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ESTIMATION OF A CONVEX REAL PARAMETER
OF AN UNKNOWN INFORMATION SOURCE

By JonN C. KIEFFER
University of Missouri-Rolla

Let 9 be the family of all stationary information sources with alphabet 4.
Let F: % — (—o0, 0) be convex and upper semicontinuous in the weak

topology. It is shown that for n = 1,2, - - -, there is an estimator Y, : A" —
(— o0, 00), such that if 4 € @ is ergodic and the process (X, X,, -+ - - ) has
distribution g, then Y,(X,, - - - , X,) » F(p) in L' mean.

Let A be a finite set with a elements. Let @ denote the power set of A. Let
(A%®, @) be the measurable space consisting of 4%, the set of all sequences

(%), x5, + + + ) from A4, and @, the usual product o-field. Foreach i = 1,2, - -,
let X;: A®° — A be the coordinate map such that X(x,, x5, + - ) = x;. For n =
1,2,- -+, let X" :A® —> A" be the map.X" = (X}, - -, X,). Let T: 4° > 4%

be the shift transformation. Let R be the set of real numbers. Let & be the family
of all T-stationary probability measures on @*. In information-theoretic terms, the
elements of & are called stationary information sources. We topologize ¢ with the
weak topology. Let P, be the set of T-ergodic measures in %P.

Let F: % —» R be given. We will call F estimable in the mean if for each
n=1,2,---, there exists Y, : A” — R such that for every p € &, ¥, (X") >
F(p) in L'(w) mean. We will call F estimable almost surely if the estimators
{Y,}%_, can be found so that Y,(X") — F(p) a.s. [p], for any p € 9P,.

We state the two main results to be proved in this paper.

THEOREM 1. Let F : ®P — R be continuous. Then F is estimable almost surely .

THEOREM 2. Let F: 9 — R be upper semicontinuous and convex. Then F is
estimable in the mean. Moreover, the estimators {Y,} may be chosen so that

(2) lim sup,_,, Y,(X") = F(p)as.[pl, p € D,.

®) [Y,(XMdu > F(p) for all nand all p € 9.

If in addition we assume that F is affine, the estimators {Y,} can be chosen so that
(a), (b) and the following hold.

©) [Y,(X"™dulF(p),p € 9.

Theorems 1 and 2 may be used to give a solution to the variable-rate variable-
distortion universal source coding problem of information theory. As pointed out
in Kieffer (1978), anytime the desired distortion levels (or rate levels) of the sources
can be estimated in the mean, then variable-rate variable-distortion universal
coding is possible.
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As another application, note that the entropy function H: ¥ — R is upper
semicontinuous and affine. Thus the entropy function is estimable in the mean.
Bailey (1976) has shown in addition that H is estimable almost surely. It would be
interesting to know whether in Theorem 2 estimation almost surely is possible.

Before proceeding with the proofs of our main results we give a couple of
interesting corollaries of Theorem 2.

COROLLARY 1. Let K C 9 satisfy:

@) X is closed;

®) ifu,v€?P and0 <a < land ap + (1 — a)y € K, then p, v € K.
Then Iy, the indicator function of K, is estimable in the mean.

One can thus determine whether a given p € ?, is in K or not. For one can
construct estimators {Y,} so that ¥, -1 in L'(p) mean if p € ¥ and ¥, -0 in
L'(p)-mean if p & K.

ExampLes. 1. Take K c 9?,, K closed. Then assumption (b) of Corollary 1 is
automatically satisfied, since ?, is the set of extreme points of the convex set .

2. Take K to be the family of all memoryless sources in %. Then K is closed
and ¥ c 9,.

3. For N=1,2,- - -, take K to be the family of all N-Markovian sources in
. Then K is closed. If ap + (1 — a)r € K, then all the ergodic components of
u, » must be N-Markovian with the same transition probabilities. Thus g, » € K.

4. Take K to be the family of all periodic sources in ¥ with period N. (p is
periodic with period N if p{w : TVw = w} = 1.)

We remark that for Examples 2 and 3 Bailey (1976) obtained the stronger result
that I is estimable almost surely.

DEFINITION. Let (A, %) be a measurable space. A family {y, : § € A} C P, is
said to be regular if for each E € @, the map 8 — p,(E) from A to R is
% -measurable.

COROLLARY 2. Let (A, F,)) be a probability space. Let {py: 60 € A} be a
regular family. Let u € P be the measure such that

(a) W(E) = [11g(E)ANO), E € &@.
Let F:% — R be. upper semicontinuous, bounded, and affine. Then F(p) =
JAF(pg)dNO).

