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LIMIT THEOREMS WITHOUT MOMENT HYPOTHESES
FOR SUMS OF INDEPENDENT RANDOM VARIABLES!

By R.J. ToMKINS
University-of Regina

Let {S,} be the partial sums of a sequence of independent random
variables and let {a,} be a nondecreasing, divergent real sequence. Necessary
and sufficient conditions for lim sup,_,.S,/a, < oo as. are given under mild
conditions on {S,}; these conditions do not involve the existence of any
moments. These results are employed to widen the scope of the law of the
iterated logarithm.

1. Introduction. Let (2, ¥, P) be a probability space and let X, X,, - - - de-
note a sequence of independent random variables (rv). Assume that {a,} is a real
sequence satisfying

(1) 0<a1<a2<""rw.

For each n > 1, let §, = 27_,X. This article will investigate circumstances under
which

2) lim sup, _, .. S,/a, < oo almost surely (a.s.).

Conditions will also be given under which the (a.s. constant) value of the lim sup in
(2) can be ascertained. Necessary and sufficient conditions for (2) will be developed
in Section 3 under rather modest hypotheses which do not include any assumptions
about the existence of moments of any order.

This problem has been tackled by a number of authors. The case in which the
X,’s have a common distribution has been considered from various perspectives by
Chow and Robbins (1961), Feller (1968), Heyde (1969), Baum, Katz and Stratton
(1971), Kesten (1972), Klass (1976, 1977), and Klass and Teicher (1977). Some
results of Petrov (1972, 1974), Kruglov (1974), Teicher (1975), Martikainen and
Petrov (1977), Volodin and Nagaev (1977) and Volodin (1977) deal with random
variables which need not be identically distributed.

The importance of the main results of this paper, especially Theorem 3, is
three-fold: (a) conditions tantamount to (2) are established with no assumptions
concerning either existence of moments or properties of |S,| or |S, — S,,|; (b) the
results apply to all sequences obeying (1), no matter how rapid or pathological the
rate of divergence; and (c) information about the precise value in (2) is obtained.
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It will prove convenient to define S, = a, = n, = 0. —, will denote convergence
in probability, and “i.0.” will abbreviate “infinitely often”. The infimum of the
empty set is co.

2. Admissible sequences and some useful lemmas. Let {q,} satisfy (I). An
increasing sequence {n,} of positive integers will be called admissible if and only if
(iff)

3) a,, >ca, forsome c¢>1 andall k> 1

Clearly, admissible sequences exist for every ¢ > 1, and every subsequence of an
admissible sequence is itself admissible.

Let {a,} and {S,} be as given in Section 1. The first lemma is based on a
technique used by Hartman (1941).

LeMMA 1. Suppose {n,} satisfies (3) and that the series
) 1PLS, >ra,]

diverges for some r. Let M > 1 be any number. Then one may assume that (3) holds
with ¢ > M and also that (4) diverges.

Proor. For each k > 1, define j,;, = n,,_, and j,, = n,,. From the hypothe-
ses, Ek,,P[ > ra; | = oo for either i = 1 or i = 2, or both. But (3) implies that
4, >c¢ a m elther case. Hence, if p is an integer satisfying ¢ > M, then p

repetitions of this procedure will yield an admissible sequence satisfying (3) with ¢*’
in lieu of ¢.

The next lemma is a reformulation of one given by Petrov (1972).

LEmMMA 2. If, for some b > 0 and X > 1, and for all m < j <n, P[S, — §; > —
b] > A7, then P[max,,;,S; > x] < AP[S, > x — b] for all real x.

3. The main results. Throughout this section, X, X,, - - - is a sequence of
independent rv, S, = 27_,X; and {a,} satisfies (1). Define the constants

a = inf{r|SF.,P[S, > ra,] < oo for all admissible {r,} };

= inf{ |22, P[S,, — S, _, >ra, ] < oo for all admissible {r,} };

and
8 =lim sup,_, .S,/ a,.
Note that any of the above could be * co.

