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INFINITE SYSTEMS WITH LOCALLY INTERACTING
COMPONENTS!

BY FRANK SPITZER

Cornell University

In 1963 Glauber analyzed a one dimensional model for magnetism. It was
the first study of the Markovian time evolution of a system with infinitely
many interacting components. In Section 1 it will be discussed in the light of
recent progress in this field. The remaining Sections (2, 3, and 4) form an
introduction to recent joint work with Thomas M. Liggett. They concern new
types of systems where each component takes on a real value which fluctuates
in a way depending linearly on the values of neighboring components. The
ergodic theory for such systems with finitely many components is the subject
of Section 2. The results suggest conjectures for the case of infinitely many
components, stated in Section 3 and proved in the joint paper with T. Liggett
(ibid.). Section 4 introduces another class of time evolutions whose ergodic
behavior may be analyzed by similar methods.

1. The Glauber model. Let Z be the set of integers, and = = {—1, +1} # the space of
configurations. Thus a configuration ¢ € X is a given assignment of spins ¢(x), with values
+1 or —1, to each site x € Z. R. Glauber [5] in his original model required these spins to
“flip” at random times, according to the flip rate
x—1)+o(x+1)

2 ’

-l=sa=<1.

(1.1) c(x,0) =1 — ao(x)

Here « is a fixed parameter, and c(x, 6) dt represents the probability that o(x) changes to
— o(x) in time dt, when the entire configuration is o.

The simplest case is obtained when a = 0. Then there is no interaction between
components, i.e., at each x the spin o;(x) at time ¢ is a +1 valued Markov process whose
ergodic behavior is completely understood. Since the processes o;(x1), 0;(x2) -« - 0:(x5) are
mutually independent for distinct x1, x2, - -+, X, they determine a product process o: €
< whose ergodic theory is also quite transparent: the probability measure of o, converges
to the product measure on = with probability % for +1 at each site. This is independent of
the starting point oo.

There are three basic problems in the analysis of such models:

(i) To show that the flip rate in (1.1) determines a unique Markov process o, i.e., Feller
semigroup T:. Then, if E o denotes the expectation, given that g, = o,

(1.2) T.f(o) = E°f(a:), fe c@),
(1.3) (nTf = J (Tf)(o) p(do)
z ®

for all probability measures p on 3.
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(ii) To find all equilibrium states, i.e., all probability measures u on X such that
pTe=p forall ¢t=0.

By a compactness argument there is always at least one.

(iii) For each equilibrium state p, to find all » such that »T, = u as t — «. (= denotes
weak convergence.) We call the time evolution o; ergodic if there is some p such that »T}
= u for all ».

It should be obvious that the Glauber model is ergodic when a = 0 and has at least two
equilibrium states when a = 1 or « = —1. We shall, however, generalize the model and only
then investigate its ergodicity.

Let us replace Z by an arbitrary countable set S, so that the configuration space
becomes = = {+1, —1} 5. Secondly, in the definition (1.1) of the flip rate, let us replace

o(x—1)+o(x+1)
2

where P(x, y) is an irreducible Markov transition function on S. Then the generalized
Glauber model is usually defined in one of two different ways:

(1.4) {(A) c(x, 6) =1 — ao(x) Po(x), , 0<a<1
(B) clx, o) = e Bow Polx) 0=B<w

The existence problem has been solved [10] for both models. So have the ergodicity
questions (ii), (ili) to a remarkable extent. We shall make a brief detour to discuss the
profound results for (B) without proof, and then return to case (A) for which it is quite
easy to derive the corresponding results by standard mathematical methods.

In the model (1.4) (B) assume S = Z,, the d-dimensional integer lattice, and P (x, y) =
1/2d if | x — y| = 1, 0 otherwise. Then for

by  Po(x) =Y ,es P(x, y)o(y),

d=1: o is ergodic for all B.

d = 2: There is a critical B. (depending on d) such that o, is ergodic for all B < ., and
nonergodic for 8 > B..

When d = 2, B . is the root of sinh B =1

Now let d = 2 and B > B.. Then every equilibrium state is of the form

p=0ut+ (1-0)u, 0=6=1,
where u*(u”) are translation invariant states whose densities
p = Eplo(x)] = — E,-[o(x)] >0
are explicitly known. According to a famous formula of Onsager [13],
p =[1 — (sinh B)™]"%, B> Be.

These results are based on a combination of research both in equilibrium statistical
mechanics (Aizenman [1], Higuchi [6]) and time evolutions (Holley and Stroock [8]).
When d = 3 and B is sufficiently large there are also nontranslation invariant
equilibrium states [2]. :
We now return to the generalized Glauber model defined by (1.4) (A). The treatment
will require the method of characteristic functions. Let X be the collection of finite subsets
of S, and define

Xa(0) = [[xea o(x), cEI AEX.
Then xa(-) is called a character of = (in agreement with the terminology in group theory

if 2 is interpreted as the direct product of cyclic groups of order two). If i is a probability
measure on 3, then its characteristic function ¢ is defined as that function from X to R
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whose value at A is the expectation, with respect to pu, of the character x4(-). Thus

o(A) = E,[xa(0)] = f Xa (0)p(do), AeX
=
All the usual theorems for characteristic functions remain valid, which will be very useful
in investigating ergodicity.
Fort=0,A€ X, 0 €}, let

(1.5) (A, 0) = T;xa(o) = E[xa(or)].
Then, by semigroup theory

(16) 2 9u(4;0) = E7(Gxa)(00)]
where @ is the generator defined by

(L7) Gf(o) = Y. c(x, 0)[f(0™) — f(0)],
with

x _ 0()’) lfy?éx
oi(y) = {—o(x) ify = x.

