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SOME RESULTS ON THE LIL IN BANACH SPACE WITH
APPLICATIONS TO WEIGHTED EMPIRICAL PROCESSES

By V. GoopmaN!, J. KUELBs? AND J. ZINN®

University of Indiana, University of Wisconsin, Madison,
and Michigan State University

We examine the cluster set of S,/a. for Banach space valued random
variables, and investigate the relationship between the central limit theorem
and the law of the iterated logarithm in this setting. In the case of Hilbert
space valued random variables, necessary and sufficient conditions are given
for the law of the iterated logarithm. Some interesting examples are also
included. We then apply our results to weighted empiricals both in the
supremum norm and the L[0, 1] norm.

1. Introduction. Let X, X;, X;, - .- be independent identically distributed random
variables and as usuallet S, = X; + - -+ + X, for n = 1. We write Lx to denote the function
max(1, log x), and use Lyx to denote L(Lx). Further, let a, =v2nLy;n for n=1.

In case X is real valued, it is well known that the following are equivalent:

(1.1) EX)=0, E(X?) = 02 < w.

(1.2) LSn/Vn) > L(Z)

where Z is a mean zero Gaussian random variable.

(1.3) lim sup, | S.|/a. < © with probability one.

(1.4) P(m:C({S"(w)}) = [~o, o]) =1 and lim sup,|S.|/a. =0
Qn

with probability one. In (1.4) the notation C({x.}) denotes all limit points of the sequence
{x.} and is called the cluster set of [x,].

The obvious analogues of (1.1)-(1.4) are also equivalent if X takes values in a finite
dimensional space. However, in case X has values in an infinite dimensional Banach space
the situation is much more complicated, and though much is known it is the purpose of
this paper to further the investigation of some of the various possible implications.

With the exception of the results concerning D[0, 1] with the supremum norm given in
Sections 5 and 6, we assume X takes values in B where B is a real separable Banach space
with topological dual B* and norm | ||. Recall that we say X satisfies the bounded law of
the iterated logarithm (LIL) if

(15) P(lim sup, || Sn/an || < @) =1,

and that X satisfies the Central Limit Theorem (CLT) if there is a mean zero Gaussian
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714 V. GOODMAN, J. KUELBS, AND J. ZINN

random variable W with values in B such that

(1.6) L(Sa/Vn) = L(W).

Finally, we say that X satisfies the compact LIL if there is a compact set D such that
(1.7) P(lim, d(S,/a., D) =0) =1

and

o[2))-2)

Here d(x, D) = inf,ep || x — y || and we call D the limit set in the compact LIL. Of course,
the condition (1.1) is E(X) = 0 and E || X ||* < , condition (1.2) says X satisfies the CLT,
(1.3) is that X satisfies the bounded LIL, and (1.4) says X satisfies the compact LIL (with
limit set D = [—o, o]).

To indicate, to some extent anyway, what is known regarding the implications between
(1.1)-(1.4) let us recall a sampling of recent results. First of all, it is well known that the
moment conditions E(X) =0 and E || X ||* < = are neitlier necessary nor sufficient for the
CLT or the bounded LIL in the infinite dimensional setting (see Kuelbs (1976a) and Pisier
and Zinn (1978) for details as well as further references in this regard). However, in case
E(X)=0and E | X ||® < , then X satisfying the CLT implies X also satisfies the compact
LIL (Pisier, 1975), but not conversely (Kuelbs, 1976b). In addition, under the assumption
that E(X) = 0 and E || X ||® < o Kuelbs (1977) has shown that the compact (bounded) LIL
is equivalent to the sequence of probability measures {.#(S./a.) : n = 1} being uniformly
tight on compact (bounded) sets of B. Finally, we mention that it is possible for X to
satisfy the bounded LIL but not the compact LIL, and the first such examples were due to
Pisier (1975) in the Banach space c¢,. We will produce further examples in this paper even
in the case of Hilbert space, and will investigate the cluster set of such examples though
they fail the compact LIL.

In the broadest of terms our main results are Theorem 3.1 which studies the cluster set
of {Su/a,}, Theorems 4.1 and 5.1 which state that, if X satisfies the CLT and E(|| X ||*/
L: || X||?) < oo, then X satisfies the compact LIL, Theorem 4.2 which provides necessary
and sufficient conditions for the LIL in Hilbert space, Theorem 4.3 which provides
necessary and sufficient conditions for the CLT in smooth norm spaces, and finally some
interesting examples in Section 7.

More precisely, if {a,} is any sequence of nonzero constants, then it is an easy
consequence of the Hewitt-Savage zero-one law that with probability one the cluster set
C({S./a.}) is a nonrandom set A depending only on {a,} and the law of X; see Lemma 1
of Kuelbs (1979) for details. As in (1.4), C({x.}) denotes all limit points of {x.}, so it is a
closed set, and if {a,} is such that lim sup, || Sx/ax || = 0, then we immediately have A =
{0} . However, if 0 < lim sup,, || S»/ax ||, the nature of the cluster set A is much less obvious.
The situation of interest to us throughout the paper is the case of the LIL, i.e. when a, =
a, for n = 1. Of course, if X is not the zero random variable, we always have 0 <
lim sup, || S»/a- || in this situation.

