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PAIRWISE INDEPENDENT RANDOM VARIABLES!

By G. L. O’BRrIEN
York University, Ontario

Let Y,,- - -, Y, be independent random variables, each uniformly distrib-
uted on M ={1,2,---,M)}. It is shown that at most N=1+ M
4+ M pairwise independent random variables, all uniform on 9 and
all functions of (Y}, - - -, ¥,), can be defined. If M = p* for some prime p, the
maximum can be attained by a strictly stationary sequence X, - - - , X, for
which any r successive random variables are independent.

1. Introduction. Lancaster (1965) showed that at most n — 1 pairwise indepen-
dent nonconstant random variables can be defined on a probability space with n
points, each with positive probability. He showed that the maximum can be
attained for » > 3 but only if all the random variables take exactly two values. In
this paper, we tackle a similar problem with the additional requirement that each
random variable takes on M distinct values for some M > 1.

Our work was initiated as a result of a problem involving random number
generation. Random numbers, that is independent random variables which are
uniform on some set, are required in large quantities for computational problems
such as simulation and Monte Carlo methods. The production of such quantities
being difficult or impossible, many users of computers resort to the use of so-called
pseudorandom numbers. One technique is to obtain a small set of » random
numbers by some means such as rolling dice and then to generate a larger (but
finite) sequence as functions of the first few. The generation procedure is often
recursive in nature. It is clear that if one initially has r independent random
variables all uniform on 9 = (1,2, - -, M}, then any set of more than r of the
generated random variables, all uniform on 91, must be dependent. Thus this
procedure does not generate true random numbers. Peskun (1977) recommends a
particular generation procedure on the grounds that it gives independence between
some pairs of random variables in the sequence and low correlations for the other
pairs, provided the sequence is not too long. Further references to such procedures
may be found in Sowey (1972). Here we make the requirement that the generated
random variables should be pairwise independent and then investigate how long a
sequence can be obtained. Our construction also provides two other useful proper-
ties, namely independence of any r successive terms in the sequence and strict
stationarity.
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We now give some notation which will be fixed throughout. Let M and r be
integers greater than 1 and let 9L be a set with M elements. We assume I is
endowed with an algebraic ring structure. Let Y,, Y,,- - -, Y, be independent
uniform random variables- on some probability space (2, ¥, P). By uniform, we
mean that each Y; takes values in 9N and P(Y; = a) = M ~! for each a € 9. In
what follows, there will be no loss of generality if we assume (R, ¥, P) is a discrete
probability space with M points and the uniform measure. In fact, we may take
to be the module 9" of r-tuples of elements in OM. Then each point w € Q is
determined by the r-tuple (Y,(w), Y5(w), - - -, Y,(w)). Let N, be the largest integer
such that there exist pairwise independent random variables X, X,, -+ -, X Ny
each taking on at least M distinct values with positive probability and each a
function of Yy, Y,, - - -, Y,. If (R, &%, P) has the special form just indicated, then
X, X3, -+, Xy, may be any random variables on (2, ¥, P); they will automati-
cally be functions of Y,,- - -, Y,. Let N, be the largest integer such that there
exists a stationary sequence Xj, X, - - -, ,Xy, of pairwise independent uniform
random variables, each a linear combination (in the ring 9N) of Y,, - - - ; Y,, such
that any r successive terms of the sequence are independent.

We obtain lower bounds for N, (Theorems 2 and 3) and an upper bound for N,
(Theorem 1). Since the two bounds are often equal and since
(1) N, <N,
we obtain the actual value of N, and N, in those cases. The values of N, and N,
depend on r and M, while the particular ring structure of 9 only affects N,. The
rings we principally consider are fields or direct products of fields. When M is a
power of a prime number, taking 9N to be a field gives the maximum possible
value of N,.

The reader may note a connection between what follows and the theory of block
designs and related combinatorial concepts, such as latin squares, as described for
example in Chapters 10 and 13 of Hall (1967). In fact, the existence of a balanced
incomplete block design, with M2 objects and M2 + M blocks of M objects each,
is equivalent to having N, > M + 1 in the case r = 2. In Theorem 2 we show
N,>M +11if r=2 and 9 is a field, thereby effectively producing a block
design with additional properties of interest here.