Take f(-) = xa(-), and compute, using (1.4)(A)
(1.8) Gxa(0) = Yrea c(x, 0) xa\x(0)[-20(x)]
=-2|A| X4 (0) + 2a Yzea Yyes P(x, y) X\ 0ay(0).

(Here A denotes symmetric difference and Ay is really A{y}.) Now set o0 = o, and take E°
in (1.8). By (1.6) and (1.8)

(1.9) a%tpc(A;o) =—2|A|p:(A;0) + 2a Fxea Yyes P(x, y)p[(A\x)Ay; 0]

Suppose now that u is an equilibrium state, and let ¢(-) denote the characteristic function
of p. Then, taking E, in (1.9) shows that ¢ satisfies the equation
o

[A]
Also, as a characteristic function ¢ is bounded and ¢ (&) = 1. If it turns out that (1.10) has
only one solution with these properties, then—by the method of characteristic functions—
we may conclude that o, has a unique equilibrium state. That is exactly what we shall
show in the case -1 < a < 1.

Thus, let g be a bounded solution of (1.10), such that g(J) = 1. Let us write (1.10) in
the form

(1.10) p(A) = Yrea Xyes P(x, y)p[(A\x)Ay], AEX.

9(A) = ¥p:8=1a) K(4, B)p(B) + ¥(A4),

where
o

A) =
¥(A) 4]

erA ZyEA\x P(x, .)’)tP[A\ (x U y)]y

o

4] P(x,y) i#B=(A\x)uy, x€EAy€E (A\x)

K(A, B) =
0 otherwise.

Then K is a contraction when —1 < a < 1, since
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2B B|= 14| |[K(A, B)| S%er,q YyesPlx,y) =|a| < 1.

Therefore we have
(1.11) @(A) = ¥ 720 Y 8)-14) K/(A, B)Y(B).

Suppose now that we know ¢(A) for all sets A of cardinality |A|=2n. (Wedoifn=1,
since @(J) = 1 and @({x}) = 0 for all x can be derived easily from (1.10).) Then we know
Y(B) for all sets B of cardinality 2n + 2, as a look at the definition of Y(-) will show.
Hence, by (1.11), ¢(A) is known for all A with | A | =2n + 2. This induction then completes
the proof of

THEOREM 1.1. The process o, with flip rate
c(x,0) =1 - ao(x) 3, P(x, y)a(y)

has a unique equilibrium state when —1 < a < 1.

Now we define a discrete time annihilating random walk as follows: it starts with a
finite number of particles, occupying the finite set A C S (only one particle per site.). At
each unit time one of the particles is selected at random, and it Jjumps according to P(x, y).
If it lands on an occupied site then both particles disappear. Let E“[.] denote the
expectation, and T < « the first time when all particles have disappeared. (Note that
T = + oo when | A | is odd.)

THEOREM 1.2. The unique equilibrium state in Theorem 1.1 has the characteristic
function

(1.12) o(4) = Ea"), A€EX.

ProOF. Let /(A) denote the right hand side in (1.12). Then ¢(J) = 1 and y(A) =0
when |A| = 1, since || < 1. Furthermore y(-) is bounded. Finally y/(-) is easily seen to
satisfy equation (1.10). Therefore the uniqueness result for (1.10) obtained in the proof of
Theorem 1.1 implies that ¢ = ¢. O

Now assume S to be a countable (or finite) Abelian group and assume
P(x,y) = P(0,y — x), x,y€E€S.
Also define
P(x,y) = %[P(x,y) + P(y, x)].

THEOREM 1.3. Let A = {x,y}, x % y. Then the unique equilibrium state of the process
o: in Theorem 1.1 satisfies
_ D=0 a"P"(x, y)

Y=o a"P™0,0)

Proof. Use (1.12), noting that T is the hitting tim~e of 0, of a one-particle random walk,
starting at the point x — y, with transition function P(-,-). O

(113) (p(A) = Eequil[o(x)a(y)]

Finally, to get the most explicit results possible let S = the cyclic group {1, 2, - -, N}
under addition (mod N), and let P(x, y) = % if | x — y| =1 and 0 otherwise.

THEOREM 1.4. Let A be the set of cardinality 2n consisting of the points iy, - -, iz,
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such that
15i1<i2<---<i2nSN.

