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OPTIMAL STOPPING IN AN URN! '

By WEN-CHEN CHEN AND NORMAN STARR
Carnegie-Mellon University and University of Michigan

An urn contains N objects, labelled with the integers 1,- - - , N. One
object is removed at a time, without replacement. If after n draws the largest
number which has been observed is m,, and the process is terminated, we
receive a payoff f(n, m,). For payoff functions f in a certain class, the optimal
time to stop is with draw

7 =inf{n > 0:m, — n > j,}
where the j, are computable from a simple algorithm, which permits also exact
computation of the value

Vi=E{frpm)}.
We also study the behavior of ¥; when N is large in special cases.

1. Introduction. We consider a problem of optimal stopping for urn sampling,
the general outlines of which may be described in the language of the classical
secretary problem. A company has a single job opening for which there are N
potential applicants. Before recruitment begins these individuals are compared and
ranked with respect to their qualifications. Each of the N candidates will eventually
seek the job, but only one at a time, and in a random order. The company may
terminate the recruitment process at any stage by hiring one of the individuals who
has already sought the position. Given that the resulting payoff is an increasing
function of the rank of the person hired and a decreasing function of the number
of job seekers interviewed, our objective is to describe the recruitment policy for
which the expected payoff is maximized. We remark that our problem is dis-
tinguished from other versions of the secretary problem (for example, [1]) by the
assumption that the absolute rank of each applicant is known, and because a
person who had previously applied and been rejected may be recalled.

We will introduce our notation in the context of an urn formulation. Thus,
consider an urn which contains N > 1 objects which for sampling purposes are
indistinguishable, but which otherwise are labelled in some arbitrary fashion with
the integers 1 through N. We sample the urn by selecting one object at a time,
without replacement. Let x; denote the label on the jth object drawn, so that the
random variables x;,: - -, x, are a random permutation of the integers
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1,- -+, N.Set my =0 and for each 1 < j < N define
m; = max(x,, * -+ -, X;).
We suppose that if the selection process is terminated with draw n, and m, = m,

we will receive a payoff f(n, m). We wish to determine the stopping policy for
which our expected payoff is a maximum.

More formally, let %, denote the trivial o-algebra, let ¥, = F(x,- - -, x),
1 < j < N, and define a finite valued (¥,-measurable) payoff sequence
z, = f(n, m,), 0<n<N.

By a stopping time for the stochastic sequence {z,, %, }3 we mean an integer valued
random variable 7, 0 < 7 < N, for which {r < n} € %,, 0 <n < N. We seek the
stopping time 7, (referred to as optimal for the payoff function f) for which

v, = sup E(z) = E(z;)

where the supremum is taken with respect to all stopping times .
A complete solution to our problem is provided in principle by the method of

backward induction. Let f be given. Set

(1.1) V(N, N) = f(N, N)
and foreachn=N—1,---,1,0 and Vm > n recursively define
(1.2) V(n, m) = max{ f(n, m), y(n, m)}

where for n < N we have let
(13) v(n, m) = sup,,,E(z,|F,) = sup E(z,|m, = n)

L {(m— ) V(n+ L, m)+ SV + 1, m + j))

N-—-n
and adopted the convention that ¥(m + 1, m) = 0. Then
(1.4) 7 = inf{n > 0: V(n, m,) = f(n, m,)}
is optimal for f, and
(1.5) V= E(z,l) = (0, 0).

In the next section we will attempt to determine the solution in a more
transparent and useable form. To accomplish this it will obviously be necessary to
impose conditions on f. The conditions we require employ a function ¢ which may
be described in a simple way as part of a statement of the myopic strategy, with
which we complete this section. .

Let f be given. For 0 < n < N, m > n define the function

(1.6) p(n,m) = E(z,,,|m, ='m)

- Nl— n {(m = mn)f(n+1,m) + tg:nf(n +1,m +j)},

where the convention is f(m + 1, m) = 0. Set ¢(N, N) =0 and for n <N let
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¢(n, m) = f(n, m) — p(n, m); then ¢ is simply the difference between our payoff if
we terminate sampling after n draws, with m, = m, and our conditional expected
payoff if we proceed to make one more draw and then stop. The myopic strategy is
defined by the stopping time

(1.7) o = inf{n > 0:¢(n, m,) > 0}.

It is obvious that y(n, m) > p(n, m) so that

(1.8) V(n, m) = f(n, m) implies ¢(n, m) > 0
and o; < 7.