THEOREM 1. (i) If B < oo and if, for some € > 0,
(5) [S > ea, ] < oo for all admissible {n,},

then a < B + e.
(i) If a < oo then a < B.
(iii) If a < o0 and lim inf, . S,/a, > — oo a.s. then lim sup,_, . S,/a, > a as.
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ProoF. Note, first, that

(6) P[S, >ra, | <P[S, — S,  >(r—¢a,]+P[S, > ea, |.

If B < oo and (5) holds, then choose r so large that r — ¢ > B. It is clear from (6)
thata < B + .

If a = — co then both (ii) and (iii) are obvious, so assume |a| < co. Let
r<a,e>0and M > max(l, ae~"). Then Lemma 1 ensures the existence of an
admissible sequence {n,} such that (3) holds for some ¢ > M and the series (4)
diverges. But X\ P[S,  >ea,] < ZP.(P[S,  >eca, 1< oo since e > a.
Therefore, in view of (6), 2e-1PlS, — S, > - €)a,] = oo. Hence r — e < B
for all ¢ > 0, proving (ii).

Now letn = lim inf,_, _S,/a, > — o0.If n = + oo then (iii) is trivial, so assume
[n| < 0. Let M = max(1, ae ™', |n|e ~'). By the argument above there is an admis-
sible sequence {n,} obeying (3) with ¢ > M and Z7_,P[S, — S, > (r - e)a, ]
= o0. By the Borel 0-1 law,

r — & < lim sup, (S, — S,_)/a,
< lim sup, .S, /a, — liminf, S, /a, as.

So lim sup, .S, /a, >r — ¢+ min(0,n)/c > r — 2e as. for each r < a and ¢
> 0, so (iii) holds. []

REMARKS. 1. Suppose P[X, = *+ k*¥] = A/k* for k > 1, where A =
(227.1k7»7 ' and X, =0 for n > 1; then S, = X, for n > 1. Let a, = n""".
Then, for any » >0 and n >r, P[S, >ra,] > P[S, >n"] = P[X, >n"] =
AZZ k2> A(n+ )7 so =®_,P[S, >ra,] = o for each r > 0. But the
sequence {1, 2, 3, - - - } is admissible so « = c0. But S, — S,, = 0 whenever n > m
> 1 s0 B = 0. Therefore, part (ii) above may fail when @ = oo and, moreover, the
assumption (5) cannot be dropped in part (i).

2. Here is an example to show that equality need not hold in the conclusion of
(ii). For n > 1, define X,,_, = — n, X,, = n,a, = n. Then S, = 0 when 7 is even
and S, = — (n + 1)/2 when n is odd; it is easy to see that « = 0. Now consider
the admissible sequence {7, } defined by n, = 2* or 2* — 1 accordingly as k is even
or odd. But then, if k is odd, S,  — S, = Xx=2“"'=gq, /4 whence it is
evident that B > ;. (In fact, B =1 in this example.)

3. It is noteworthy in connection with (iii) that, as Klass and Teicher (1977) have
shown, it is possible to have § = 1 and yet lim inf,  _S,/a, = — o as., even
when X, X,, - - - are identically distributed with E|X,| < 0.

The following theorem uncovers additional relationships among «, 8 and & under
certain modest hypotheses.

THEOREM 2. (i) Suppose
7 im,, ., inf,cnP[ S, — S,, > —xa,] > 0forall x > 0.
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Then B > 0 and lim sup,_, .S,/ a, < min(a, B) a.s.
(i) Suppose
®) lim inf,,_, P[S,, > —xa,] > 0forall x > 0.
Then o > 0 and lim sup,_, .. S,/a, > B a.s. Indeed, if r > & then the series
%) Ef_lP[ -8,  >ra ]

Jk—1

m—o0

converges for every integral sequence 0 = j, <j; < - - - .

Proor. If (7) holds then lim inf,_, P[S,
tegral sequence {n,} and every x > 0,s0 8 > 0.
To continue the proof of (i), let ¢ > 0 and ¢ > 1. Define, for k > 1, n, =

, > — xa,] > 0 for every in-

"k

min{n|a, > ca, }, m.=n — 1and U, = max, c,.,S, Notethata, <ca, .
Moreover, by v1rtue of (7), positive integers A = )\(s) and N = N(e) exist such that
(10) AP[S, - S, > —ea,] > lforalln >m > N.