Let a = (i — i1) + (fs — ds) + +++ + (l2n — f2n-1), 0= (i3 — @2) + (I5 — 84) + -+ +
(i1 — t2n + N), so that a + b = N. Then the characteristic function of the unique
equilibrium state is

re+r° 1-(1-a%)”
(114) (p(A) —Traﬁ, where r —‘——a——
If S =7, then
(1.15) (p(A) = r°,

Proor. We use Theorem 1.3 and observe that in the course of the annihilating random
walk starting with the set A, the pairs (a, b) undergo a Markov process at each step of
which (a, b) changes to (@ — 1, & + 1) or to (a + 1, b — 1), each with probability %. The
time T of annihilation is then the first time that either (0, a + b) or (a + b, 0) is reached.
Hence ¢(A) = E“*(a”) must be the generating function of the classical gambler’s ruin
problem ([4] Chapter XIV) which is indeed given by (1.14). Finally, (1.15) may be obtained
by letting one of the spacings tend to infinity. O

EXERCISE. Identify the state on = {+ 1, — 1} %, whose characteristic function is given
by (1.15). Answer: It is the Markov state with transition matrix

(P 1-P 1. 1-(1-a)"”
(1.16) M_(I—P p ), where P-—§+——2a—.

Thus, by studying equilibrium states of more general Glauber models, we are studying a
natural generalization of the simplest Markov states given by a 2 X 2 transition matrix M.

We return to the ergodic behavior of the Glauber model. It is not known whether there
is any spin-flip evolution with a unique equilibrium state which is not ergodic. However,

THEOREM 1.5. The Glauber model with —1 < a < 1 (aé in Theorem 1.1) is ergodic.

There are two different proofs. One, by coupling methods valid when 0 < a < 1isin [11]
Theorem 2.2.2. The other [9], which also is easiest when 0 < a < 1 uses duality, which is
a method to be explained shortly.

We finally turn to the case of the flip rate in (1.4) (A), when a = +1, which is known as
the voter model for the following reason: if we are on Z, with P (x, y) the transition function
of simple symmetric random walk, then the flip rate at x in (1.4)(A) is proportional to the
number of neighbors of x where ¢ has a sign opposite to o(x). (Opposite signs represent
opposite opinions which tend to cause the voter to change his opinion.) In any case it is
clear that the voter model has at least two equilibrium states, namely

p*(u”) concentrated on a(x) = +1(o(x) = —1).

To understand when there are other equilibrium states (apart from the obvious convex
combinations of u* and p~) we shall need the following condition

(C): The discrete time annihilating random walk of two particles ends in annihilation
in time T < o with probability one.

Note that if S = Z; and P(x,y) = 1/(2d) for | x — y | = 1, and 0 otherwise, then condition
(C) holds if and only if the dimension d = 1 or 2.

THEOREM 1.6. If (C) holds then the equilibrium states of the voter model are all of
the form O™ + (1 — ) u~. When (C) fails then there is an additional family of equilibrium
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states p,, which are the weak limits, as t — o, of v,T:, where v, is Bernoulli product
measure on 2 with v,[o(x) = +1] =p,0<p < 1.

Proor. We solve the diffusion equation (1.6) by the following trick of duality. Let
G = G“ be the generator of the voter model. Let G* be the generator of the following
multiparticle continuous time annihilating random walk A,, t = 0: each particle jumps
after a random exponential time with mean %; upon collision two particles instantly
annihilate each other. Then straightforward computation shows

(1.17) G°xalo) = G*xal(o), cEZ,AEX

Thus the action of the two different generators on the system of characters is exactly the
same. This fact extends from the generators to the corresponding semigroups. In terms of
the expectations E°[-] and E“[.] of the processes o;, A;, respectively, we therefore have

(1.18) ETxa(0)] = E*[xa(0)], GEZAEX

Thus the solution ¢;(A; o) of equation (1.6) can be represented as follows on the
probability space of the stochastic process A,:

(1.19) @(A; 0) = E*[xa,0)].

Suppose now that condition (C) holds. Then | A | = even implies that A, = & after a
finite time ¢, with probability one. Since xz(o) = 1, we get from (1.19) by dominated
convergence

(1.20) limt}'oo <Pt(A, 0) = 1»

for any A such that | A | = even, and for arbitrary ¢. This implies that every equilibrium
state p has a characteristic function ¢, such that ¢(A4) = 1 when | A | = 2. This means that
x # y implies o(x) = o(y) with u-probability one. The only states with this property are the
convex combinations of u* and p”.

Suppose finally that (C) fails. Then by (1.19)

E,[9:(4; 0)] = E, E*[[[sea0(x)]
= E* [lsea, E. 0(x) = E*[(2p — 1)'*1].
Observe that | A,| is monotonic nonincreasing. Therefore we get in the limit, as t — «, a
family of characteristic functions
Y(A4) = lirnt)'anvp[‘Pt(A); 0)] = E*{(20 — 1)!“~1].
It is clear that these are nontrivial characteristic functions of an equilibrium state y,, since
| Aw| > 0 with positive probability. O
Note. If p = ' we get the characteristic function
@(A) = P[| A.| = 0], AeX.
Much more than this was shown by Holley and Liggett [7]: When S is a countable
Abelian group, P(x, y) = P(0, y — x), and condition (C) fails, then »T, converges to the

equilibrium state p, in Theorem 1.6 for any ergodic translation invariant state » such that
v[o(x) = +1] = p.