Proor. Find {7,} which estimate F in the mean and satisfy (a)—(c) of Theorem
2. Since F is bounded we can assume the Y,’s are uniformly bounded. For each
0 € A, [Y,dyy — F(1y) and the convergence is bounded, so [,[[Y,du,]dA(0) —
TaF(ug)dN(). But [,[[Y,dugldN(0) = [Y,du. (This follows from (a) above.) But
[Y,dp — F(p) by (c) of Theorem 2. The result follows.

Corollary 2 is a result of Jacobs (1962). It has important information-theoretic
applications. See Kieffer (1975) and Gray and Davisson (1974).

The rest of the paper will consist of the proofs of Theorems 1 and 2.
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DerFINITIONS. If w € A" and n > m let p(w, m) be the probability measure on
A™ such that the p(w, m)-probability of a block b € A™ is the frequency with
which that block appears in w. If p€ P, and n=1,2,-- -, let u, be the
probability measure on 4" such that p,(b) = w(X" = b), b € A”. Note that by the
ergodic theorem, if p € ®, and m is fixed, then p(X”", m) — p,, a.s. [u]. Define a
probability measure p on A" to be invariant if for every 1 <m <n and b €
A" By eqn-mp(b, b)) = 2y o n-m p(b', b). Tt is well known that p is invariant if
and only if there exists p € ¥ with u, = p. Forn =1,2,- - -, let P, be the set of
all invariant probability measures on 4”. If w € A" and n > 2m, define p(w, m) to
be the measure on A ™ obtained as follows: replace the last m — 1 elements of w by
the first m — 1 elements of w, getting a sequence w’ € A”". Define p(w, m) =
p(w’, m). It is easily checked that p(w, m) € &,,. If g is a probability measure on
A™ and k < m, let [¢], denote the probability measure on A * such that [¢],(b) =
Zyean-q(b, b). If p, q are probability measures on 4", define the distance
between them to be |p — gq| = 2, - p(b) — q(b)|.

We omit the easy proof of the following lemma.

Lemma 1. () |p(w, m) — p(w, m)| < ma™/(n — m+ 1),n >2m, 0 € A"
(®) [[p(w, M) — plw, k)| < 2a(m — k)/(n —k+ ), n>m >k 0 € A"

PrROOF OF THEOREM 1. Let 9* be the set of all probability measures on
@>, with the weak topology. For n = 1,2, - -, let @* be the set of all proba-
bility measures on 4". We are given a continuous F: P — R. Let F* : $* > R
be any continuous extension of F. Let C(% *) denote the vector space of all con-
tinuous real-valued functions defined on %*, with the supremum norm. We
will call G € C(?*) finite-dimensional if for some n there exists a continuous
G* : ?* - R such that G(n) = G*(p,), p € 6p*. By the Stone-Weierstrass theo-
rem, the collection of all finite-dimensional functions in C(? *) is uniformly dense
in C(?*). Hence, we may write F* = 3% ,27'G,, where each G, is finite dimen-
sional and the G;’s are uniformly bounded by a number B. For each G;, find an
integer n; and G* : 9,F — R such that G(p) = G*(p,), p € 9 *. For each i, define
a sequence { f™}%_, of functions from 4* — R as follows:

9 = GH(p(X, m)), IGH(p(X',m))| <B + 1,j > n;

= B, otherwise.

Define the nth estimator Y, so that Y, (X") = 2 27",

DeriNITION.  If K is a convex subset of some vector space and f: K — R, we
say f is e-convex if for any choice of finitely many x;, - - - , x; € K and nonnega-
tive numbers a,, - - - , &; adding to one, we have f(Z/_,a;x)) < 3/ a,f(x) + .

The following gives a generalization of Jensen’s inequality for e-convex func-
tions. 'vhe proof is obtained by making the obvious modifications in a proof of

Jensen’s inequality for convex functions.
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LEMMA 2. Let K be a compact convex subset of R". Let g € C(K) be e-convex.
Let X be an n-dimensional random variable with Pr{X € K] = 1. Then E[ g(X)] >

glEX)] — e.

LemMAa 3. Let F: 9 — R be convex. Let G : P — R satisfy sup,cq|G(p) —
F(p)| < e. Then G is 2e-convex. Furthermore, if there exists G* : ?, — R such that
G(p) = G*(p,), then G* is 2e-convex.

PrOOF. Easy.