To put our results in perspective, it is useful to point out two well-known necessary
conditions required of X if X satisfies the bounded LIL. We first observe that if (1.5) holds,
then there exists a constant I" such that

P(|| Xn/an]| > T i0.) = 0.

Hence by the Borel-Cantelli lemma we have Y. P(|| X| > I'a,) < o, and therefore
E(| X||?/Lz|| X||) < . Now (1.5) also implies

(1.9) lim sup, | f(Sx/@.) | < || f||z- lim sup, || Sx/a. || < f € B*,

and since f is linear (1.9) implies f(X) satisfies the bounded LIL on the line. Hence it is
also necessary that Ef(X) = 0 and Ef*(X) < « for all f € B*; see Stout (1974), page 297.
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This last consequence of (1.5) we summarize by saying X is WM3, i.e., X is weakly square
integrable with weak mean zero if Ef(X) = 0 and Ef*(X) < forall f € B*. If p = £ (X)
we also will say u is WM§ when that is more appropriate.

If Ef(X) = 0 for f € B* we define the covariance function of X (or p = #(X)) to be

(1.10) T(f, & = E(f(X)g(X)) f, 8 € B*.

Of course, it is immediate that the covariance function for X (or u = £ (X)) exists iff X (or
p= Z(X))is WM;.

Hence we see that E(]| X ||?/L:|| X ||) < « and X being WM3 are minimal conditions for
X to satisfy the bounded LIL, and it is under such conditions that we investigate the cluster
set A. Of course, A being a cluster set implies A is always closed, and if X is WM§3, then
there is a canonical set K, depending only on the covariance function 7T'(f, g), such that we
always have

(1.11) ACK.

For the definition of K, we refer the reader to Section 2 and Lemma 2.1. The proof that A
C K easily follows from the method used to prove (3.2) of Kuelbs (1976a). Furthermore,
Lemma 2.1v implies K is compact iff the covariance function of X is weak-star sequentially
continuous, so A is also compact in this case. )

If X satisfies the compact LIL with limit set D, then (1.7) implies (1.5), and hence X is
WM with E(|| X ||2/Lz|| X ||) < . Furthermore, (1.7) also implies

(1.12) P({S./a.} conditionally compact in B) =1

and, of course, (1.11) and (1.8) together imply D C K. Conversely, if (1.12) holds and A =
C({S./a.}), then it is easy to see that A is compact in B, and

(1.13) P(lim, d(S,/a., A) =0) = 1.

It also is the case that (1.12) actually implies A = K, and this is proved in Kuelbs (1976a),
Corollary 3.1, under the assumptions EX = 0 and E || X ||* < «. However, the same method
suffices if X is only WM3 and (1.12) holds. Thus we see that the limit set, and hence the
cluster set, in the compact LIL is always the canonical set K constructed in Lemma 2.1. It
remains to study the situation when X does not satisfy the compact LIL.

The first reasonable conjecture regarding A, in the case X does not satisfy the compact
LIL, is perhaps that A is the empty set. This indeed is the case provided X is a regular
example of Pisier; see Theorem 1 of Kuelbs (1979). However, in the same paper there is
also an example of a random variable X satisfying the bounded LIL, but not the compact
LIL, and such that A = K is compact and nonempty. Hence this first conjecture is
immediately false.

One possible conjecture to unify our view of these matters to some degree is that if X
is WM3, then A = C({S,/a.}) is empty or is the canonical set K. If this conjecture is true,
it still remains to be decided when we have the cluster set empty and when it is K. Our
Theorem 3.1 is in this direction, and gives sufficient conditions that A = K. In the remarks
that follow the statement of Theorem 3.1 we discuss another possible conjecture.

As mentioned previously, Pisier (1975) proved that if EX = 0, E || X ||*> < «, and X
satisfies the CLT, then X satisfies the compact LIL. Some recent work of Heinkel (1978a,
b) shows that if EX = 0 and X satisfies the CLT, then one can weaken the assumption
E|X||? <o to (E|| X|?Ls || X ||/L2| X ||) <  and still obtain the compact LIL for X.
Hence it is natural to conjecture that in the presence of the CLT, the necessary conditions
EX=0and E(|| X ||?/Lz|| X ||) <  alone imply the compact LIL for X. This is our Theorem
4.1, and an independent proof of this is also due to Heinkel (1979a, b). The corresponding
result for D[0, 1] random variables is given in Theorem 5.1. In Theorem 4.2 we prove that
X being WM§ and E(|| X ||?/Lz|| X ||) < « are necessary and sufficient conditions for the
bounded LIL in Hilbert space, and Corollary 4.1 deals with the compact LIL. In Theorem
4.3 we show that the necessary and sufficient conditions obtained by Pisier and Zinn
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(1978), Theorem 5.1, for the CLT in £,(2 < p < ) also hold in smooth norm spaces. Our
method gives a new proof of these ¢, results as well as extends to smooth norm spaces.
Combined with Theorem 4.1 it also gives the best known sufficient conditions for X to
satisfy the compact LIL in a smooth norm space.