2. New models—finite | S|. From now on the configuration space will be R or NS,
where R is the set of reals, N the nonnegative integers, and S a finite or countable set. The
results of this section, for | S| < o, will be extended to | S| = « in the next section. We
begin by defining three different Markovian time evolutions, to be denoted w, A, and v,
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the first two on R, the last on N°. They differ significantly from the Glauber model of
Section 1 in that their state space is noncompact. Their similarity to the Glauber model
lies in the feature that their generators also will depend linearly on the values of the
configuration at neighboring points. This fact will make differential equation methods a
successful tool, just as in Section 1. Finally, duality will play a crucial role; the three
processes w;, A;, v to be introduced will be seen to satisfy duality relations which make it
possible to learn about the ergodic behavior of each process from that of the others.
The three processes to be defined will be seen to have two ingredients in common:
(a) a system of random exponential clocks with mean one, mutually independent, one
at each site x € S.
(b) an irreducible transition function P(x, y) on S. In terms of these we define
1. w, the smoothing process: when the random clock rings at x, then the configuration
w changes to the configuration w* defined by
(o) = 1Y) if y#x
@) {zzes P(x,2)(z) if y=ux

Note. The existence of «, as a Markov process causes no concern when | S| < %, while
it is very hard to prove when | S| = «. Concerning the ergodic theory of this process, note
that the states concentrated on {w: w(x) = ¢} for different constants ¢ are obviously
equilibrium states. The question arises whether there are others.

2. A, the potlatch process:> when the random clock rings at x, then the configuration
A changes to A* defined by

s = JAMY) +Ax)P(x, ), y#=x
M= {P(x, DA(x), x

Note. For existence the remarks concerning w; also apply here. The process started
out with A¢(x) = constant is clearly not in equilibrium. The total “mass” ¥ A¢(x) will be
preserved however (if it is finite as in the case | S| < «). Also if, as we hope to show, the
process starting with Ao(x) = ¢ converges to an equilibrium state p., then the different .
can clearly differ from y, only by trivial rescaling. Thus here too there is hope of a simple
but interesting ergodic theory.

3. w, the coupled random walk: This process has values in N° and »:(x) should be
thought of as the number of particles at the site x. When the random clock rings at x, then
all the particles present at the site x must jump, simultaneously and independently,
according to the transition function P(x, y).

Note. When | S| < o then this is a finite state space continuous time Markov chain
(since ¥, ».(x) = N is independent of ¢). Therefore the ergodic theory of this process is
that of Theorem 2.1 below. For ease of comparison we state at the same time the ergodic
theorems for w, (in Theorem 2.2) and for A, (in Theorem 2.3) in each case under the
important restriction that | S| < c.

THEOREM 2.1. When Y. vo(x) = N, then v, converges to an equilibrium state yn, and
every equilibrium state is a convex combination of these.

THEOREM 2.2. For every wo € RS, w, converges with probability one to a random
vector ¢ € RS, such that £(x) is independent of x with probability one and

E{(x) = Yies m(t)wo(2).

? This name was suggested by Benjamin Weiss. See Encyclopedia Britannica, 15th ed., Vol. VIII,
for a brief description of potlatch.



356 FRANK SPITZER

Here 7 is the (unique) invariant probability measure of the kernel P(x,y) (m = #P).

THEOREM 2.3. For every Ao € RS, \, converges weakly to an equilibrium state which
depends only on |S|™' Y. Ao(x). Thus there is a one-parameter family of equilibrium
states which differ from each other only by scale change. Every equilibrium state is a
convex combination of these.

We shall now develop certain duality relations between the procegses w;, A, and z,.
These are not strictly necessary for the proofs of Theorems 2.2 and 2.3 but they will
simplify the proofs and moreover they give valuable insight into the nature of the processes
themselves (which has suggested the study of the processes to be introduced in Section 4).

The duality of \; and w;. One first checks from the definition of A* and w* that

(2.1) 2y M (yw(y) = Ty Ay)w*(y), x€ES.
This in turn implies the generator duality
(2.2) G'o\, w) = Gp(A, w)

if G*, G* are the generators of A, and «w; respectively defined by
GYf(A) = 3: [FA") = fN)],
Gf(A) = 3: [f(0%) = f(w)],
and @(A, w) is one of the family of functions
(2.3) ?(A, w) = exp[ia Yres w(x)A(x)], aER.

Finally, going from generators to their semigroups, let E“ and E* denote the expectations
for the processes w, and A, with initial state wo and Ao respectively. Then

(2.4) E“explia Y w/(x)Ao(x)] = EMexp[ia ¥ A(x)wo(x)],
for all a € R, Ao, wo € RS. Finally since characteristic functions determine probability

measures we have

ProposITION 2.1. For all a, B € R® the probability distribution of Y. w:(x)a(x)
conditioned on wo(-) = B(-) is the same as that of Y. \(x)B(x) conditioned on A(-) =

a(-).