2. Some results for a given class of payoff functions. In the spirit of our
preface we shall suppose throughout that the payoff function f(n, m) satisfies the
condition

8,: fis decreasing (= nonincreasing) in n
and increasing (= nondecreasing) in m.
We may observe at once that the functions ¥ and vy, defined by (1.1) through (1.3),
inherit these properties of f, in the sense of

THEOREM 2.1. For Vn < m

2.1) A y(n,m+1)>y(n,m) B.V(n,m+1)>V(n m)

and

2.2) A.y(n,m) <y(n—1,m) B.V(n,m) < V(n — 1, m).
Proor. From §, and (1.2) it is obvious that

(23) A= B

in both (2.1) and (2.2).
To prove (2.1), simple algebra on (1.3) yields

P2 (Vin+ L,m+1) — V(n+1,m)},

24) y(n,m+ 1) — y(n,m) = N = n

so that in particular for Vn < N

(2.5) y(n, n + 1) = y(n, n),

proving (2.1) in the case m = n. To prove (2.1) for m > n, notice first that from §,,
Y(N—=2, N—1) = ${(max[f(N —1, N—1), AN, N)] + max[A(N — 1, N),
AN, N)]} < AN —1,N) = y(N — 2, N). Next make the induction assumption
that for given n < N — 2 and Vm > n, A holds. In consequence, from (2.5) we may
assume that A holds for Vm > n. Thus, from (2.4) we have, for m >n — 1,

y(n=1,m+1)— y(n— 1, m) =%§—:’7—$—:{V(n, m + 1) — V(n, m)}, which is
nonnegative by (2.3), completing the induction on A. B is immediate. Moreover, a
similar induction proves (2.2), where now we make use of the fact that by
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definition, for Vm > n,
(N = m){¥(n = 1, m) = y(n, m)} = (m — m){¥(n, m) — V(n + 1, m)}
+Z5H{V(m+ ) = V(n+ L,m+j)} + V(n,m) = y(n — 1, m)
so that
(N =n+D{y(n =1, m) = y(n,m)} > (m — n){V(n,m) — V(n + 1, m)}
+Z5M(V(n,m + j) — V(n + 1, m + j)}.
Another simple property (following from §,) which we shall want to refer to later
is recorded as
THEOREM 2.2. Vn < N
(2.6) ‘ y(n = 1,n—1) > y(n, n).
ProoF. By definition (1.3)
(N=n){y(n—1Ln—-1)—vy(nn)} =2 {V(n,n+j) — V(n + 1, n +j)}
+V(n,n) — y(n — 1,n — 1);

hence (N —n+ D{y(n —1,n—1) = y(n,n)} > X" (V(n,n + j) — V(n +
1, n + j)}, and the theorem follows from (2.2B).

Our principle objective in this section is to further exploit properties of the
dynamic program in order to arrive at a more definite characterization of 7,and V.
To do this, we shall further restrict the class of payoff functions under considera-
tion by imposing two additional conditions on f.

8, : 3 an integer n* = nf, 0<n*<N,
for which
2.7 o(n,n) >0 Vn >n*
(2.8) o(n,n) <0 Vn<n*
§;: ForVm > n

¢(n,m) >0  implies ¢(n—1,m) > 0.

We shall denote by § the class of payoff functions satisfying §,, §,, and 8,, and
assume henceforth that f € §. We note that since p(n, n) > f(n + 1, n + 1), (2.7)
implies
2.9 f(n,n) >f(n+ 1L,n+1), n* <n<N.
There does not seem to be any uninvolved or transparent motivation for
adopting §, or 9,. However, (among others) the following simple examples, for
which f € §, are of sufficient interest to suggest that this class of payoff functions
is not overly restrictive.

ExaMPLE 2.1. Suppose that we receive a reward equal to the largest number
that we draw, but that we incur a cost of ¢ units for each draw that we make. Then
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our payoff g if we stop with n» draws, and m, = m, is
g(n,m)=m— cn c>0,
That §, holds is obvious, and since

_ . _ (N-m(N-m+1)
#lmm) = c 2N —n)

it is simple to verify that §, and 8, hold also. For later reference, adopting the
standard notation x* = max(0, x) and [ y] = the smallest integer > y, we note that

(2.10) n*=[(N+1-2)"]AN.

