n, = sends a constant number of

paths into one image.

LEmMMmA 3.
(4) [§2n|S2n = 0] _adT -2,

where T is the time of the first return to 0 in the symmetric Bernoulli walk, so

(5) P[T=2n]=:f= 2n1_ (2

__2_ 271—2) —2n =
_n(n_l 2 for n=12,...
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and
(6) EzT=1-(1-2 for || <.

PrOOF. The statements about T are well known (cf. Feller (1968)). From Feller
(1968, (I11.9.1)) we know that

(7)  P[S;,=0,5 >00n[0,2n]]

=n-§-1(2nn)2_2" for n=0,1,---.

From (5) we have
#{Son[0,2n]:8S,, =05 >00n(0, 2n)}

=1 2n —_ n =
=3 2n2 = ( 1 for n= 1, 2, .

By Lemma 2 the mapping =, is 2n to 1, so

(8) ﬁ{s on [O, 2”] : S2n = 0, TI,ZII = TI‘,Z”}
=2(2n—2) for n=1,2,--- .
n—1
By applying Lemma 1, (7) and (8) we obtain
P[$5, = 2k|Sy, = 0]
_ P[ S2n—2k = O, TI,Zn—Zk = ,.’2”_2k]P[S2k = O, S > 0 on [O, 2k]]
P[S,, =0]

A7) Y )

_ 2 (2k) (n(n=1)---(n~ k)
k+1\k/)2n@n—1)---@n -2k —1)°

Keeping & fixed and letting n — co we obtain
- - 1 2k\y—2k _
Pl8an = 2K1S3, = 0] = 5y (%) = fua
This proves (4).
Lemma 4. In C(T)
_1
[@n = $22) 7 Kpu((20 = £3,)°)[S,, = 0] =Wy

we have on [S,, = 0]

Proor. Denoting the sup norm on C(T) by
©)  112n = &) K20 — £,)7) — 2n)~2S2ne))|
< 11@2r) " IS@n| (1 = &/2m) 3 = 1] + £/ (2m)7.
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By (4) we have [{,,/(2n)°|S,, = 0] —>,0 for a > 0. Hence by Billingsley (1968,
Theorem 4.4) and Theorem 2

[(@n)728@2n2), $3,/20)1S,, = 0] —(W¢, 0)

in C(T) X R. It follows that both sides of (9) converge in distribution to 0. This
combined with Theorem 2 and Billingsley (1968, Theorem 4.1) proves the lemma.

LeEMMA 5. Let ¢ be a bounded continuous function on C(T) and let
X,, :=d[(2n)_%S(2n°) S,, =0,8S2n) €4 ]

Then, as n - o,
(10) k=0ES(Xon_2)foic 42 = EG(Wy).
ProoF. By Lemmas 4 and 1 we have
(1) Eg(Wy) « E[¢((@n — £) " Kp(@n = ,,)9)1S5, = 0]
= S _oE[9((2n — 2K) 72 Ky (21 — 2K)°))|S,, = 0, &, = 2k |
*P[$,, = 2K|S,, = 0]
= 2= oEd(Xpu_2) P $2, = 2k|S,, = 0].

As (4) concerns weak convergence of probability distributions on a countable set,
the convergence is also in total variation. Since E¢(X,, ;) is uniformly bounded,
it follows that the difference between the left-hand side of (10) and the most
- right-hand side of (11) vanishes as n — oo. This proves (10).

LEMMA 6. Let (a)7_, be a sequence of nonnegative reals such that a, > 0 and
k=0 0
2%-0a = L. In order that for all real sequences (x,);-¢
liInn—»ocaz’llc=0akxn—k = 1in’ln—»oo)".n

whenever at least one side exists and is finite, it is necessary and sufficient that the
power series expansion in z of 1/2¢_ a,z* converges absolutely for z = 1.

Proor. This is a special case of Hardy (1949, Theorem 21, page 67). Take
Di=0a,q =1ifk=0,0if £k > 0.

PROOF OF THEOREM 4. Apply Lemma 6 to (10) with @, = £, ,,, 50 2F_ a, 2" =
(1= (1= 2)2)/z (cf(6)). Then 1/S2 gaz* =1+ (I'—2)7=2 — S2_o f. 2%
which converges absolutely for z = 1. Hence E¢(X,,) = E¢(W,) for all bounded
continuous functions ¢ on C(7"). This proves Theorem 4.

ProoF oF LEMMA 0. We will first derive similar results for Brownian motion
W. This forces us to consider C[0, 1] rather than C(7), which can and will be
identified with { f € C[0, 1] : f(0) = f(1)}. For 0 < ¢ <1 let 4, be the set of those
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S € C[0, 1] whose restrictions to [0, ] have a unique absolute minimum. Recall
A C C(T) from the lines above Theorem 4. With the above identification we have

A= (A, U {f:f(t) >f(0)for0 <t < 1}) n C(T).

Consequently,

(12) An Ty cain AT c U o conds

From

(13) A7 = U rational r €(0, t){f: mjn0<“<’f(u) = mjnr<u<tf(u)}
and arguments like in the proof of Freedman (1971, (1.52)) it follows that
(14) P[WEA]=0 for ¢t >0.

Now let 0 < t < 1. It is well known that for real x

(15) [(W(W)ocucd W(2) = x] = [ (Wo(#))g<p | Wolt) = x]

(compute the correlation functions of the Gaussian processes on both sides). The
distributions of W/(r) and W(f) are normal, whence equivalent. Because of (15) the
distributions of (W(u))y<,<, and (Wy(u))o<,<, Over C[0, 7] are equivalent, too, so
(14) implies P[W, € Af] =0 for 0 <t < 1. Now (12) and P[W, € C(T)] =1
imply P[W, € A] = 1, and the lemma is proved.

REFERENCES

[1] BILLINGSLEY, P.(1968). Convergence of Probability Measures. Wiley, New York.

[2] CHuNG, K. L. (1976). Excursions in Brownian motion. Ark. Mat. 14 155-177.

{3] DURRETT, R. T. and IGLEHART, D. L. (1977). Functionals of Brownian meander and excursion. Ann.
Probability 5 130-135.

[4] FELLER, W. (1968). An Introduction to Probability Theory and its Applications, 1, 3rd ed. Wiley, New
York.

[5] FrReepMAN, D. (1971). Brownian Motion and Diffusion. Holden-Day, San Francisco.

[6] HARDY, G. H. (1949). Divergent Series. Oxford Univ. Press.

[7] KaiGH, W. D. (1976). An invariance principle for random walk conditioned by a late return to zero.
Ann. Probability 4 115-121.

[8] KENNEDY, D. P. (1976). The distribution of the maximum Brownian excursion. J. Appl. Probability
13 371-376.

[9] LigGETT, T. M. (1968). An invariance principle for conditioned sums of random variables. J. Math.
Mech. 18 559-570.

MATHEMATISCH INSTITUUT
KATHOLIEKE UNIVERSITEIT
TOERNOOIVELD

NUMEGEN, THE NETHERLANDS