In Section 5 we prove (Theorem 5.1) the (D[0, 1], || - [|l») analogue of Theorem 4.1 and
in Section 6 we consider the special case of weighted empiricals. As a consequence of
Theorem 5.1 we obtain from a weak convergence result of O’Reilly (1974) a theorem
similar to an LIL of James (1975). We also obtain some LIL’s for Cramer-von Mises
statistics as a consequence of Theorem 4.2.

In Section 7 we give some examples involving Hilbert space random variables. Our first
example accomplishes a number of things but perhaps its most important property is that
it satisfies the bounded LIL yet it has a non-compact cluster set. This is the first such
example of a non-compact cluster set under the WM3 assumption, and the various
properties of this example are contained in Theorem 7.1.

Theorem 7.2 exhibits a random variable which shows that the condition supso t2P(|| X ||
> t) < o is not necessary for the LIL even in Hilbert space whereas Theorem 8 of Jain
(1977) shows that this condition is always required for the CLT. This example also shows
that norm conditions alone will not allow one to prove an analogue of Lemma 4.3, and that
the existence of the covariance function is necessary for (4.22) to hold.

2. Some remarks on the limit set. In Kuelbs (1976a), Lemma 2.1, the limit set in
the compact law of the iterated logarithm for a B-valued random variable X was carefully
examined under the assumption the E || X ||® < «. Subsequent investigations have shown
that this assumption is too stringent and the purpose of our next lemma is to record the
necessary facts in the most general case. Various portions of the lemma are not new, but
are included for the sake of completeness. For example, Theorem 6 of Jain (1977) covers
some of the same material, but the approach we use here proceeds in a manner which
parallels Kuelbs (1976a). In fact, we show that the Bochner integral in Lemma 2.1 of
Kuelbs (1976a) need only be replaced by a Pettis integral and much of the lemma holds as
before. We also determine necessary and sufficient conditions for the limit set to be
compact and this aspect is new. It is of importance since there are examples of non-
compact limit sets, and an interesting example will be given in Section 7.

One aspect which Theorem 6 of Jain (1977) includes, and which we do not mention
here, is that the expansions in (2.5) converge to x in the WM? sense, and also with
probability one if the sequence {a:} is chosen such that {a:(X) : 2 = 1} is a martingale
difference and E || X || < .

Let (M, &% M) be a o-finite measure space and assume Z : M — B is Borel measurable
with g(Z) € L' (M, % M) for all g € B*. Then it is easy to prove that there exists a z €
B** such that

z(g) = f g(Z) dA gEB*,
M

and we call z € B** the weak integral of Z. We say Z has Pettis integral z if z actually is
in B, and will write

z=(w)IZd)\ or z=(P)jZd)x
M M
according as Z is weakly integrable or Pettis integrable.

LEMMA 2.1. Let u denote a Borel probability measure on B such that p. is WM§. For
each f € B* let Sf denote the weak integral of xf(x) with respect to the mesure y, i.e.

(2.1) Sf= (w) J xf(x) du(x) fE€ B*.
B
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Then: (i) We have

1/2
2.2) o(p) = sup"f"msl(j £%(x) du(x)) = o,
B

(ii) The weak integral Sf, f € B*, is a Pettis integral and hence S is a linear map
from B* into B. Furthermore, S is a bounded operator from B* into B.

(iii) If H, denotes the completion of the range of S with respect to the norm obtained
from the inner product

(2.3) (Sf, Sg). = f f(x)g(x) dp(x),
B

then H, can be viewed as a subset of B and for x € H,
(24) Il = o llx]lu

(iv) Let { f»: k = 1} be a weak star dense subset of the unit ball of B*. Let {a: k= 1}
be an orthonormal sequence obtained from the sequence {f.} by the usual Gramm-
Schmidt orthogonalization method with respect to the inner product given by the right
side of (2.3). Then each oy € B*, and {Sas : k = 1} is a complete orthonormal sequence
in H, C B. Further the linear operators

(2.5) Iy(x) = Y8 ax(x)Ser  and  @n(x) = x — Tn(x) N=1

are continuous from B into B where by ar(x) we mean the linear functional oy applied to
x. Iy and Qn, when restricted to H,, are orthogonal projections onto their ranges.