There is a somewhat different duality relation between the processes w, and »,. It is
based on the system of functions

(2.5) @(w, ») = [[xes [1 + aw(x)]®, a€EC.
If G and G are the respective generators then one easily verifies that
(2.6) Gp(w, ¥) = G’p(w, v), w € RS, ve NS

This in turn gives, in terms of expectations,

PROPOSITION 2.2. For every wo € RS, v, € NS, and a € C,
@7 E* [[res [1 + aw ()] = E™ [Jes [1 + awo(x)]".
The process w, is associated with an interesting martingale. Let 7 be the unique

invariant probability measure of the transition function P(x, y). This exists since | S| < o
and P(-, -) is irreducible. Then
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PROPOSITION 2.3. The process Y x m(x)w/(x) is a martingale.
ProoF. For every f: RS — R one knows that f(w.) is a martingale provided that
Gf(w) = 0 for all w € RS. Now the function f: @ — ¥ 7(x)w(x) satisfies
28) Gflw) =3%:3, 7(x)[w’(x) — w(x)]
=Y. 7(x)[w¥(x) — w(x)] = T2 7(x) 3y Plx, Y)[w(y) —w(x)]=0.0

ProorF oF THEOREM 2.2. Since
| we(x)| = maxzes | wo(x)], t=0,
the martingale y, = ¥ . 7(x)w:(x) is bounded and hence converges with probability one to

a limiting random variable whose expectation is Y, . 7(x) wo(x). To conclude that each w,(x)
converges with probability one it would suffice to show that

2, = MAaXy yes | w(x) — we( )]

tends to zero a.e., as ¢t — o, But z, is monotone in ¢ Therefore the proof of Theorem 2.2
will be complete if we show that

(2.9) E“[w(x) —w(y)]* >0, as t—w

for all wo € RS, x 5 y in S. But by Theorem 2.1 the limit as £ — o of the right hand side
in (2.7) is the same for every v, € N° such that ¥, »o(x) = 2. Then Proposition 2.2 implies
that

E“[1+ aw(x)]’,  E“[1+aw()])’,  E“[1+ aw(x)][1+ aw(y)]

all three have the same limit as ¢ — . Add now the first two of these limits and subtract
twice the third. Looking at the coefficient of a® in the result shows that (2.9) has been
proved, and hence Theorem 2.2. 0

Proor oF THEOREM 2.3. We have proved almost sure (and hence weak) convergence
of w, for any wo. Therefore weak convergence of A, for any A, follows immediately from the
A &  duality in Proposition 2.1. To show that the limiting state depends only on
|S|7' T Ao(x), for any Ao, let us write

1
|S|
Then Y. Ao(x) = 0, and so it suffices to show that A, converges weakly to the state A = 0
when Y. Ao(x) = 0. But by duality this is equivalent to the fact that

YiAo(x)w(x) >0  when Y Ao(x) =0,

which follows from Theorem 2.2. 00

Ao(x) = 7 Xx Ao(x) + Ao(x).

In the rest of this section we assume that S is a finite Abelian group, and that the
transition function reflects this structure, i.e., P(x, y) = P(0, y — x), x, y € S, where 0 is of
course the identity element. For simplicity we shall also assume symmetry of P, i.e.,
P(x,y) = P(y, x), x, y €S. Under these hypotheses we shall be able to obtain the first two
moments of the equilibrium states of the processes A, and v;. (In [12] this is done without
the assumption that P(-, -) is symmetric, but the results are then much more complicated.)
We now state the most fundamental results as

THEOREM 2.4. Let \..(-) denote the coordinate random variables of the equilibrium
state approached by A, when initially Ao(x) = 1. Similarly, let v..( -) denote the coordinate
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random variables of the equilibrium state approached by v. when initially the random
variables vo(x) are independent Poisson random variables with mean p. Then the first
and second moments are

(2.10) Ela(x) =1

2.11) Cov[Au(x), Au()] =ﬂ’fl»i);(__g(03;’_y)
(2.12) Eve(x) =p

(2.13) Evi(x)=p+ pzm

. 1+ P(0,0) — P(x, y)
1+ P(0,0)

(2.14) Evo(x)va(y) =p

Note. The most remarkable feature of these results is their independence of | S|,
which suggests that they might be equally valid when S is an infinite Abelian group.

For the proof we first note that (2.10) and (2.12) are obvious. Next we note that (2.11)
follows from the pair (2.13), (2.14) and vice versa. This comes from duality: if the vo(x) are
independent Poisson with mean p, then by duality (first Proposition 2.2, then Proposition
2.1)

Epoisson E* [[xes [1 + awo ()] = Epoisson E [[res [1 + awe(x)]*™

(2.15) = E“exp{ap ¥ wi(x)}

= EM*exp{a Y, wo(x)A(x)}

= E™ 'exp{ap Y« wol(x)A:(x))}.
Letting ¢t — o we get

E [Jzes [1 + awo(x)]=™ = E exp{ap T wo(x)Au(x)}.
If wo(x) = 8o(x), one obtains, comparing coefficients of a?,
Ev.(x)[v.(x) — 1] = p’EAi(x),

and a similar argument with wo(x) = s, wo(y) = ¢, and wo(2z) = 0 otherwise, completes the
proof that it suffices to find the second moments of one of the processes.