There is no loss of generality in assuming that min(a, 8) < c0. Suppose first that
a < . In view of Theorem 1 (ii) it will suffice to show that § < a a.s. If a > 0, let
¢ =(a+3¢)/(a+ 2¢). If a <O, let c =2 and assume without loss of generality
that e < — a/2. Then, by (10) and Lemma 2,

P[ U, > (a + 2¢)a,, | <AP[S,, > (a+ €)a, | = AP,

But, fork > 2,a, >a, >ca >ca, ,
+1 e M —1 "y
sible. Consequently,

P1P[ U > (a + 20)a, | SAZZ Py + AZ52 Py < o0

by definition of a; hence P[U, > (a + 2¢)a,, i.0] =0 by the Borel-Cantelli
lemma. But then, if « > 0,

0<P[S,/a,> (a+ 3¢)io.]
< P[U, > c(a + 2¢)a,_ i0.] < P[U;, > (a + 2¢)a, i0.] =0,

whereas 0 < P[S,/a, > (a + 2¢)i.0.] < P[U, > (a + 2e)a,, 10]=0if a <O0. So
8 < a + 3¢ for every ¢ > 0 in either case, so § < a as required.

It remains to show that § < 8 when 0 < 8 < oo but a = oo; there is clearly no
harm in assuming § > 0. A technique similar to one of Martikainen and Petrov
(1977) will be employed.

First, define ¢ = (8 + 3¢)/(B + 2¢). Then choose an integer s > 2 so large that
(1+ &1 =c**")> 1 Fixany 1 <j <s. For k > 1, define ¥, = U,,,,, W, =
Vi = Smu_iey P = Missp and Qp = P[W; > (B + 2¢e)a, ]. Note that {p,} is

so both {m,;_,} and {m,;} are admis-

admissible; indeed, a, > a, >c* " la, > c¢*"'a, so that
s 45— 1 (k—1)s+j Pr-1
(11) a, <c~C7D%*=Dg foreachi < k.
( k

Furthermore, (10) and Lemma 2 imply that Q, <AP[S, — S, > (B + €)aq,]

Pr—1

By the definition of B8, Z3.,0, < o, so P[W, > (B + Ze)ak i.0.] = 0. But this
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fact, together with (11) and a method of Kruglov (1974), leads to
lim Supk—>oozlx?=l VV;'/apk < lim supk—mozl,?=](ﬁ + 2e)apl/apk
< (B + 2¢)lim sup,_, S*_,c~ ¢~ D&=DH

=(B+2)1 =) < (B +2)(1 + e) as.
But Sk W, =35V, -Z2.\S,, = Vi +ZLI(V, = S) = S, > Vi — S,
since V; > S,. Therefore, lim sup,_, .V / a, <(B+2)1+e¢)as. Consequently,
Aj = lim supk—»oomaxnk“j_,<n<n,,_,+j(Sn/an)

1
Vi

< lim sup,_, ,cV,/a, <c(B+2e)(1+¢€)=(B+3e)(l +¢)as.

Therefore 8§ < max, .4, < (B + 3e)(1 + ¢) for every ¢ > 0,506 < B, conclud-
ing the proof of (i).

Now prove (ii). Let ¢ > 0. By (8), positive numbers M = M(e) and v = v(e) exist
such that

< lim supy_, .4,

P[S, > —ea,] > vforeverym > M.

Clearly a > 0, because the summands in the series (4) are each bounded below by
v(—r) > 0 when r < 0.

Now suppose the series (9) diverges for some r and some sequence { i }; assume
J1 > M without loss of generality. For k > 1, define the events

Ak =[S - Sjk—l > ra]k] andBk =[S-'ik—l > —etzjk].