LEMMA 4. Let G: @y — R be e-convex and continuous. Define G* : 9 — R
so that G*(p) = G(py). There exists M > 2N such that for n > M and all
pE P, E[GA(X", N))] > G*(p) — 2e.

PrOOF. By Lemma 1, |p(X", N) — p(X", N)| < Na¥/(n — N + 1), so for all
p € P, |E[p(X", N)] — E[p(X", N)]| < NaV/(n — N + 1). By Lemma 2,
E[G(P(X", N))] > G(E[P(X",N)]) — e. Now for p€ P, E[p(X", N)] = py.
The result follows using the uniform continuity of G.

LEMMA 5. Let ny > n,. Let G;: 9, — R be continuous, i =1, 2. For i = 1,2,
define G* : P — R so that G*(p) = G( 1y,). Suppose GI < GY. Given ¢ > 0, there
exists N > 2n, such that for n > N, G,[p(X", n,y)] < G,[p(X", n))] + &

PROOF. G} < G} implies that Gy(p(X", ny) < G([A(X", ny)], ). We have
[A(X", ny) — [B(X", m)], | < |B(X", ny) — p(X7, n)| + |p(X", ny) = [p(X", n], |
+ |[p(X", m)l,, — [B(X", n)], | < ma™/(n — ny + 1) + 2a™(ny — ny)/(n — n,
+ 1) + nya™/(n — n, + 1), by Lemma 1. Now apply the uniform continuity of G,.

LEMMA 6. Let E be a separable metrizable locally convex space. Let K be a
compact convex subset of E. Let f: K— R be upper semicontinuous and convex.
Then f is the pointwise limit of a decreasing sequence of continuous convex functions
from K — R. If in addition f is affine, then f is the pointwise limit of a decreasing
sequence of continuous affine functions from K — R.

ProOOF. Meyer (1966), pages 222-223, proves this result for decreasing nets
instead of sequences, in a general locally convex space. If one assumes separability
and metrizability, an easy modification of Meyer’s arguments allows one to replace
nets by sequences.

PROOF OF THEOREM 2. Let F: 9 — R be a given upper semicontinuous func-
tion, either convex or affine. By Lemma 6, if F is convex (affine), F is the pointwise
limit of a decreasing sequence of continuous convex (continuous affine) functions.
Call G € C(%P) finite-dimensional if there exists N and a continuous G* : ¥, — R
such that G(p) = G*(wy). Using the Stone-Weierstrass theorem, it follows that F is
a pointwise'limit of a decreasing sequence of finite-dimensional functions from
C(?); by Lemma 3, if F is convex (affine), each term of the sequence can be
chosen to be as nearly convex (affine) as desired. Using Lemmas 4 and 5, we thus
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may find increasing sequences { N, };2,, {M,}2, of positive integers, and sequences
of functions {G;}2,, {G*}%, such that:

() For each i, GF € C(?), G; € C(Py) and G*(p) = G ).

(b) G*|F.

(©) M, > 2N,

(@) If F is convex, then for all p € 9P, E,G(A(X", N)) > F(p), n > M,
i=12---.

(e) If F is affine, then for all p € @, G () < E G, ,(B(X", N;,)) <
GN(w,n>M,,i=12" - .

® Gii(FX", Niyy)) < GAX", N))n > M,y i=1,2,- - .

Define a sequence {Z;};2, of functions on 4 so that Z, = G,,(5(X ™%, N,))),
i=12,---.1If Fis convex, E,Z, > F(p) for all p € 9. If Fis affine, E,Z,|F(w)
for all p € &. For fixed j, Z; < G(p(X My, N))) for i sufficiently large. Thus if
p€ 9, limsup, ., Z, < G¥(p)as.[pl,j=1,2,---. Letting j— o0, we get
lim sup, ,,, Z; < F(p) as. [p]. By Fatou’s lemma, E,[lim sup,,, Z] >
lim sup, ,, E,Z; > liminf; ,, E,Z > F(p). We conclude two things from this:
lim sup;_,,, Z; = F(p) as.[p], and lim,_, E[Z — F(p)] =0. To show lim,
EJ|Z; - F(w)|] = 0, it thus suffices to show lim, ,, E,[(Z, — F(pu))*] = 0. Now,
E(Z, = F(p)*] < E[(Z; — G(B(X ™, N))*] + E[(G(A(X™, N))) — F(p)*],
for each fixed j. Letting i — oo and then j — oo, we get lim,_ E[(Z;, — F( wt] =

0. If B is an upper bound for G}, define the estimators {Y,} so that Y,(X") = B
forn <M, and Y,(X") = Z, for M), <n < M,,,.
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