We shall find those of A,. First consider the coupled random walk », which consists of
only two particles, i.e., Y. »(x) = 2 at ¢ = 0 and hence for all ¢. It is left to the reader to
verify that this unique equilibrium state (invariant measure) of this Markov process is
given by

(2.16) Plr.(x) =2]=2|S|™*[1 + P(0,0)], xE€S
oty =11 =251 - PED
(2.17) Plvo(x) = vo(y) = 1] = 2| S| [1 1+P(0,0)]’ x#y.

From (2.16) and (2.17) it is now possible to calculate the second moments of A.(-) and
hence to complete the proof of Theorem 2.4. We use duality as in the proof of (2.15). By
A & w duality, one has for x # y

EAO!l[uAm(x) + UAm(y)]z = liml/'au Ewo(-)=u8x(.)+u8y(.)[zxes wt(x)]z
=lim; »w lSlewo(~)=u8x(«)+vﬁy(.)wtz(0).

(2.18)
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If we assume that Y. »(x) = 2, then we can write (2.18) as
(2.19) EM [uda(x) + VAa(¥)]? = | S|2lim, »o B~ [ es [we(x) 10
By a slight modification of Proposition 2.2, namely
E“ [+ [we(x)]*® = E* [ [wo(x)]"®
the right hand side of (2.19) becomes
| S|%lim; »e E"[u"Pv"?; p,(+) = 0 elsewhere]
= | S| lim, »w {w?P*[re(x) = 2] + woP"[v(x) = v(y) = 1]
+ 0P P"[n(y) = 2]}
= | S|} {u’P[v=(x) = 2] + uVP[re(x) = v(y) = 1]
+ 0*P[ro(y) = 2]},

where the P[ ] probabilities are those given in (2.16) and (2.17). It follows from (2.16) and
(2.19) that the coefficient of 2 in (2.19) is

2
= = 2 = 1+ P0©,0)
BV NL(@)] = |SIPle () = 21 =155

Similarly the coefficient of 2uv is

2
EM [ Au(2)Aa(y)] = % Plro(x) = vu(y) = 1]
_ P(x,y)

1+ P(0,0)° O

3. The case when S = Z;. Theorems 2.1 through 2.3 suggest conjectures for the
case | S| = o, and Theorem 2.4 for the case when S is an infinite Abelian group. But until
now only the group invariant case has been studied since calculations like those in Theorem
2.4 play a crucial role in the theory. To understand this point assume that the invariant
measure is constant—as it will be in the case when S is an infinite group and P(-, .) is
group invariant (P(x, y) = P(0, y — x)). Then the process Y. w:(x) is a nonnegative
martingale, if wo(x) = 0 and Y, wo(x) < . By the martingale theorem it converges with
probability one. By the w <> A duality (there is no difficulty in establishing that even
though | S| = =) the process A, will converge weakly. But A, might converge to 0 (i.e., the
state concentrated at A(x) = 0). This could happen if the martingale Y w.(x) is not uniformly
integrable in which case it may happen that

(3.1) lim, o ers wi(x) = 0.

Intuitively, imagine that A.(x) represents the amount of gasoline at the site x at time ¢.
Then (3.1), which implies that A;(x) — 0 in measure for each x, as ¢ — o, would imply that
more and more gasoline would accumulate at fewer and fewer sites, the rich getting richer,
and the poor poorer and more numerous. To rule out this unpleasant possibility one needs
estimates such as those in Theorem 2.4. If it were possible to prove that when A¢(x) =1

3.2) E[A(0)] = E“~%[Y w(x) P =M<

where M is independent of ¢, then the martingale Y . w:(x) would be uniformly integrable
and weak convergence of A, to a nontrivial equilibrium state assured. This has indeed been
done jointly with T. M. Liggett [12] whom we thank for his permission to give the present
introduction to our joint work.
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The results in [12] include the proof of existence of the processes w, A;, v: defined by
their flip rate just as here in Section 2. The ergodic theorems (Theorems 3.1, 3.2, 3.3, and
Theorem 3.4 concerning the moments in equilibrium are proved in [12] under the
hypothesis that S is a countable Abelian group, and P an irreducible, group invariant
transition function, not necessarily symmetric.

In the theorems below, a state is called integrable if its coordinate random variables
have finite expectation. It is called ergodic, if all events invariant under group translation
have probability zero and one. Convergence of states to a limiting state will be meant in
the sense of convergence of finite dimensional distributions.

THEOREM 3.1. The extremal integrable translation invariant equilibrium states of
w; are the states . concentrated on {o: 6(x) = m}, —0o < m < oo, If wo IS an ergodic
translation invariant state with mean m, then w, converges to jin,.