(v) If K is the unit ball of H,, then K is a closed symmetric convex subset of B and for
eachfE B*

1/2
(2.6) supxex f(x) = ( f 2(y) du(y)) .
B

Further, K is a compact subset of B iff the covariance function T(f, g) for p is weak-star
sequentially continuous, i.e., iff for all sequences {f.} and {g.} in B* such that f, — f
and g, — g in the weak-star sense, we have T(f., g.) — T(f, g).

(vi) If p and v are two measures on B satisfying the basic hypothesis of the lemma and
having common covariance function, then H, = H,.

ReEMaRKs. (1) If 5] x| du(x) < o and [ sx du(x) = 0, then the covariance function
T(f, &) of uis easily seen to be weak-star sequentially continuous. Hence K, the unit ball
of H,, is compact in B in this case. This was previously shown in Lemma 2.1 of Kuelbs
(1976a).

(2) The linear map S defined in (2.1) is equivalent to U* U in Theorem 6 of Jain (1977).

(3) If X takes values in a Hilbert space H and we identify H and H* as usual, then the
operator S is often called the covariance operator of X. From Lemma 2.1ii it is easy to see
that the operator S is bounded iff X is WM3, and from the proof of Lemma 2.1v we have
S compact iff K is compact.

Proor. To prove (i) we simply observe that since p is WM3 the linear map Af = f
takes B* into L%(B, ). Now A is continuous by an application of the closed graph theorem,
and hence (2.2) and (i) holds.

Since u is WM¢ the weak integral clearly exists, and hence we need only verify that Sf
€ B. To this end, let C,, be increasing compact sets such that u(C.) > 1 — 1/n. Define S, f
= [¢, xf(x) du(x), n = 1. Then S, f exists as a Bochner integral and S.f € B for n = 1.
Further, '
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| Snf — Sfllpes = supjgyz=1]| S f(8) — Sf(g)]
£g(x) f(x) du(x)

= SUpjg| p-=1

B-C,

n

1/2
= o(u)(f f2(x) du(x))
B-C,

and hence lim, || S.f — Sf|| g+ = 0. Thus {S.f} is Cauchy in B and converges to Sf in
B** so (ii) holds. To see S is bounded from B * to B, simply apply the uniform boundedness
principle to the sequence {S.,}.

To prove (iii) first observe that Sf = Sg implies [ | f(x) — g(x) |* du(x) = 0 so the inner
product in (2.3) is well defined. Now (ii) implies SB* C B so (iii) holds if we verify (2.4)
whenever x = Sg for some g € B* as such elements are dense in H, in the g-norm. Now if
x = Sg, then

|
| x|l = supyryp=t | F(S8)]

= Supjf|g.s1

1/2
= O(M)(j &%(x) du(x))
B

=a(w - [ 2]l

f f(x)g(x) du(x)
B

and hence (iii) holds.

The proofs of (iv) and (vi) are immediate, and the reader may consult Lemma 2.1 of
Kuelbs (1976a) for the necessary details. Hence it remains only to verify (v).

To prove K is closed in B and to verify (2.6) proceeds exactly as in Lemma 2.1 of Kuelbs
(1976a) so only the assertions regarding compactness remain.

To do this we let Af = f denote the map from B* into L*(B, p) as in (i). Then we have

T(f, g) = <Af, Ag>

where < -, -> denotes the inner product in L*(B, p), and furthermore A*A = S. Hence we
can assert A* maps L*(B, p) into B rather than only B**. Furthermore, we have T weak-
star sequentially continuous iff A is weak-star sequentially continuous from B * into L*(B,
w). That is, if 7' is weak-star sequentially continuous and if {f.} converges weak-star to
zero, then

lim,, || Afa | L*(B, p) = limu< Afy, Afa> = lim, T(fo, ) = 0.

Hence A is weak-star sequentially continuous. Conversely, if A is weak-star sequentially
continuous and {f,.} and {g.} converge weak-star to f, g, respectively, then Af, and Ag,
converge in L*(B, p) to Af and Ag and hence

lim, T(f., &) = lim,<Af., Ag.> = <Af, Ag> = T(f, 8).

Thus T is weak-star sequentially continuous iff A is weak-star sequentially continuous.

Therefore T weak-star sequentially continuous implies A is a compact continuous linear
map from B* into L*(B, u). Hence A* is also a compact linear mapping from L*(B, p) into
B (see Dunford and Schwartz (1964), page 485), and thus K being closed in B implies K is
compact in B.

On the other hand, if K is compact, then A* is a compact operator and hence A is a
compact operator. Thus {f.} converging weak-star to zero implies that for every subse-
quence {f,,} there exists a subsequence [ f;,] and g such that

limy o || Af 7, — & | 2B = 0.
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Now lim,, f.(x) = 0for all x € B so g =0 and hence lim, | Af. || 2,) = 0. Hence A is weak-
star sequentially continuous and thus 7' is weak-star sequentially continuous as claimed.
Hence (v) holds, and the lemma is proved.