EXAMPLE 2.2. Suppose that as in the previous example we will receive a reward
m,, but that this reward is discounted by a fixed amount y for each draw that we
make. Thus if we stop with draw n, and m, = m, our payoff is

h(n, m) = y"m 0<y< 1L
For this example

and it is simple to check that # € §; here we have
@ = [HED ]y
The principle result in this section may now be stated. Suppose that f € § is
given. Define for eachn =0,- - - ,Nandk=0,- -+ ,N—n
(212) B, (k) = Zjo s if(n ),
and let n* = n} be defined by §,. For each n > n*, set
A,=f(n,n) and j,=0
and then successively compute the numbers
* Aps s dne—1s* s Az Jr Avs J1s Ao o
by appealing for n < n* to the formulae

1 , .
(2'13) An = _]-v—:—"—z'{.]h+lAn+l + Bn+l(]n+l)}
and
(2.14) J. = smallest integerj > 0 € f(n,n + j) > A,.

Our result is
THEOREM 2.3. Suppose that f € § ; then
(2.15) 7= inf{n > 0:m, — n >j,)
is optimal for f, and
(2.16) V, = A,
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We shall prove the theorem by exploiting the conditions 8, and §,. The proof,
although somewhat involved, is interesting in its own right, for it exposes several
fundamental characteristics of the dynamic program and the optimal stopping
time. We begin with

LemMMA 2.1. Form > n > n*
(2.17) A.y(n,m) =p(n,m) and  B.V(n,m) = f(n, m).
PrROOF. Suppose 4 is true for a given pair (n, m), with n > n*. Then by
definition ¥(n, m) = max{ f(n, m), p(n, m)}, so that
(2.18) A=B
by (2.17). We will prove A by induction. For m > N — 1, y(N — 1, m) = f(N, N)
= p(N — 1, m). Suppose that A holds for given n, n* <n < N — 1, and Vm > n;
then from (2.18) B holds also. Thus for Vm > n — 1
1 —m
y(n—1,m) = N—_n—ﬁ{(m —n+ D)V(n,m) + 2"V (n, m + 1)}
-
" N-n+1
=p(n — 1, m)

{(m = n+ Df(n,m) + X" f(n, m +j)}

and the induction is completed.

As an immediate corollary, we have

o, < n*.

Notice that this property is reflected in our statement of (2.15), since we have there
set j,. = 0.

LeMMA 2.2. For Vn < n*

V(n, n) > f(n, n).

Proor. For n < n*, ¢(n, n) <0 by (2.8); the result is immediate because of

(1.8).

As a corollary to Lemma 2.1B and Lemma 2.2, we have
o >0 if and only if n* > 0.
Parts B and C of the next lemma together imply that the optimal rule is
. =inf{n > 0:m, > k,}
where the k, are a nondecreasing sequence of constants; A asserts that if T >n,
then y(n, m), the expected payoff given that the present maximum is m, = m, does
not depend on m, and is the vital observation in the explicit determination of the k,,
sequence.
LeMMA 2.3. Let n and m > n be given; then
A. V(n, m) > f(n, m) = V(n, m’) = y(n, n), Vn < m’ < m;
(2.19) B. V(n, m) = f(n, m) = V(n, m’) = f(n, m"),Vm’ > m;
C.V(n,m) = f(n,m)=V(n—1,m) = f(n — 1, m).
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Before proceeding with the proof, we remark that the assertions of B and C may
seem obvious for any payoff function satisfying §, only. That B and C do not hold
in this generality is exhibited by an example. Let N = 4 and define f(n, m) by the
following table:

m 0 1 2 3 4

n
0 0

1 0 16 21 25
2 0 20 24
3 0 0
4 0

Then f is decreasing in n and increasing in m, but by direct computation V(1, 2) =
f(1,2) =16, V(2,3) = f(2, 3) = 20, and ¥(1, 3) = 213 > (1, 3) so that neither B
nor C holds. Note that f does not satisfy either §, or §,.

PROOF OF THE LEMMA. Notice first that A and B hold trivially for all » > n* by
Lemma 2.1B. Similarly C holds for n > n*. Now for n = n*, we know that
V(n, m) = f(n, m) by Lemma 2.1B, so that for C to hold at n = n*, we must
establish that for m > n*

(2.20) V(n* — 1, m) = f(n* — 1, m).

But since it follows directly from the definitions of y, p, and Lemma 2.1B that
y(n* — 1, m) = p(n* — 1, m), we have V(n* — 1, m) = max{ f(n* — 1, m), p(n* —
1, m)}. (2.20) now follows since §, implies ¢(n*, m) > 0, so that ¢(n* — 1, m) > 0
by 8,. Thus A, B, and C hold for Vn > n*.