THEOREM 3.2. The extremal integrable translation invariant equilibrium states of
A: form a one parameter family fin, —© < m < ®. [i,, is obtained from i, by the obvious
change of scale. If \o is an ergodic translation invariant state with mean m, then A,
converges Lo jin.

THEOREM 3.3. The extremal integrable translation invariant equilibrium states of
v form a one-parameter family ji,, 0 < p < x. If vy is an ergodic translation invariant
state on N° with density p, then v, converges to fi,.

THEOREM 3.4. The moments of order one and two of the equilibrium states fi» and
lo in the last two theorems are exactly those listed in Theorem 2.4, provided P(x, y) =
P(y, x), x,y €S. For the nonsymmetric case they are given in [12].

4. Another new class of evolutions on RS and NS5. We shall now define another
triple of time evolutions, denoted p;, 7, v:. The order is important, for when we compare
the ordered triple p,, 1, y: to the ordered triple w:, A;, v: of the past two sections, we shall
find remarkable similarities. Here are a few: both p, and «; are in equilibrium when their
coordinate variables are all the same; both 2 p,(x) and X w,(x) are martingales (when the
invariant measure is constant); both n, and A, preserve mass; the duality relation between
A: and w, is exactly the same as that between 7, and p,; finally both », and vy, take place on
N* and are particle jump processes. The duality between y, and p; will be exactly the same
as between », and w,.

The definitions of the three processes will have the same common ingredients:

(a) a set of independent exponential mean one clocks, one at each site x € S;

(b) an irreducible transition function P(x, y) on S;

(c) a parameter p, 0 =p =<1,

(d) the following procedure: when the random clock rings at a site x € S, then another
site y is instantly chosen according to the probabilities P(x, y), y € S. At that instant

1: in the process p;, the generalized voter model, the configuration p changes into the
configuration p™ defined by \
p™(z) = p(2) lfz 7_é X
po(x) + 1 —p)p(y) ifz==x
2: in the process 7, called the coalescing process, the configuration n changes to 7™,
defined by

(4.1)

7(2) fz#x,y
(4.2) 77(2) = { pn(x) ifz=ux
n(y) + (1 —-pnx) ifz=y.
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3: in the process vy,, called the strongly coupled random walk, each of the y(x) particles
present at x tosses a coin with probability p of heads. If heads occurs then the particle
remains at the site x. Otherwise it jumps to the site y.

It is not difficult to verify from these definitions that we get exactly the duality and
martingale properties stated in Propositions 2.1, 2.2, and 2.3; we just have to replace w; by
p¢, Ae by : and », by v..

The ergodic theory also offers no surprises in the case when 0 < p < 1. Let us therefore
first discuss the degenerate cases p =1 and p = 0.

Casep = 1. This case is trivial, p;, 7 and v, are then constant (independent of ¢).

Case p = 0. In this case p, is a genuine voter model, and 7, »: may be thought of as
coalescing random walks. When | S| < o, then p; will converge almost surely to a state
with p(x) random but independent of x. On the other hand, v, and 7, converge to states
where all the mass is located at one single point which moves around and is distributed
according to the invariant measure 7 of P. When |S| = o, even when S = Z; there are
many interesting open problems.

Example. Let S = Z4, P(x, y) = 1/2d when |x — y| = 1, 0 otherwise. Let p = 0 and
consider the processes 7, and p, with initial configurations 1o(x) = 1 and po(x) = 8(0, x),
x € S. Then 1, is a coalescing random walk starting with a particle at each site, while p; is
a voter model (0, 1 valued) starting with a single 1 (yes vote) at the origin. By duality we
have

(4.3) E explia 3: p:(x)] = E expliom.(0)].
What is the asymptotic behavior as ¢ — o of the probability
p(t) = P[n.(0) > 0]?
By the above duality
p(t) = P[¥: pe(x) > 0],

i.e., p(t) is the probability that some one still votes yes at time £. When d = 1 the set of
sites x where p;(x) = 1 must form an interval which can only grow or decrease by one point
at a time with equal chance per unit time. Thus p(¢) is the probability that a symmetric
continuous time random walk starting at +1 has not yet visited 0 by time ¢, which gives

(4.4) p(t) ~ (@)™  as t—> .

The far more difficult solution to this problem in dimension d = 2 has been obtained by

Bramson and Griffeath [3], who show that

log ¢
it

Cd'; if d = 3.

ifd=2
(4.5) pt) ~

Case 0 <p < 1. In this case we obtain exactly the same ergodic theory for p;, n:, y: as
for w, A¢, v:. Thus Theorems 2.1, 2.2, 2.3 hold with w, A:, v replaced by p:, n:, y:, which is
elementary, and so do Theorems 3.1, 3.2, and 3.3, which will be discussed in [12]. These
last three theorems depend on moment calculations like those in Theorems 2.4 and 3.4.
The results of these are, however not quite the same, but extremely interesting. Here is
the main result from [12].

