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ON AN ANALOGUE OF KOMLOS’ THEOREM FOR STRATEGIES

By AVNER HALEVY AND M. BHASKARA RAO
Israel Institute of Technology and Sheffield University

Using a technique developed by Chen, we obtain an analogue of Komlos’
theorem and a simple proof of a strong law of large numbers for strategies.

1. Introduction. Let X be a nonempty set with the discrete topology, H = X ®
the countable product space equipped with the product topology and X* the
collection of all finite sequences of elements of X including the empty sequence. A
strategy ¢ is a map from X* into the space of all finitely additive probability
measures on the power set P(X) of X. Following Dubins and Savage [5] and Purves
and Sudderth [7], there is a field @ (o) on H containing the Borel o-field of H and a
finitely additive probability measure, again denoted by o, satisfying some natural
conditions.

Let Y,, n > 1 be a sequence of real valued coordinate maps defined on H, i.e.,
Y,(h) depends only on the nth coordinate of 2~ € H. A number of limit theorems
were established in the literature for the sequence Y,, n > 1 under the strategy o.
See [2], [3], [4] and [7]. These results for strategies are generalizations of the
conventional limit theorems for sequences of real random variables. It seems that
many of the almost sure convergence theorems for countably additive probability
measures also hold for finitely additive probability measures determined by strate-
gies. As we shall see later in this paper, there are instances when generalizations fail
to hold. The basic problem remaining is to determine precisely the class of results
which carry over to strategies.

Komlés [6], Theorem 1, page 218 proved the following result.

KOMLOS’ THEOREM. Let f,, n > 1 be a sequence of real random variables defined
on a probability space (2, A, P) and satisfying

sup,5 1 E|f,| < 0.

Then there exists a subsequence f, , k > 1 of f,, n > 1 and an integrable random
variable f such that for any subsequence f¥, n > 1 of this subsequence, it is true that

—:1-2','(_1 J¥, n > 1 converges to f almost surely.

In this paper we obtain an analogue of this result in the framework of strategies.
Chen [3], Theorem 4.1, page 250, proved the following strong law of large
numbers.
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CHEN’S THEOREM. Let o = vy, X y, X - - - be an independent strategy on H, Y,
n > 1 a sequence of coordinate mappings on H. If o(Y,) = 0 for every n > 1, and, for
some constant r > 1, = ,5,6{|Y,[*)/n'*"} < co, then

o{h € H, lim,,__,w—l’; n_ Y (k)= 0} -1

In this paper, we give an alternative proof of this result. Some results on
extensions of Komlos’ theorem based on the work of Chatterji [1] are also given.

The basic tool we use here is measurable strategy introduced by Purves and
Sudderth [7], Section 6, page 270. See also Theorem 2.1 of [2], page 211.

The following proposition plays a central role in the results to be proved below.

PrROPOSITION 1.1. Let 0 = v; X v, X - - - be an independent strategy and Y,,
n > 1 a sequence of coordinate mappings from H to R. Assume that for each n > 1,
there exists p, > 0 such that 6(|Y,|) < co. Then there exists a o-field B* on H, a
countably additive probability measure 6 on B *, a sequence m(1) < m(2) < m(3)
< - - - of positive integers, and a sequence Z,, n > 1 of B *-measurable real random
variables defined on H satisfying the following properties.

@) B* c &)
(ii) 6 = o on B *.
(iii) o{lim inf,,,4,} = 1, where

4,={he m;|v,m) - Z,m)| > ()"}, n>1
@iv) |Z,| < m(n) for every n > 1.

Proor. Since 6(]Y,|”) < oo, we can find a natural number m(n) satisfying
o{h € H; |Y,(h)| > m(n)} < 1/n®for every n > 1. Assume, without loss of gener-
ality, m(1) <m(2) < - - - . Define a simple function Z, on H by

Z,(h) = —m(n), if Y,(h) < —m(n)

—m(n)2m™™ + j

_ —m(n)2"™ + £ —m(n)2™™ + j — 1
2m(n)

2m(n) 4 2m(n)

b

< Y,(h) <

Jj=12--, mn2m

m(n)2"™ — j + 1
2m(n)

m(n)2m™ — j
2m(n)

m(n)2™m — j

,if 0 <Y,(h) <

=1, mm)2m® — 1, m(n)2m®

m(n), if Y,(h) > m(n).

Since Y, depends only on the nth coordinate, Z, depends only on the nth
coordinate. Since Z, is simple, it induces a finite partition of X in a natural way.
Let B, be the smallest o-field on X generated by this partition. %, is obviously a
finite o-field on X. The given strategy o (denoted by ) then becomes a transition
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probability with respect to the sequence ®,,n > 1. Let B = B, X B, X - - - be
the product o-field on H and % * the completion of % with respect to . We have
now a probability space (H, P *, ) and a sequence Z,, n > 1 of B *-measurable
real random variables satisfying (i) and (ii) (see Theorem 2.1 of Chen [2], page 211).
Note that

o{h € H; |Y,(h) - Z,(h)] > —2;‘(—)} = o(4,)

<o{h € H; |Y,(h)| > m(n)) < ;‘5

From this, we conclude that 3, ,0(4,) < co. Since 4, depends only on the nth
coordinate, we can apply Borel-Cantelli lemma to the sequence A4,, n > 1 to
conclude that o(lim sup,_,..4,) = 0 (see Purves and Sudderth [7], Theorem 1, page
274).

2. An analogue of Komlés’ theorem and its extensions.

THEOREM 2.1. Let 0 = v; X v, X - -+ be an independent strategy, and Y,
n > 1 a sequence of coordinate mappings from H to R satisfying

sup,19(| Y,|P) < oo for some 0 <p < 2.