3
Note that P(B,) > P[S;, > —ea, ] > 0. Therefore, by Lemma 1 of Baum, Katz
and Stratton (1971), P[4, B, i.0.] > v > 0. Hence, P[S;, > (r — &)g; i.0.] > v. By
Kolmogorov’s 0-1 law, lim sup, .S, /4, > r — e as., which, in turn, implies
8§ > r — e forevery € > 0, so § > r as required.
Finally, note that § > B trivially if 8 = — oo. If 8 > — oo then the preceding

work shows that r < 8 whenever r < 8,508 > 8. []

REMARKS. 1. The conditions (7) and (8) are not very stringent. They both hold,
for example, if S,/a, —>,0 or if each X, is symmetrically distributed. More
generally, (7) and (8) hold if either

(12) lim inf,_,  miny,.,P[S, — S, > —xa,] > 0 for every x > 0,
or
(13) lim inf, ,  P[|S,| < xa,] > p for some p > 1 and every x > 0.
Condition (12) was introduced by Martikainen and Petrov (1977), whereas (13) was
used by Petrov (1972); an argument on page 1128 of the latter article shows that
(13) implies (7) and (8). .

2. The proof of (i) in the case where a < oo is clearly motivated by
Kolmogorov’s renowned method as modified by Hartman (1941). Part (i) is a
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slight generalization of results of Teicher (1975), Volodin (1977), and Martikainen

and Petrov (1977).
The major theorem of this paper follows. It brings Theorems 1 and 2 together to
produce necessary and sufficient conditions for (2) and yields the value of é.

THEOREM 3. Suppose (7) and (8) both hold. Then
(@ 0 < limsup,_ ., S,/a, =B <aas.;

(i) lim sup, . S,/a, = B = a if a < o0;

(iii) a < oo iff B < oo and (5) holds for some ¢ > 0.

PrOOF. (i) and (ii) are immediate from Theorem 2 and Theorem 1 (ii). Further-
more, if @ < oo then 8 < oo by part (ii) and (5) holds for any & > a; therefore, (iii)
is true in light of Theorem 1 (i). []

ReEMARKS. 1. Theorem 3 (i) is analogous to Theorem 4 of Martikainen and
Petrov (1977). The latter result, instead of using admissible sequences, deals with
sequences of the form {7}, where i, is the largest integer such that g, < cke> 1.
Such sequences need not be admissible, but are admissible in the case where
a,/a,_,— 1.

2. Petrov (1974) and Martikainen and Petrov (1977) have shown that it may be
sufficient in some cases to consider only subscript sequences of the form i, = [c¥],
the integral part of c¥, where ¢ > 1, rather than admissible sequences. Their results
apply in the special case where lim _, .a, / a;  exists and is finite for every ¢ > 1;
this condition was introduced by Baum, Katz and Stratton (1971). While such a
sequence {i } need not be admissible, it must satisfy a,/a,_, — 1.

The next theorem generalizes a result of Petrov (1972) and, therefore, some of
Petrov’s earlier results.

THEOREM 4. Suppose (7) and (8) hold Define the constant
y = inf{rIE _(loga, )" " < oo for all admissible {nk}}.

Let &, v and n satisfy £ > v, v <y and n > 0.
(i) Suppose that, for all x € (§, & + 0),

(14) lim sup,_, . (log a,,)('_“)"zP[ S, > xa,] < oo foralle > 0.
Then lim sup,,_, . S,/a, < £as.and y < 1.
(i) If, in addition,
(15) lim inf, , ,(log a,)" ***'P[ S, > xa,] > 0
for all ¢ > 0 and all x € (v — m, v), then lim sup,,_, S, /a, > v as.
ProOF. Note that y < 1, since a, > ¢*~a, for k > 1, by (3).
By dint of Theorem 3 (ii), it will sufflce in (i) to show that a« < o0 and a < & To
this end, let £ < x < £ + 7. Pick &€ > 0 so that (1 — &)x? > y2 By (14), P[S, >

xa,] = O((log a,)™"~ 9%) for every admissible sequence {n,}. Consequently, o <
) and x > ain hght of the definition of y, so £ > a as required.
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For part (i), let » — n < x <» and select ¢ > 0 so that y = (1 + g)x* < y*
Then there is an admissible sequence {n,} such that Z¢_,(log a, )™ = co. With
the aid of (15), this implies 2, P[S, > xa,] = o0. So x <a; i€, » <a < oo.
Part (ii) now follows from Theorem 3 (ii). []

ReEMARK. Theorem 1 of Petrov (1972) assumes that (13) holds, ¢ =» =
l,a,/a,_;—1(soy = 1) and, in part (i), that (14) holds with |S,| in place of S,.