It remains to prove the three statements for » < n*. To do this we employ a
" somewhat nonstandard induction by making an induction assumption (I.A.) that
the statements hold simultaneously at a given »n < n*, and establishing then that
each holds also at n — 1. Thus suppose that A, B, and C hold for some n < n*;
then form >n + 1

Vin—1,m) > f(n — 1, m)

= V(n, m) > f(n, m) by LA. applied to C
=Vn,m-—1)>f(n,m-1) by L.A. applied to B
=V{n,m=Vinm-—1) by L.A. applied to A

=2>yn—-1m=yn-1,m-1) by (2.4),

and the last implication holds for n = m also by (2.5). Thus for given n < n* and
m > n, the L A. implies

V(n—1,m) > f(n — 1,m)
(2.21) =2Vin-1,m)=y(n—-1,m)
=>Vin-1,m=y(n—1,m-—1).
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Moreover, since f(n — 1, m — 1) < f(n — 1, m) by §,, the L A. implies that
V(in—1,m) > f(n— 1, m)
(2.22) =f(n—-1,m<y(n-1,m=y(n—-—1,m-1)
=>Vn-1l,m-1)>f(n—-1,m-—1).

Iterating successively in (2.21) and (2.22) now completes the induction on A and B.
Finally, for C the LA. on n < n* implies that form > n — 1

Vin—1,m)=f(n—1,m)

(2.23) =>Vn-1,m)=f(n—1,m)Vm' >m by B
=y(n —2,m) = p(n — 2, m) by defn.
—V(n—2,m)=max{f(n— 2, m),(n —2,m)}  bydefn.

But since

Vin—1,m)=f(n—1,m)
=¢(n—1,m) >0 by (1.7)
=¢(n—2,m >0 by 8,
it follows from (2.23) that V(n — 1, m) = f(n — 1,m)= V(n — 2, m) = f(n —

2, m), completing the induction for C, and the proof of the lemma.
As a corollary to Lemma 2.1 and Lemma 2.3 we have

m, > n*=1,<n
More importantly, setting
A, = V(n, n), n=0::--,N
we obtain
(2.24) 7, = inf{n > 0: f(n, m,) > A,}

is optimal for f. For by Lemma 2.3A ¥V(n, m) > f(n, m)= A4, > f(n, m), and
conversely, by 8, and (2.1A), we have 4, > f(n, m) = y(n, m) > f(n, m) = V(n, m)
> f(n, m); thus (2.24) defines the same stopping time as (1.4). If we now recall
definition (2.14), viz. .

Jj, = smallest integerj > 03 f(n, n +j) > 4,
we have clearly ’

f(n,m,)) >4, ifandonlyif m, >n+j,

Thus, 7; defined by (2.15) is optimal. Moreover, for n > n*, Lemma 2.1B yields
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J» = 0 and 4, = f(n, n), whereas for n < n* we obtain from Lemma 2.3A

An = V(n, Il) = -]v—_—m

1 o i}
= = (T + 2

-jn-l-l

1
N —

1

N —

n

1

N—n
b

Vin+1,n+j)

{jn+lAn+l + Bn+l(jn+l)}

f(n+1,n +j)}

verifying (2.13). Recalling (1.5) completes the proof of Theorem 2.1.
Table 1 below gives the values of j, for the payoff sequence of Example 2.1;

namely

g(n,m) =m, —cn

n (ShayV(n + Ln+j) + ZX57 \V(n+1,n+ )}

459

where we have let ¢ = 10 and N = 100. For this case the value of n* (defined by
(2.10)) is 81. For convenience, we include a list of # + j, the least value of m, for
which we would stop with draw n.

More generally, concerning the constants 4, and j, we can observe that for
arbitrary f € §