2. An upper bound for N,.

THEOREM 1. The following bound holds:
@) N<1l+M+ - +M'=M -1)/(M-1).

ProoF. We may assume without loss of generality that (2, %, P) is a discrete
probability space with M" points and we may then consider random variables
X, -+, X,, each defined directly on £ and each taking M distinct values with

positive probability. Let V' be the set of real-valued random variables on @ with
expectation 0. Then ¥ is an (M" — 1)-dimensional vector space. For each X}, let V;
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be the set of real-valued random variables on £ which may be written in the form
f = o(X,) for some real-valued function ¢ on M. Then ¥V, has dimension M and
V n V; has dimension M — 1. Define the inner product (f,g) on V as the
covariance:
(f 8) = Efg = 2, cqf(©)g(w) P({«}).

By the independence of X; and X; for i #j, the subspaces (V' n ¥;) and (V' n V)
are orthogonal. The direct sum of all such subspaces has dimension k(M — 1),
which cannot exceed M” — 1. This proves the theorem.

REMARK. As is clear from the proof, the random variables Y, - - -, Y, have no
essential role. The essential assumptions are that the X;’s each take M distinct
values with positive probability and that they be defined on a set with at most M"
points.

3. A lower bound for N,. The principal result of this section is a lower bound
for N, in the sense that for a given M the ring 9N can be chosen so as to make N,
at least as large as the lower bound. We first study the case when M is the power of
a prime and 9N is a field with M elements.

LeMMA. Let O be a finite field and let DN be the r-dimensional vector space
over . Suppose O is endowed with the uniform probability measure. If
X, X000, X, OU - O are nonzero and linear (so that they are in the dual
space of "), then they are stochastically independent iff they are linearly indepen-
dent. Also, if X, is nonzero and linear, then it is uniform.

Proor. If X|,- - -, X, are not linearly independent, then some X; is a function
of the others, which implies stochastic dependence. Now suppose they are linearly
independent. Let a,, a,, - - - , a, € 9. There is a solution x € M to the set of
equations X(x) =g, i=1,---,n. The set A of all solutions of this system is
obtained by adding x to each solution of the homogeneous system X,(y) =0, i =
1, - - -, n. The latter system has as its set of solutions an (r — n)-dimensional
subspace of 9, which has M"~" points. Thus 4 has M"~" points and P(4) =
(M""")(M ~") = M ~". Applying the foregoing argument to the equations X; = g,
one at a time yields P(X, = a,) - - - P(X,, = a,) = (M ~')* = P(4), which proves
the lemma.

REMARK. There are exactly (M — 1)/(M — 1) nonzero pairwise linearly inde-
pendent linear functions from O — 9. Thus N, > (M" — 1)/(M — 1) when M
is a power of a prime. Equality follows from (2).

In the following theorem a few basic facts are used from the theory of finite
fields. The reader is referred to Chapter 5 of van der Waerden (1953) for
background material.

THEOREM 2. Let O be a finite field with M elements. Then
3) Ny=1+M+--- +ML
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PROOF. Let £ = 9N be an r-dimensional vector space over M and let ¥, : ©
— 9N be the ith component map. Let K be the dual vector space of Q. Let 9N,
denote the field with M" elements. We may regard 9N as a subfield of IN,, in
which case 9; may be treated as an r-dimensional vector space over IM. As
vector spaces, M, and ¥ have the same dimension so that there exists a
one-to-one linear map 7 from 9N, onto K. The multiplicative group of nonzero
elements of 9N, is cyclic; let g be a generator of this group. Finally, let X be a
nonzero element of K and define X, in K by
4 X, = T(g"T~'(X))
for n > 0. (In (4), g” and T~' (X) are multiplied as elements of 9N, and the
product is then mapped to K by the action of 7. An alternative approach would be
to induce a multiplication in K by means of T, to let # be a generator of the
induced multiplicative group of nonzero elements of K, and then let X, = A"X).