THEOREM 4.1. Let S be an infinite Abelian group, P(x,y) = P(0,y — x),0<p <1. Let
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N=(+) be the coordinates of the equilibrium state approached by v, starting with no = 1.
Let v, be the equilibrium state approached by v, when the yo(x) are independent Poisson
random variables with mean p. Then

E neo(x) = 1.
1 ,
st ifx=y
(4.6) E[n-(0n=()] = 1P
{ 1 if x # y.
Evyo(x)=p
2
p+2  ifx=y
47) Elv-(®)v=(01=7 P
o’ ifx#y.
REMARKS. 1. These moments are completely independent of the choice of transition

function P(x, y).
2. The coordinate variables in equilibrium are all uncorrelated. It can be shown,
however, that they are not independent.

PARTS OF A PROOF FOR 7),. Let
- 1
¥(x) = E[n(0)ne(x)], P(x, 5) =5 [P(x,y) + P(y, x)].

By careful use of the generator, just as the diffusion equation (1.9) was derived in Section
1, one obtains

(4.8) %x—) =2(1 — p)(P — Du(x) + w(x),
where
(4.9) u(x) = 2(1 — p)*[8(0, x) — P(0, x) 1 (0).

Now it is possible to solve (4.8) by a variant of the Feynman-Kac formula: if y. is a bounded
solution of

e (x)

Y A (x) + ue(x)

with initial condition Yo (x) = g(x), then

t

(4.10) Yi(x) = E*[g(x)] + E* J' Ue-s(x5) ds,

0

where E*[.] is the expectation for the Markov process x, which has the generator <. In
our case the initial condition is g (x) = 1. Therefore (4.10) applied to (4.8) gives

t

Ye(x) =1+ E‘j Ur-s(xs) ds

0

- ¢
(4.11) =1+ f Syes 2P ED(x, y)u,_o(y) ds
0

=1+ f Yi-s(0) hs(x) ds,
0
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where
(4.12) hs(x) = 2(1 — p)2®P*P=D([ — P)(0, x).
Next one proves (using the fact that | S| = )

(4.13) f h(x) ds = (1 — p)é(x, 0),
o x €S.

Now setting x = 0 in the integral equation (4.11) gives
t

(4.14) % (0) =1+ f Ye—5(0) As(0) ds.
0

This is a renewal equation. In view of (4.13) it has the solution
P (0) = 1(¢) + 1xf(¢) + Lxfof(t) + - -+,
where f(t) = h.(0). Hence, letting ¢ ./ o and using (4.13) with x = 0,

(4.15) im0 =14+ 1 =-p)+ (1 —p)i+. . = =—,
This almost proves the first part of (4.6), but not quite since we have not shown that
' E[ni(x)] = lim, »« E[7}(x)].

This requires coupling and truncation arguments to be given in [12]. Similarly, going back
to (4.11) one obtains

lim; »o E [ (x) 7, (O)] = lim; » o Y (x)

(4.16) =1+ lim; e f Y1-s(0) s (x) ds
0

=1+ liInz/m 1!/;(0) f hs(x) ds = 1,
0

by use of (4.13) with x # 0.

Another heuristic proof of Theorem 4.1 can be given along the lines of the proof of
Theorem 2.4. Let S be a finite Abelian group, and consider the process y; with parameter
0 < p < 1 and group invariant transition function. Start y, off with two particles. Then it
is easy to verify the surprising result that, in equilibrium,

1

4.17) Plv=(®) =21 = rgTm—p v p 1811’ x€S
while
» 2
4.1 Plyax) = v=(y) = 1] =y——"—757 " Tg1’
(4.18) [ve®) = v= () = 1) =3 2757 " 18] x#y % y€ES.

These are the equations analogous to (2.16) and (2.17). Then, since v, is in the same
relation of duality to 1, as »: is to A;, we can copy the proof of Theorem 2.4 verbatim to
conclude that

_ S|
4.19 E™=[72 =—L———,
( ) [n=(x)] 1-p+p|S| x€S
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no=1 ___ p|S|
(4.20) E™[-(0n-() =T=5 1+ 55T’ oy, xyE S,

It remains only to let | S| — o to obtain (formally) the result of (4.6).

Example. LetS=2Z,p =%, P(x,x — 1) = 1 while P(x, y) = 0 in all other cases. Let
10(-) be ergodic and translation invariant with mean 1 (e.g., no(x) = 1, or 7o(x) independent,
exponential with mean 1). This process can be reinterpreted as a model for the time
evolution of a point process (or of vehicle traffic to be concrete): we take n.(k), 2 € Z to be
the spacings between successive points on Z; then the evolution of 7, is exactly the same
as if each point (vehicle) has a random exponential clock such that when it rings, the
vehicle jumps to the midpoint of the vacant interval in front of it. Our results imply that
such a point process converges to an equilibrium state in which the spacings are uncorre-
lated random variables with mean 1 and (by (4.6)) variance 1, but are not independent.

Note added in proof. This example is contained in a recent study of the process v, by
Roussignol [14].
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