(2.25) Vi=Ag> A, > >4y
TABLE 1.
Values of j, when N = 10 and the payoff sequence is defined by Exgmple 2.1, with ¢ = 10.
n Jn n+j, noJy ntJp noJy n+, noj, n+J
0 57 57 21 41 61 42 25 67 63 11 74
1 56 57 22 40 62 443 24 67 64 10 74
2 55 57 23 39 62 4 24 68 65 10 75
3 54 57 24 38 62 45 23 68 6 9 75
4 53 57 25 38 63 46 22 68 67 8 75
5 53 58 26 37 63 47 22 69 68 8 76
6 52 58 27 36 63 43 21 69 69 7 76
7 51 58 28 36 64 49 20 69 7 7 77
8 50 58 29 35 64 50 20 70 7m1 6 77
9 50 59 30 34 64 51 19 70 72 5 77
10 49 59 31 33 64 52 18 70 73 5 78
11 48 59 32 32 o4 53 18 71 74 4 78
12 47 59 33 32 65 54 17 T 75 4 079
13 47 60 34 31 65 55 16 71 76 3 79
14 46 60 35 30 65 56 16 72 77 3 80
15 45 60 36 29 65 57 15 72 78 2 80
16 4 60 37 29 66 58 14 72 79 2 81
17 4 61 38 28 66 59 14 73 80 1 81
18 43 61 39 27 66 60 13 73 n*=81 O 81
19 42 61 40 27 67 61 12 73
20 41 61 41 26 67 62 12 74

V, = Ay = 56.05631
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and for Vn < N

(226) Jn Sp+r t 1

(2.25) follows since 4,_, > A, by Lemma 2.2 and Theorem 2.2 for n < n* and
because 4,._, = V(n* — 1, n* — 1) > f(n*, n*) = 4, by Lemma 2.1B. (2.26) may
be proved by contradiction. Suppose that

(2.27) 3k >2  suchthat j, =j,,, + k.

By (2.15) we know that (n, n + j, — 1) is a continuation state (C.S.). But (n, n + j,
~DaCS=(m+1n+j,—1)aCsS by Lemma 23C=>(n+ 1,n+j,,, + 1
+(k—-2)aCs by Q27)=(n+ 1,n+1+j,,,) a CS. by Lemma 2.3B, a
conttadiction!

3. Asymptotic results. In this section we consider again the payoff function g
of Example 2.1. Our objective will be to estimate the value V, when N is large.
Thus, suppose that the payoff sequence is defined forn = 0, - - - , N by

3.1) g(n,m,) = m, — cn,

where ¢ > 0 is given. It is clear that if we fix ¢ and let N — oo, then Vg ~ N. thus
we are led to approximate ¥, when both N and c¢ are large. Formally, we let
N — o and ¢ — o in such a manner that

3.2) ¢/N->a,

where a > 0 is fixed. We will obtain the limiting value of ¥,/N and then argue
that the myopic strategy has an expected payoff which is asymptotic with V-

THEOREM 3.1. Let g be defined by (3.1); then where limit is understood in the
 sense of (3.2), we have

(33) lim V,/N = (1 - 2a2)".

For proof we will need to appeal to

LemMA 3.1. Let g be defined by (3.1) and {j,}} by (2.14); then for ¥n < N
(34) Jn+1 SJn S Jpsr + L.

PROOF OF THE LEMMA. -Consider an urn containing N objects, and for the
moment let V(n, m) defined by (1.2) be denoted by V¥(n, m) to make the

dependence on N explicit. Clearly, for N =1,2,--- andn <m < N

3.5) V¥(n, m) < VN*(n, m).

Moreover, for givenn =0, 1,- - - | N — 1, it is easily seen that

(3-6) V¥(n+ L,n+ )=V nn)+1-c ‘
by simply imagining that the objects numbered n + 2, - - - , N remaining in the
urn after state (n + 1, n + 1) is reached are relabeled n + 1, - - , N — 1, respec-

tively. Thus, recalling (for an urn with N balls) that 4, = V(n, n) we have from
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(3.5)and 36)forn=0,--- ,N—1

3.7 A, <A4,+1-c.

Moreover, by (2.14)

(3.8) A >egn+Ln+j,+)=n+j,+1—cn+1)
and

3.9 A, < g(n,n+j,)=n+j,— cn.

Combining (3.7), (3.8), and (3.9) gives j, >j,+; — 1, which is equivalent to the
left-hand inequality in (3.4). The right-hand inequality is simply a restatement of
(2.26).

We remark that the relationship (3.4) does not hold for all f € §; indeed, we
have been able to invent specifications of f for which j, and j,,, differ by as much

as N — 3.
Returning now to the proof of the theorem, observe that with g defined by (3.1)

we have from (2.10)
(3.10) n*/N—>(1-2a)*
under the limiting operation (3.2); indeed for a >3, n* — 0, so that ¥, —0. The
proof that ¥,/ N — 0 when « =3 depends on the manner in which ¢/N — a, and
we omit the details.

