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A MARTINGALE APPROACH TO THE STUDY OF OCCURRENCE OF
SEQUENCE PATTERNS IN REPEATED EXPERIMENTS!

By SHUO-YEN ROBERT L1

University of Illinois at Chicago

We apply the concept of stopping times of martingales to problems in
classical probability theory regarding the occurrence of sequence patterns in
repeated experiments. For every finite collection of sequences of possible out-
comes, we compute the expected waiting time till one of them is observed in a
run of experiments. Also we compute the probability for each sequence to be the
first to appear. The main result, with a transparent proof, is a generalization of
some well-known facts on Bernoulli process including formulas of Feller and the
“leading number” algorithm of Conway.

1. Outline and background. This paper introduces a martingale approach for studying
the occurrence of sequence patterns in repeated experiments. The purpose is to unify some
well-known results by a simple general theorem with a transparent proof.

Consider an experiment with only countably many outcomes. Let the experiment be
performed repeatedly. Given a collection of n finite sequences of possible outcomes, we
compute the expected waiting time till one of the sequences is observed in a run of experiments.
Also we compute the probability for each sequence to be the first to appear. Theorem 3.1, the
main result, gives a system of n + 1 linear equations on these n + 1 quantities (the expected
waiting time plus one probability for each competing sequence). Each coefficient in this system
describes the overlapping between two sequences and can easily be calculated. Theorem 3.3
computes the probability of tie in a certain case.

Our main machinery of computation is Doob’s fundamental theorem on stopping times of
martingales. Theorem 3.1 generalizes some formulas in [6], an algorithm in [4], and some
theorems in [2], which are discussed below.

It is a classical problem in probability theory to study occurrence of patterns in the Bernoulli
process. In the book of Feller [6], quite a few sections are devoted to the discussion on
randomness and recurrent patterns connected with repeated trials. Some of the results are as
follows. In the Bernoulli process with the probability p (= 1 — ¢) of success on each trial, the
probability that a run of « consecutive successes occurs before a run of g failures is p* (1 —

99/( p“ '+ ¢#7"). The expected waiting time until either run occurs is (1 — p*)(1 — B)/( p
+ pq — p°q®). Moreover, the expected waiting time for the pattern SSFFSS is p ¢~ + q°
+r

In the symmetric Bernoulli process the expected waiting time for SSFFSS is 70, whereas
the expected waiting time for a success run of length six is 126. This shows that, contrary to
intuition, there is an essential difference in coin tossing between head runs and other patterns
of the same length. Another interesting phenomenon occurs in the following coin-flip game
that was first introduced in literature by Penney [8]. Given two sequence patterns of heads and
tails, a coin is tossed: repeatedly until one of the patterns appears as a run; that pattern wins.
If the patterns are HTHT and THTT, then the odds are 9 to 5 in favor of the former, though
it has expected waiting time 20 whereas the latter has only 18.

An algorithm for computing the odds of winning for the competing-patterns is discovered
by Conway and described by Gardner [4]. Conway’s procedure is to calculate some binary
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numbers that he called leading numbers (see Section 4). One of the facts that can be deduced
from this algorithm is: given a sequence of length at least three, there always exists another
sequence of the same length that beats the given sequence more than half of the time. Chen
and Zame [1] has a proof of this fact.

The first proof of the Conway algorithm is by Collings [3], who extends the algorithm from
the coin-flip game to the game played with a balanced k-sided die instead of a coin. Wendel
[10] has a generalization of the Conway algorithm to the game with n equal-lengthed competing
patterns of possible outcomes of an arbitrary die.

Actually the concept of leading numbers is implicitly contained in the formula (8.7) on
page 328 of [6]. Sections 13.7 and 13.8 of [6] introduce an alternative way of computing the
expected waiting time and probabilities of sequence patterns, i.e., by computing their gener-
ating functions. Results from this approach, though, are usually in relatively complicated
forms, but reveal more information than just the expected waiting time and probabilities of
winning. In the unpublished manuscript [9] Roberts solves the game with n competing patterns
of outcomes of a balanced k-sided die in terms of generating functions. Recently Guibas and
Odlyzko [7] rediscover this solution from a combinatorial method and generalize it to an
arbitrary die.