3. Some results on the cluster set. In this section we will establish some results
regarding the cluster set A of {S,/a.}.

THEOREM 3.1. Let X be WM} and B-valued, and assume K is the unit ball of Hyx,.
Further, assume for every ¢ > 0 there exists y(e) > 0 such that

(3.1) P(||So/an | <& > v(e) n € Je)
where for all p <1

1
(3~2) ZnEJ(c) ;lTL—n_)—“ = ©

If for some choice of IIy and Qn as given in (2.5) we have for infinitely many N that
(3.3) IIn(X) and @n(X) areindependent,

then

O

COROLLARY 3.1. Let X be WM? and assume K is compact. If (3.1) and (3.2) hold with
(3.3) replaced by the assumption that there exists infinitely many N and k(N) such that

(3.5) IIn(X) and @n+xav)(X) areindependent,

el ()} -x)-
a,

COROLLARY 3.2. Let X be WM¢ and assume E | (0;(X) |* < o for j = 1 where [a; : j =
1} is as in (2.5). If (3.1), (3.2), and (3.5) hold, then (3.4) holds.

then

REMARKsS. (1) If for some choice of IIy and @v we have the coordinate random
variables {a;(x) : j = 1} m-independent, then (3.5) holds with 2(IN) = m. That this is so
follows because f(IIxX) and f(Qn+nX) are independent for every f € B*. This can easily
be seen since

fOInX) = Yo ar(X) f(Sax)
and
f(@nimX) = Yp=Nem+1 ar(X) f(Sar)

where the symbol = means the series converges in mean-square.

(2) If S./a, — 0 in probability, then (3.1) and (3.2) hold automatically. However, the
generalization obtained in (3.1) and (3.2) beyond S,/a. — 0 in probability, is not an idle
one as the example of Section 4 of Kuelbs (1979) shows. Furthermore, if J(¢) is a set of
integers such that

(3.6) lim inf, card(J(e) N [0, n])/n = d(e) >0,

then (3.2) easily holds. To see this, choose an integer 8 > 1 such that d(¢) - 8 > 4. Then
from (3.6) and for p < 1 there is a constant C > 0 such that
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1 o
Yresw @) = Yi-1 Xh=pr+1 Lyo(n) /n(Ln)*
= Y51 (DAL Liw(n) — B*)/BH(LB*)?

> CZ;:=1 <_‘£§2 Bk+1 _ Bk>/,8k(LBk)p

1

= C i gy =

since p < 1.

(3) It is easy to see that the example of Jain (1976) which satisfies the central limit
theorem, but not the bounded LIL, is such that Theorem 3.1 readily applies to it.

(4) Recall that E(|| X ||?>/L:|| X||) < = is a necessary condition for X to satisfy the
bounded LIL. Furthermore, if B is a type 2 Banach space, then E(|| X ||%/Lz || X|) <
implies S,./a, — 0 in probability; see Proposition 5.1 below. Hence this necessary condition
implies (3.1) and (3.2) in the case of type 2 spaces. Of course, the assumptions (3.3) and
(3.5) are not at all necessary and it is these that hopefully one can remove. A natural
conjecture would be that (3.1) and (3.2) imply the conclusion without (3.3) or (3.5). Of
course, in view of the central limit theorem and the orthogonality of the sequence {a,(X):
J = 1} we easily see that IIyS,/vn and (IIns — IIn)(S./vVn) are asymptotically
independent, and hence (3.3) holds for the limiting Gaussian random variable provided
one exists.

For the proof of Theorem 3.1 we need the following lemma.

LEMMA 8.1. Let Yy, Ys, --- be independent identically distributed mean zero R™
valued random variables with covariance function T(f, g) = (f, 8), (f, g € R™). Let | - |
denote the Euclidean norm on R" and let b € R" satisfy | b| < 1. Let p be such that | b |
< p < 1. Then for each ¢ > 0 there exists constants Ci, Cz > 0 such that for all n

P '——Yﬂ_“'_'_Y"——bISe)>—C1 —nP(| Y| > Vn)

a, ~ (Ln)*
3.7) c
—T;E| Y. I(| Y| < V)|
Proor. Forj=1, ..., n we define
v % i Y=o
2710 otherwise,

and set m, = E(Y,,). Let y, denote the mean zero Gaussian measure on R y with covariance
function

Tu(f, 8) = E(f(Yy,n — m,)g(Y1n — my))
for f, g € R" and, as usual, f(x) = (x, f). Then for large n we have

p(‘M_blss)Zp<‘Y1’”+"'+Y"'"—nm"_b’ss_nl_m_"|>

an Qn Qan
—nP(|Y:|> vn)
(3.8)
ZP(IYI’"+ cee Y,,’,,—nm,l_b's£>
[ 2

—nP(|Y:| > vn)
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since

n|m,|
Qan

sf [x|?dv(x) >0 as n—
|x|>Vn

where v = 2(Y)).
Since | m, |*< E| Y1, |® the Berry-Esseen estimates given in Sazanov (1968) imply there
is a constant C; such that for all n

p
(3.9)

Y.+ -+ Y., —nm, b €
an

n1/2

3
> u,,(x ERY:|x - bv2Lon| < (g) J2L2n) _ o EYl

Hence by combining (3.8) and (3.9) we have (3.7) if we establish that there exists a constant
Cy such that

(3.10) ,un<x ERY:|x— bv2L:n| < <§) ~/2L2n) = (L(:l(.))” .