The interesting case is @ < 3. From (3.10) n* — oo for a <3, so that ¥, = 4, is
defined by (2.13). That is

| .
(3.11) Ve, = 4o = 7 (/i1 + B,()}
where now by (2.12)
B,,(k) = 2jv-n+k(j - cn)

_NN+1) (n+k-1)(n+k
2 2
so that in particular

—c¢(N—-n—-k+1),

(6.12) By =YD A _

By (2.14) 4, < g(1, 1 + j;) = 1 + j; — ¢, so that from (3.11) and (3.12) we have
1 (/i(1+ ) N(N +1) _

N { 3 + 3 cN}.

Accordingly, since by (3.4) and (2.14) j, < j, < 1 + 4, we have

Ao+ 1)(A4y+ 2
(3.13) Ao<%{( o )2( 0 )+N(N2+ l)—cN}.
Moreover, a similar argument usihg (3.11), (2.14) and the right-hand inequality of

(3.4) yields
(3.19) Ay >

Ay <

%{ (4, — 1)2(A0— 2) + N(N2+ ) CN}.
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Call A = lim sup A,/ N and A = lim inf 4,/ N; then from (3.13) and (3.14), A% + 1
—2a < 27 and 2A% + 1 — 2a > 24, yielding A < 1 —2a? and A > 1 — 2a2.
Theorem 3.1 is now proved.

In Table 2 below we present the values of ¥, /N for several choices of N and
a =c/N. The entry labeled N = oo corresponds to the quantity defined in (3.3).

TABLE 2.
Values of V,/ N for several choices of N anda =c/N.
a 0.05 0.10 0.20 0.40

N

10 0.7693054 0.6318649 0.4367301 0.1611111
20 0.7263049 0.5918319 0.4020225 0.1333360
40 0.7049675 0.5722625 0.3846906 0.1194465
50 0.7006958 0.5683633 0.3812674 0.1166686
100 0.6922140 0.5605631 0.3743904 0.1111131
250 0.6871415 0.5558941 0.3702808 0.1077874
500 0.6854550 0.5543393 0.3689129 0.1066821
1000 0.6846138 0.5535229 0.3682299 0.1061324
co* 0.6837723 0.5527865 0.3675445 0.1055729

*quantity defined in (3.3).

THEOREM 3.2. Let g be defined by (3.1), let o, be the myopic stopping time (1.7),
and call the value of o,

V; = Eg(o,, mo‘);
then
. , 1
lim ¥}/N = (1 - 2a2)"
where the limiting operation continues to be defined by (3.2).

PROOF. Again we consider only the interesting case a <3. From (1.7) and
Example 2.1

o, = inf{n > 0: m, > al},

where forn=1,-:--,N

N=

al = N+%—-[2(N— n) +%] .
We have then

Vxl = E(mo, - og) = E;I”—IE(mn - cnlog = n)P(Ug = n) .

=(N+a,”_c)(N—a,"'+1)_"2]':,-2(N—2a,f"_cn)(N—a,f"+1)

2 N

a¥, — (-1

XH’;-Z( N—i+2 )=2’,:'_,b,fv,say.
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Now, for each fixed n

N
HmN»w‘l"fv = 2a3(1 = (a/2)? - na)(1 - 2a3)"”",

and moreover, the sequence {5 /N}Y can be shown to be uniformly bounded
below. Thus from Fatou’s lemma

lim inf V}/N = lim inf 2)_,6Y/N > =% lim inf 5¥ /N
= 32 203(1 = (a/2)* = na)(1 = 2a3)"""
=] - Za%.

Thus, lim inf ¥//N > 1 — 2a7, and by Theorem 3.1

.. , . , . _ 1

lim inf V;/N < lim sup V;/N < lim sup V,/N =1 — 2az,

completing the proof.

ReMARKs. 1. Consider again Example 2.2; that is, suppose the payoff sequence
is given by

h(n, m,) = y"m,, n=0,---,N;0O<y<I;
then
1
) 1-(1- 9?2
(3.15) lim V,,/N =_(—Y_—)—’

where the limiting operation is again defined by (3.2).

2. Not surprisingly, the asymptotic results (3.3) and (3.15) both coincide with
those results which would be obtained if the urn were sampled with replacement,
under which assumption we are in the monotone case. For example, if sampling is
with replacement, and 4 defines the payoff sequence, then it is optimal to stop at
time

t =inf{n > 0:m, > B}

where
B=N/y+i-((N/y+1) - N + 1))%,

and the value is

YN+B) (N—-B+1)
2 N-vyB+vy’

I73 = Eg(t,m,) =

It then follows that as N — o0
1-(1-v)
” .
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