2. Motivation and the martingale approach. Throughout the article we employ the
following notation. Let Z be an arbitrary but fixed discrete random variable. Let = be the set
of possible values of Z. Let Z1, Zs, - - - be a sequence of independent, identically distributed
random variables having the same distribution as Z.

If B is a finite sequence over X, we shall denote by Np the waiting time until B occurs as
a run in the process Zi, Zs, - - - . Clearly, Np is a stopping time of the process. We also consider
a more general situation when a sequence is already given at the beginning of the process: Let
A = (ai, az, - -+, an) be a sequence over X and assume that B is not a connected subsequence
of (a1, az, -+, Gm-1). Define

(2.1)  Nap = min{k| B is a connected subsequence of (a1, -+, @m, Z1, +--, Zx)}.

Again N4p is a stopping time since it means the waiting time for B, given A to start with.

ExampLE 2.1. Let a die, which shows x, y, and z with respective probabilities %, %3, and
Y, be rolled repeatedly. Let B be the sequence (x, z, x). We want to compute ENg.

Imagine that a gambler bets 1 dollar on the sequence B according to the following rules of
fair odds. At the first roll, if x appears, he receives 2 dollars (including his bet) and must
parlay the 2 dollars on the occurrence of z at the second roll. In case he wins again, he receives
12 dollars and must parlay the whole amount of 12 dollars on the occurrence of x at the third
roll. If he wins three times in a row, he receives the total amount of 24 dollars and the game
is over.

Now suppose that, before each roll, a new gambler joins the game and starts betting 1
dollar on the same B sequence. Say the rolls turn out to be (y, x, x, z, y, X, x, z, x). Gamblers
1, 2, 3,4, 5, 6, and 8 lose at the first, third, fifth, fourth, fifth, seventh and eighth rolls,
respectively. At the ninth roll the occurrence of the B sequence ends the game and Gambler
7 receives 24 dollars. The only other winner is Gambler 9, who receives 2 dollars. In general,
at the end of the game, the last gambler should receive 2 dollars and the third last gambler
should receive 24 dollars. Thus, however the rolls turn out, the receipts of all the gamblers in
the game total up to 26 dollars. So their net gain is 26 — Np. Since the odds are fair, the
expected net gain should be 0. Therefore ENp = 26.

Now let 4 = (, x, x, z) be another sequence. We want to compute EN4p. Suppose that the
first four rolls yield the sequence 4. Right before the fifth gambler joins the game, the total
fortune of the gamblers amounts to 0 + 0 + 12 + 0 dollars. The total net gain of all the
gamblers at the subsequent rolls will be 26 — Nap — 12. Again, since the odds are fair, we find
that ENp = 14.

DEeFINITION 2.2. Let A = (a1, az, - -+, an) and B = (b1, b, - - -, b,) be two sequences over
2. For every pair (i, j) of integers, write
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2.2) 8;=P(Z=b)" if lsi=sm1l<j<n, and a=b
=0 otherwise.

Then define

2.3) A*B = 8110822+« Smm + 821032 «++ Sum—1+ <o+ + Sm1.

ExaMPLE 2.3. Let Z, A, B, be as in Example 2.1. Then B*B = 2.6.2 + 0.0 + 2 = 26 and
A*B=0020+200+26+0=14.
In view of Example 2.1, the following lemma is no surprise.

LeMMA 2.4.  Given a starting sequence A, the expected waiting time for a sequence B is EN ap
= B*B — AxB, provided that B is not a connected subsequence of A. In particular the expected
waiting time of the sequence B (without a starting sequence) is BxB.

In order to obtain a rigorous proof of this lemma, we first quote the usual definition of
martingales.

DEFINITION 2.5. A process Xi, Xz, - - - is called a martingale if, for all &, E | X{e| < oo and
(24) E(Xk+1 | Xk, ey, X1) = Xk.