Let e1, - - -, en,» denote an orthonormal basis of R such that the coordinaée functionals
%= (%, ), (1 =< j= N, x € R") are independent random variables with respect to si,. Let

E.={x€R":Y\., (x — bv2L:n, €.,)* < (€/2) L1}

and

Ej,={x: lx,- - b,~/2L2n| < EN/LG/2N}
Letting

012," = f (x, ej,n)2 dpu'n(x)
RN

we then have

,u,,(x E€RY:|x — bv2Lon| < (%) ~/2L2n)
= J’ (N)f [1X.: exp{—x}/20:,}/vV2n0}, dx; - - - dxn
E’l

= ) f exp{—xf/2a,2’n}/~/21ra,2‘n dx;
E

(3.11) an
Jr|b]|~/2L2n+c~/L2n/2N e'xf/z"f..
=[x . — dx;
= ||j=1 Cj
o2
|6, VBLon 276j,n

= CIIX: {exp{—b?L:n/0%,}0;n/VLsn}

for some constant C since
b 1
—g2 —a2 —(b2—,
J’ e ’/stzze @[] — e @2 0=a<b.
a

= CIIX: 0./ (Ln)y»(Len)™*  where p, ¥, bf/of.m .
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Now
0= f (x, €,n)" dpn(x)
RN
= Tn(ej,n, ej,n)
(3.12) = E(e} (Yin — mn))

= E(e} (Y1) — €, (mn)
= E(e? (Y1) — E(e},(Y)I(| Yi| > Vn)) — e} ,(mn)
=1-E(| Y\ ) I(| Y1| > Vn)) — | m,|*

since E(ejn(Y1)) = (€jn, €,,) = 1 and | ej.| = 1. Hence lim, 0}, = 1 uniformly in {e,, : 1
=<J =< N}, so there exists Cy such that for all n

3.13 " Nolx— bV = (L)Y =2
(3.13) ,u(xER |x—20 2L2n|><2> 2L2n)>(Ln)"

Combining (3.8), (3.9), and (3.13) there exist constants C; and C. such that (3.7) holds and
the lemma is proved.

Proor oF THEOREM 3.1. For each ¢ > 0 and & € K with || b ||, < 1 we first show that

(3.14) Sn P( S < s)/n = o0,

- _ b‘
Qan
In view of Lemma 5 of Kuelbs (1979), (3.14) implies b € A and since A is always closed we
thus have K C A. On the other hand, since X is WM} we know that we always have A C
K, so it suffices to establish (3.14).
Since b € K C H and (2.4) holds, there exists an N such that | @vb | < ¢/3 and (3.3)

holds. Hence
Pl|%—bll<e)=p( |- 8)| <, <:
an [ 3 3

S
Qv -

n

(3.15)

S,
Qv @

(3.16) P<

(3.17) P(

S, € €
(% ) <)oo 2] <2).
and since IIn(S,/a.) converges in probability to zero as n — o« we have from (3.1) that for
all sufficiently large n in J(¢/6) that
S, € €
()]<3)=1G):

Combining (3.15) and (3.16) we thus have

S, € S, €

—=bl<e)=v=Z )P | TIn| —— <=

w ol <o) =G G2l <5)
for all n € J(¢/6) sufficiently large.

To verify (3.14) we now turn to the estimation of P(| IIn(S./a. — b) || < ¢/3). Now N
is fixed, and since all norms on finite dimensional spaces are equivalent there exists a § >
0 such that {x : || IIn(x — b) || <¢/3} D {x: || IIn(x — b) ||. < 8}. Hence for n = 1 we have

nN(ﬂ - b) " < f) = P< HN<§ - b) < s)
an 3 a,
I
and we will estimate the latter.

(3.18) P<
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Now ITxB with norm || - ||, is isometric to R~ with the usual Euclidean norm | - | on R,
i.e. take the map

Y(Inx) = (ar(x), - - -, an(x)) xEB

to yield the isometry. Further, we have|| IIxb ||, < | &]|. < 1, so applying Lemma 3.1 with
l6ll.<p<1and

Y; = Y(IInX;) =1
we obtain constants C;, C, > 0 such that

S, C.
(3.19) P( nN<a— - b) < a) = C/(Ln) — nP(|InXi|lu > Vn) - ;% E|TInX .
" "
where
_[INX, if || TnXi |, < vn
HNXI,n - .
0 otherwise.