An admissible sequence {n,} which also obeys
(16) lim sup,_,.a, /a, < o
will be called a controlled admissible sequence. 1t is readily verified that such
sequences exist iff
17) lim sup,_, a,/a,_, < .

Define the (possibly infinite) constants a’ and 8’ by using the phrase “controlled
admissible” instead of “admissible” in the definitions of a and B respectively.
Under (17), it can be shown directly from the definitions that «’ = « and 8’ = B.
So, if (17) holds, Theorem 3 remains valid with a’ and 8’ in place of a and 8
respectively throughout. Therefore, the value of § can be determined by focussing
only on controlled sequences when ( 17) holds. The next result will prove that the
finitude of & is assured if 2¢_,P[S, — S, _, > ra, ] converges for some r and some
controlled admissible sequence {nk}

THEOREM 5.  Suppose (7), (8) and (17) all hold. Then lim sup, _, .S, /a, < oo as.
iff
(18) P P[S, = S, >rea,] <o
for some number ry and some admissible sequence satisfying (16).

Proor. The “only if” part is clear from Theorem 3(i). For the converse,
suppose (18) holds for some r, and some controlled admissible sequence {n;}.
Choose L > lim supy_,,a, /a, . Notice that o > 0 because of (7) and (18). Also,
from (3), a, > ck _ja,,/ for every j < k. So, using (18) and the Borel-Cantelli lemma,

lim sup, .S, /a, =lim supk_,wE'f;'(S - S,9_|)/a,,k
< lim sup,_, o reZhle/ % = ry/ (¢ — 1) as.
For k > 1, define M} = max,, _ _,c,S,. Then, using (10) and Lemma 2,
R, = P[ M-S, >(rp+ é)a”k] < )\(s)P[ -8, > roa,,k]

for every € > 0, so - R, < oo.
Note that § > 0 by Theorem 3(i); there is no loss of generality in assuming that

8 > 0. Consequently,

' 8 < lim sup,_,, M, /a, < Llimsup, . M,/a,

S,._)/a, + Llimsup, S, /a,

< L(ry + €) + Lry/ (¢ — 1) < o0, as desired. 0

< L lim sup,_, (M, —
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It will now be shown that Theorem 4 of Kruglov (1974) and the a.s. stability
criterion of Loéve ((1963), page 252) are consequences of Theorem 5.

COROLLARY 1. Suppose (17) holds. Let {n,} be an admissible sequence satisfying
(16). Then

(19) lim sup,,_, |S, — med(S,)|/a, < © as.
iff, for some ¢ > 0,
(20) ?-1P[IS, — S, — med(S, — S, )| >ea,] < co.
(“med(X)” denotes a median of X).
Moreover,
(21) (S, — med(S,))/a, >0as.asn— o0

iff (20) holds for every € > 0.

ProOF. In view of the symmetrization lemma (see Loéve (1963), page 247), the
summands X, may be assumed to have symmetric distributions. Without loss of
generality, therefore, (7) and (8) hold, and the medians in (19), (20) and (21) may
be ignored. The corollary now follows readily from Theorem 5. []

ReEMARKS. 1. New conditions equivalent to (21), without the assumption (17),
have been presented by Volodin and Nagaev (1977). Their result involves
sequences {i } similar to those of Martikainen and Petrov (1977), rather than
admissible sequences.

2. A result of Steiger (1973) also follows from Theorem 5.

4. On the law of the iterated logarithm. Throughout this section, let {X,} be
“independent rv with E(X,) = 0 and E(X;?) < oo for n > 1. Define S, = 7_,X), 52
= E(S?) and ¢, = (2 log log s,f)%. Assume s, — 00 as n — 0.
Suppose, first, that a, = s,4,, n > 1. Then S,/a, —,0 by Chebychev’s inequality,
so (7) and (8) hold. Moreover, a sequence {#,} is admissible (cf. (3)) provided

(22) lim infy _, s, 2, / (s,,k_lt,,k_l) > 1.

But, in most proofs of laws of the iterated logarithm, it is preferable to deal with
sequences {#,} for which

(23) lim infy s, /s, > 1.