The following theorem is well known (see, for instance, Theorem 2.2 on page 302 of [3] or
page 214 of [5]).

THEOREM 2.6. (Doob). Let X;, X, - -+ be a martingale and N a stopping time. If E| Xn| <
o and

@2.5) lim infy_.« J’ | X.| dP =0,

{N>k)
then { X1, Xn} is a martingale and hence EXy = EX;.
Proor oF LEMMA 2.4. For every nonnegative integer k, let w, denote the sequence (Z;,
«++, Z;). Thus wy, is a random sequence over Z. Define the random variable.
(2.6) X = Awy*B — k,

where 4wy, is the sequence 4 followed by the sequence w.
Claim that the process { Xxan,;}2=0,1,2,... is a martingale (here ‘A’ stands for minimum). As
before we write A = a1a; - -+ @ and B = b1 b, - -+ b,. For integers k = 0 and j = 1 — m, define

MY =0, if k<j

1 _ ifthe
=P(Z=b1):++ P(Z=brj+1) ’ final k — j + 1 terms in the
sequence Aw; are identical
with by, « -, bk_j+1

@7

=-1, otherwise.
When k < Nagp, we may interprete the quantity M} as the net gain of the jth gambler at the
time k in the game of fair odds described at the end of Example 2.1. This shows that, for every
fixed j, the process { M ;zJ/INAB}k=0‘1,2,.“ is a martingale. Since

(2.8) Yiiem MY = Y MY = Aoy B — (k + m),

for k = Nag, we see that { Xxan,,} is also a martingale. Clearly
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(2.9) XNAB = B*B — NAB.

Since the random variable Z assumes every value in 3 with a positive probability, Nap is
dominated by a geometric random variable. Therefore ENp is finite, and

(2]0) El XNABl < B*B + ENap < oo,

On the set {Nag > k}, we have

.11 | X,| < | Awr*B| + k
=< BxB + Naa.
This implies that
(2.12) limg- j | Xz | dP < limg o f (B*B + Nag) dP = 0.
{Nap>k} (Nap>k)

So, we can apply Theorem 2.6 and obtain that
(2.13) EXw,, = EXo = A+B.

From (2.9), it follows that
(2.19) ENap = B+B — A*B.

This proves the theorem. O

3. Mainresult. Let 4;, A;, - -, A, be sequences over 3. For each i, we want to calculate
the probability that 4; precedes all the remaining n — 1 sequences in a realization of the
process Zi, Zs, -« . Naturally we assume that none of the sequences contain any other as a
connected subsequence except possibly as a tail subsequence. As before we consider the
situation when a sequence 4 is given at the beginning of the process. Write N; for Na4,. Let N
be the minimum among N, - -+, N,. We want to compute P(N = N,) for each j. In case that
Aj contains A; as a tail subsequence, removing A4; from the collection of sequences does not
affect P(N = N,.) for all k # j. So, to avoid ties, we assume in the next theorem that no
sequence contains another, the probability of a tie in a special case being considered in a later
theorem (3.3).

THEOREM 3.1. Let Z, Z:, Z., - -+ be discrete i.i.d. random variables and A, ---, A, be
finite sequences of possible values of Z not containing one another. Let A be another such
sequence not containing any A;. Given the starting sequence A, let p, be the probability that A,
precedes the remaining n — 1 sequences in a realization of the process Z,, Zs, - - - . Then for every
i,

3.1 Y1 p,A*A, = EN + AxA,,

where N is the stopping time when any A, occurs and A,*A; is defined by (2.3). In particular when
A is void, we have, for every i,

32 Y1 p,A*4, = EN.
ProOOF. Write N, for Na4,. Then N is the miminum among Ni, .-+, N,,. We have
(3.3) EN,= EN + E(N,— N)
=EN+ Y1 pE(Ni— N|N = N)).
From Lemma 2.4 we also know that
(34) EN, = A*A, — A*A,

and
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(3.5) E(N, - Nl N= IVJ) = Ai*Ai - Aj*Ai.
Substituting (3.4) and (3.5) in (3.3), we have
(3.6) AixA; — AxA;= EN + 21"‘=1Pj(Ai*Ai — Aj*A;).