Combining (3.17), (3.18), and (3.19) we easily have (3.14) since (3.2) holds for JJ(¢/6) and
(@) 3o P(| TInXi [|u > V) < w0
(3.20)
(i) Yn E | TnXin|2/n*? < .

That is, the convergence of (3.20i) follows since E || IInX: ||2 < o, and to obtain (3.20ii)
note that

S E | TInX o0 [|3/n%? < Yoo n™2 T2 B¥?P(k — 1 < | TINX: |2< k)
< ¥ kBYP(k — 1 < | TInX ||} < k) Sper n7°
=051 kP(k— 1 < |IInX1||2< k)
= O(E | TInXi |12
<o,

Hence (3.20) holds and Theorem 3.1 is proved.

PrOOF OF COROLLARY 3.1. The proof starts as in the proof of Theorem 3.1 except that
since K is compact N is chosen so that @vK C {x : || x || < ¢/8}, and (3.1) and (3.2) hold
with ¢ replaced by &/4 throughout. Then we have

P2 b]<e)=p(|mn(Z-0) <, |[Wrosw - 1) 22| < £,
a, a, 4 Qan 4

S, €
ey —|| < —)
a, 4

(3.21)

S, € S, £
= P( HN(a_,, - b) “ < e | @n+ravy a—n" < 4_1)

_p( Zg).

Arguing as in Theorem 3.1 we thus have a complete proof if

S,
(Mneray — In) .
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> £ n<oo

=z .

To prove (3.22) we first observe that since @vK C {x: || x || < ¢/8} we have
= 2) .

n

For economy of notation let W = (Iln+zavy — IIn)X:. Then to estimate the right hand
probability in (3.23) we proceed as in the proof of Lemma 3.1 obtaining a constant C such
that foralln =1,
> 2)
"

g
=< pn(® ¢ || TLawrry — IIN) (%) || » > 2V2L2n)

(3.22) S P(

Sh
(M n+rey — HN)<—>
Qan

Sn
n an

S
(3.23) P( “ ey — ) P

€
> Z) = P( H (In+ravy — In)

NS
’(HNHe(N) —IIn) .

n

-~ C
(3.24) +nP(| Wi, = Vn) +—5 E|| WI(| W], > V) |I3
= J’ k(N) f exp{=YEY u?/20%,} du, - - - durw).
(w:|u|>2vBLLN) Ver)* Mol .. Ghmn

c
+nP(| W|,> Vn) +—m El WI(| Wi, > n)|I2.

Since o?, < 1, and 67, converges uniformly to 1 as n tends to o as in (3.12), we have a
constant C’ such that the integral term in (3.23) is easily dominated by

C’ f k(N) j exp{—Y u?/2}/\l(2ﬂ)k(m du; - - dupw)
(w:|u|>2v2L2n)

< C’ exp{—2Lsn} f k(N) f exp{ «/Wl’“:’/ Y s - dusen,
—o0 —00 T

C/zk(N)
@)

Since Y. 1/n(Ln)? < o arguing as in (3.20i) and (3.20ii) we thus have (3.22) holding and
the corollary is proved.

ProOF OF COROLLARY 3.2. The proof starts as in the proof of Theorem 3.1 and
Corollary 3.1. That is, we choose N, k(N) such that | @vb || < ¢/4 and (3.5) holds. Then as

in (3.21) we have
Ao
an, a, 4
) S, S,
- P( HN(a_: - b) <‘—i, “ (HN+k(N) - Hn)<a—:> = :i) .

Since (3.1), (3.2), and (3.5) hold we have as in Theorem 3.1 that for all n € J(¢/8)
sufficiently large

P( S _ b“ < s) = v(¢/8) P( nN<§ - b) < f)
ap, Qan 4

ST T
an ar

S, €
QN+r() a—n " < Z)

(3.26)

=

)
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Furthermore, N is fixed and E | a;(x) |® < o for all j. Hence by the Berry-Esseen estimates
given in Bhattacharya (1972), Theorem 4.1, if Z is a mean zero Gaussian random variable
in Iy zav) B with identity covariance, i.e.