Fortunately, it isn’t hard to show that (23) holds for a sequence {7} if and only if
(22) holds too. The following result is now immediate from Theorem 3.

THEOREM 6. (i) lim sup,_, S, /(s,t,) = B* a.s., where B* is the infimum of those
numbers r for which Z¢_,P[S, — S, > rs,,kt,,k] < oo for every sequence {n}
obeying (23).

(i) If a number r exists such that (A) 2. P[S, >rs,t,]< o for every
sequence {n.} obeying (23), then lim sup,_ . S,/(s,t,) = a* as., where a* is the
infimum of the set of numbers r-for which condition (A) holds.
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REMARK. Weiss (1959) concocted a family of counterexamples for which
lim sup, _, . S,/(s,t,) > 1 a.s., even though the X,’s are symmetric and bounded. It
follows from Weiss’ Lemma 4 that a* < 2 in her examples. In view of Theorem 6,
then, | < a* < 2.

In the final theorem, a strengthened version of Theorem 1 of Tomkins (1972) will
be deduced from Theorem 4.

THEOREM 7. (i) Let {B,} and {c,} be positive real sequences satisfying
B,1o0, ¢} log log B, — 0 as n— o, for all large n, E exp{tB,”'S,} < exp{(s*/2)(1
+ |t|c,/2) whenever |t|c, < 1. Then

1
(24) lim sup,,_, .S,/ (2Bog log B?)? < y* < 1 as.
where y* is the infimum of the set of numbers r satisfying TF_,(log B,,k)_’2 < oo for
every integral sequence {n,} obeying
(25) lim inf, B, /B, > 1

(i) If, in addition, E exp{tB,”'S,} > exp{(t*/2)(1 — tc,)} for all large n and all
0<t<c !, then

1
(26) lim sup, , .S,/ (2Blog log B?)? = v* as.
ProOF. Let a? = 2B2loglog B? and u, = a,/B,. Let x >0and e > 0. If n is
so large that xu,c, < 2¢ then

P[IS,] > xa,] < 2 exp{~ (x*2/2)(1 = xu,6,/2)} < 2(log BY)™ "~

by Lemma 1(i) of Tomkins (1972); therefore, (14) is true and S,/ a, —,0, so (7) and
(8) hold. Note, too, that (3) holds for some ¢ > 1 iff (25) holds, by the same
argument as that preceding Theorem 6. Since 2 log a,/log B — 1, it is clear that
y* = v, where y is the constant defined in Theorem 4. Consequently part (i)
follows from Theorem 4(i), using ¢ = .

Similarly, the assumptions in (ii), with the aid of Lemma 1(ii) of Tomkins (1972),
ensure the applicability of Theorem 4 (i) with » = v. []

ReMARKS. 1. Following Hartman (1941), it is easy to check that y* =1 if
lim sup,,_, B,/ B,_, < . Hence, Theorem 1 of Tomkins (1972), which contains
the additional hypothesis B,/B,_, — 1, is contained in Theorem 7.

2. A similar application of Theorem 4 allows one to eliminate the hypothesis
EX;? = o(s?) in Theorem 1 of Tomkins (1971), provided the conclusions (24) and
(26) respectively, with B, = s, replace (1) and (2) of the paper just cited.

3. Since the hypotheses of Theorem 7 are satisfied for any sequence of normally
distributed rv, Theorem 7 extends Hartman’s theorem (1941) to a wide class of rv.
The same comments apply to the result alluded to in the preceding remark.

4. Marcinkiewicz and Zygmund (1937) discovered, in the Bernoulli case, an
interesting phenomenon, one which, as Feller (1969a) noted, may contradict one’s
intuition: roughly speaking, the faster {s,} diverges, the smaller the value of
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lim sup,,_, .S, /(s,?,) becomes (cf. also Feller (1969b)). In view of Remark 3 above,

this behavior is common to a wide class of rv which obey the central limit theorem.

For example, if the assumptions in Theorem 7 hold with B2 = s?> = n" then

a=B=y=y*=1buty* =0if s? = n""

Acknowledgment. The author extends sincere appreciation to an associate edi-
tor and the referee for helpful and thought-provoking comments.
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