Then there exists a subsequence Y, , k > 1 of Y,,n>1and a map Y: H-R
satisfying the following properties:
() o(|Y]) < o0

(ii) —-}/;27_1()’,-* — Y), n > 1 converges to 0 almost surely [a] for any sub-

sequence Y, n > 1 of Y,,k, k> 1.
(iii) If 0 <p < 1, one can choose Y = 0.

ProoF. Let Z,, n > 1 be the sequence given by Proposition 1.1. We will show
that sup,,0(|Z,|”) < co. Note that for any two real numbers a, b,

la + b|P<|al? + |b|? if 0<p<1
<2 Yalf + |blP) if p> 1.

o(|Z,1") = J|Z,|F do
= Javi<meylZ, = Y, + Y|P do + [(1y,15mmy| Z,I" do
< Gl uvi<mm|Ze = Yal’ do + ¢, v, 1<mem)| Yal” do
+[m(n)]?o{|Y,| > m(n)},
where ¢, = 1if 0 <p < 1; and ¢, =27"1ifp > 1. Thus
a(|1Z,P) < ¢,[1/27™]” + ¢,5up,5,0(|Y,[F)
+[m(n)]?e{|Y,| > m(n)}.
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It suffices to show that sup,,,,[m(n)F’e{|Y,| > m(n)} < co. This follows from the

inequality )
Y do > [y s mep| Yal? do > [m(n)]76{|Y,] > m(n)}.

Now, Komlés® theorem applies when p = 1 and Chatterji’s theorem applies when
p # 1but 0 < p < 2 for the sequence Z,, n > 1 (see Chatterji [1], Theorem 1, page
235). There exists a % *-measurable random variable Y and a subsequence Z,,
k > 1of Z,, n > 1 satisfying the following properties.

@ o(Y]P) < o0.

(ii) If Z¥, n > 1 is any subsequence of Z,, k > 1, then
oo 1/0P]21(ZF — Y) =0ae. [o].

(iii) If 0 <p < 1, one can choose ¥ = 0.

Now, we claim that Y, , k > 1 is the desired subsequence. Let Y7, n > 1 be any
subsequence of Y, , k > 1. Let 4 = {h € H; lim,_,[1/ n'/P1S"_(ZX(h) — Y(h))
= 0}. Then o(4) = 1. Let B = lim inf 4. By Proposition 1.1, 6(B) = 1. Hence
(A N B) = 1. We will show that,if » € 4 N B,

lim, ,,[1/n"?]S1_,(YA(h) = ¥(k)) = O.

lim

For,
[Y3(h) — Y(B)] +[Y3(h) — Y(B)] + - - - [YX(h) — Y(h)] l

nl/p
<I [YH(h) — ZE(R)] +[Y3(R) — Z§(R)] + - - - +[Y}(h) — ZX(h)] l
nl/p
. [Z¥(h) — Y(B)] +[Z3(h) — Y(W)] + - - - +[Z}(h) — Y(h)]l
nl/p

< 1/nV/ob(h) +|[1/n"/P]S5.(ZX(h) — Y(B)| >0 as n—w,

where b(h) is a constant depending only on 4. The first part of the above inequality
follows from Proposition 1.1 (iii).
This completes the proof.

ReEMARK. (i) The following example shows that the Borel-Cantelli lemma is not
valid for strategies (see Purves and Sudderth [7], last complete paragraph on page
274; see also Chen [4], Example 1, page 344). Let X = {1,2,3,- - - }, and the
strategy o be defined as follows. 6o(4) = 0 if 4 is a finite subset of X and the
conditional strategy o[n] assigns mass 1 to the history (n, n, n, - - - ) in H for all
n>1l.LetK,={h=(h,hy - +)€E H; h <n},n> L Itis easy to check that
o(K,) = 0 for every n > 1 and o(lim sup,_,K,) = 1. Thus 5 ,0(K,) < o and
yet o(lim sup,_, K,) = 1. ’

(ii) Theorem 2.1, as it stands, when p = 1, is not a generalization of Komlé6s’
theorem. In Komlos® theorem, there is no assumption of independence imposed on
the sequence f,, n > 1 of random variables. A generalization of Komlés’ theorem
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would be the validity of Theorem 2.1 for any strategy ¢ not necessarily indepen-
dent. However, the following example based on Remark (i) shows that Theorem 2.1
is not valid for any strategy o of (i).

Let Y, = nzl,g, n > 1, where I stands for indicator function. Note that o(|Y,|) =
a(Y,) = 0 for every n > 1. For every h € lim sup,_, K, and for any subsequence
Yrhn>1lofY,n>1

Yi(h) + Y3(h) + - - - +Y3(h)
n

(ii) In view of the above example, it remains open whether Komlés® theorem is

true without the assumption of independence if the Y,’s are uniformly bounded.

n > 1is not convergent.

b

3. A simple proof of a strong law of large numbers due to Chen. We will just
cover the case r = 1. The case when r > 1 can be disposed of in a similar way.

Let Z,, n > 1 be the sequence of simple functions given by Proposition 1.1. It
suffices to show that

o[Z, - o(Z,)]
2,,), [ n2 ] < o0.

For then we can reduce the convergence problem to the sequence Z,, n > 1 in the
realm of countably additive set-up and then successfully argue for the sequence Y,,,
n > 1. The idea is essentially contained in the proof of Theorem 2.1. As a(Z?) >
o[Z, — a(Z,)F, it is enough to show that
o(27)
2)1)1 (

2
n
But this can be checked quite easily.

< o0.
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