=FEN + A*A; — 21"=1 pidi*A;.

This proves the theorem. O
In the martrix form, the equalities (3.1) become

0 1 1 1] [e~n 1
-1 A;x4, A*A, oo AnxA; P1 AxA;
3.7 -1 AxA; AxxA, cee Ap*xA, P2 = | AxA,
-1  Ai*4, As*A, cee An*A, Pn AxA,

Let M denote the coefficient matrix in this system. We can solve for the values of EN and
p; provided that M is nonsingular. An equivalent condition is the nonsingularity of the n by
n submatrix (4;*4; — AxA;). This equivalence is because of the identity

(3.8) EN-det M = det(d;+4; — A*A;),

which is obtained by elementary row operations followed by the application of Cramér’s rule.
When the matrix m is singular, we need a limiting process to compute p;. (Since this paper was
written, Gerber has proved the nonsingularity of the matrix (4;+4; — A*A;). Thus the limiting
process in the next paragraph becomes superfluous.)

Imagine that the distribution of Z is unknown and P(Z = k) is represented by z;" for every
k € 3. Then A4;*4; is a polynomial in the formal variables z.. If i % j, then A;x4; is a
polynomial of higher degree than 4*4; and 4;*4;. So the determinant of the n by n matrix
(44, — A=4;) is a nonzero polynomial in z;, k € 2. Again, by Cramér’s rule, py, - - -, p, are
rational functions in z,. For a random variable Z with known distribution, the probabilities p;
can be obtained from L’Hospital’s rule by differentiating numerator and denominator. This
limiting process is similar to the treatment on page 328 of [6].

COROLLARY 3.2. If A, B are not connected subsequences of each other, then the odds that
the sequence B precedes the sequence A in a realization of the process Z1, Zs, - - - are

(A*A — AxB) : (BxB — B+A).

THEOREM 3.3. Let A = (a1 -+ an) be a sequence over = and B be the subsequence (az « - -
an)- Then the probability that A and B occur at the same time in a realization of the process Zi,
Zz, cee s

B+xB — BxA

39 P(Na = Ng) = .
3-9) Na=No) = A B—BeAT BB

PrOOF. Write w = (Z1, -+, Z;) for all k = 0. As in the proof of Lemma 2.4, we know

(3.10) E[wn,*B — Ng] = 0.
Similarly,
3.11) E[wn,*4A — N] = 0.

The value of wn,*4 — wn,*B is either A+4 — A*B or BxA — BxB according as Ng = N, or
Np # Na. Therefore,

G.12) 0= E[wn,*A — wn,*B]

= (B*4 — B+B)-P(Na = Ng) + (A*A — AxB).P(Na % Ng).
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This implies (3.9). O

4. Conway’s leading-number algorithm. Given two sequences 4 = (a1, « -, an) and B =
(b1, « -, by), define the leading number of A over B as a binary integer €.€,—1 « - € via

€=1 if 1 =i=<min{m, n} and the two sequences
(am—i+1, ey am) and (bly MY bl) are
4.1 identical,

=0 otherwise.

The following theorem was once considered as a somewhat magic algorithm.

THEOREM 4.1. (Conway). Let AB denote the leading number of A over B. Then the odds for
B to precede A in a symmetric Bernoulli process are

(AA — AB) : (BB — BA).

It is easy to see that if the random variable Z assumes just two values with equal
probabilities, then A+ B reduces to 2 times the leading number of 4 over B. Thus Theorem 4.1
is a special case of Corollary 3.2. Incidentally, the quantity A*B can be expressed in terms of
€; as follows. .

@2) A*B=[[+-[[&.P(Z=bs)" + €n-1]-P(Z = bn_1)" + €n_2]
. 'P(Z=bn—2)_1+ "'] +€1]°P(Z= bl)_l.
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