Assume P is the uniform probability measure on Q. Since each X, is a nonzero
element of K, each is uniform by the lemma. We will show that the sequence {X,}
has the properties needed to prove the theorem. ‘

Suppose that X, and X,, are linearly dependent for some n and m with
1 < m <n.Then X, = cX,, for some ¢ € 9. Since T is linear, we obtain from (4)
that

g"T " (X) = cg"T "\ (X).
Since T~'(X) is a nonzero element of the field 9MN,, we deduce that g” = cg”™.
Since the nonzero elements of 9N form a group of order M — 1, g*~m®*M-D —
c¢™~! = 1. Since g is a generator of a cyclic group with M” — 1 elements, this
implies that (n — m)(M — 1) > M” — 1 and hence that n > (M" — 1)(M — 1)~ 1,
Thus, the first (M” — 1)(M — 1)™! terms of the sequence {X,} are pairwise
linearly independent and, by the lemma, pairwise stochastically independent.

Suppose X,,,; is a linear combination of X,,., X, * * * X,,4,_; for some
m > 0and i > 1, say

Xnsi = E;';llijm+j’
where b,, b,, - - -, b;_, € 9. By the definition of T,
8™ T THX) = ZZibg™ T ().

Multiplication by g* for k > — m and application of T yields

(%) Xpsivk = Ej':llijm+j+k‘

By induction we see that for k > 0, X,,,,,, is also a linear combination of
Xp+1o " * ¢ » Xppyij—1- Now it is clear from the definition of { X} that this sequence
is periodic with period M" — 1 and that any M" — 1 successive terms are distinct
elements of ¥ . It follows that X, ,,,- -, X,,,,_, spans K so that i > r. This

implies that any r successive terms in the sequence are linearly (and hence
stochastically) independent.
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If n <r, the last paragraph shows that X,- - -, X, and X,,,- - -, X,,, have
the same joint distributions for any ¢ > 0. For n >r, X, is the same linear
combination of X,,- - -, X, as X,,, is of X,,,+ - -, X,,,, by an argument like

that used to prove (5). Thus {X,} is strictly stationary.

We have shown that N, > (M” — 1)(M — 1)~'. Equality follows from (1) and
Q).

Theorem 2 can easily be modified to give a result for some rings with M
elements for M not a power of a prime. If » = 2 and M = 6, it was shown by Tarry
(1900) that N, = 3. Thus (3) does not hold for every M no matter what ring of M
elements is used. The following theorem shows that with an appropriate ring we
can obtain a lower bound for N, that in the case r = 2 was once conjectured to be
the value of N, (c.f. Hall (1967), page 192):

THEOREM 3. Let M = pfipf2- - - pk= where p,, - - - , p,, are distinct primes and
Pl <pfr< -+ <pkn Let O be the direct product of the fields My, + + -, M,
where O, has M; = p* elements. Then

N,>1+ M+ - +M]7L,

Proor. The random variables Y,,- - -, Y, can each be considered to be
ordered m-tuples with independent uniform components in I, - - - , OM,,. Define
X}, X, - - - separately for each component using Theorem 2. The linear form of
X, Xy, - - - is assured by the component-wise nature of the ring operations in 9.
It is easily checked that X, X,, - - - 1is a stationary sequence of uniform random
variables, that any r successive ones are independent and that the first (M} —
1)(M, — 1)~ ! are pairwise independent.

FURTHER REMARKS. Let M be a prime and let r € {2,3,- - -, M — 1}. Joffe
(1974) constructs a sequence X, X,, - - -, X,,,, of uniform random variables as
functions of Y, - -, Y, such that any r of X;’s are independent. For r = 2, his
result coincides with our result that N, = M + 1.

One might suppose that the uniformity requirements are not essential in the
above construction. That this supposition is false is shown by looking at the case
M =r =2 1t is easily seen that three pairwise independent random variables
which each take two distinct values with positive probability can be defined on a
probability space consisting of four points if and only if the space has the uniform
probability measure on the four points. If it does, then, of course, the three random
variables must be uniform.

Although finding the element g used in the proof of Theorem 2 involves a finite
procedure, it is difficult for large M and r. Consequently, using the proof for the
generation of pseudorandom numbers is difficult. One fact worth noting is that it
is only necessary to go through the procedure once for any M and r; several
sequences can be drawn for the same g.
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