E(w(2)ay(2)) = {‘1’ e/

i=j
then there is a constant C such that

(3.27i) P( nN<% - b) < 2) = P( | Tn(Z — bv2L2n) | < (2) J2L2n> - nTC,Z
and
(3.271i) P( sz(—‘?—n- - b) “ (kv — HN)<§> = i)

ar Qan 4

(I IIy)(Z) c
=PIz - ¥2Lan i< (5)Vemn, Lt —T@1, =3)

The application of Theorem 4.1 of Bhattacharya (1972) to (3.27i) is straightforward but for
(3.27ii) one must do a little work. To be precise, in the notation of Bhattacharya (1972), let
g = Icwhere C=A N B,

= {x: | In(x — bv2Lon) || < (¢/4)V2Lyn},
(I neravy — In) €
B = L ||———— =-—=r.
{x ‘ v2Lyn @ “ = 4}

Then A and B° are convex and 8(A N B) C A U 9B where E denotes the boundary of the
set E. Further, by Bhattacharya (1972), page 469, we thus have

and

D((3C)%) = d(N + k(N))e

where @ is the law of Z, d(n + k(IN)) is a constant, and E€ is the e-neighborhood of E.
Using (3.27) and that ITyZ and (Iln+xav) — IIv)(Z) are independent we have from (3.26)
that for all n € J(¢/8) sufficiently large

P< ‘:" b <e>>P<||I'IN(Z bv2Lon )||<< >~/2L2 )
(3.28)
[ < ) P(| Myeray — TIW)Z| >< )Jsz )] —%

where C; is some positive constant. Since
P()| TInsravy — IIN)Z || > (¢/4)V2Lsn)

tends to zero as n — o we thus have (3.14) holding for all b € K with || 5|, < 1 by
proceeding as in Lemma 3.1 except we do not need the truncations. Thus the corollary is
proved.

4. The LIL and the CLT. In this section we first will prove several results regarding
the LIL. Since the proofs follow a general pattern we first will state our theorems and the
proofs will then follow. Necessary and sufficient conditions for the CLT in smooth normed
spaces appear in Theorem 4.3 at the end of the section.

THEOREM 4.1. Let X be a mean zero random variable such that

(4.1) X satisfies the CLT,
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X1

42) and Ll
L X|*

Then X satisfies the compact LIL.

REMARK. Since the condition (4.2) is a necessary condition for the LIL, we then have
a necessary and sufficient condition for the LIL in the presence of the CLT.
In the case of Hilbert space valued random variables we can prove the following result.

THEOREM 4.2. Let X be an H-valued random variable. Then X satisfies the bounded
LIL iff
(4.3) X is WM3,

and (4.2) holds. In fact, if S is the covariance operator for X (see Remark 3 following
Lemma 2.1) and X, Xs, - - - are independent copies of X, then (4.2) and (4.3) imply that
with probability one

(4.4) lim sup || Su/a. || < VB[ S|

REMARK. Since X is WM3 we have by Lemma 2.1ii that the covariance operator S is
bounded and hence the operator norm of S, written || S|, is finite.

CoROLLARY 4.1. Let X be H-valued. Then X satisfies the compact LIL iff (4.2) and
(4.3) hold and the covariance operator of X is compact.

Now we describe the notation we use to prove Theorems 4.1 and 4.2. In order to allow
the reader to compare our proof of Theorem 4.1 with that of Heinkel (1978-79), we shall
use a slightly modified version of the notation of Heinkel and Kuelbs and Zinn (1979).

First, however, we note that in the proof of each of these theorems one can assume that
X is symmetric. This follows from Pisier (1975) or the methods of Crawford (1976). Hence
X is assumed to be symmetric throughout the proof.

Let {X;:j = 1} be independent copies of X. Let I(n) = {2" + 1, - - -, 2"*'}. Also, let a(t)
= t/Lst, B(¢) = tLst, and set a, = $71(2"), B, = & *(2"). Then for j € I(n) let

uj = X I(| X5]|* < aw)
(4.5) v = Xil(an < | X;||* < Bn)
w; = XI(B. < | X;11).
The proofs of our theorems use the following lemmas.
LEmMA 4.1, If (4.2) holds, then with probability one
(4.6) limy || ¥5-1 wy/a|| = 0.

Proor. Since (4.2) holds we have || X;||/ax — 0 a.s. and hence (4.6) holds.

LEMMA 4.2.  Let X be a symmetric B-valued random variable such that (4.1) and (4.2)
hold, and assume {v;:;j = 1} is as in (4.5). Then with probability one

(4.7) lim, Y%, v;/ar =0
Proor. Let T, = Y ermv; for n = 1. Then as in Lemma 3.3 of Heinkel (1978b), or the

method employed in Stout (1974), page 159, we have (4.7) if and only if with probability
one

T,
=0.

(4.8) lim,
. Qan
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To prove (4.8), we set Z; = 2"vj/ay for j € I(n) and all n = 1. Then {Z;:;j = 1} is a
sequence of independent symmetric random variables, and we have

T,
(4.9) — =Y jermZ;/2".
Qgn

Hence to prove (4.8) it suffices to prove
(410) lim,,zjeu,,)Z,-/?’ =0

with probability one. Now to accomplish this we prove {Z,:j = 1} satisfies the conditions
of Theorem 1 of Kuelbs and Zinn (1979), and hence by applying the proof of Theorem 1 of
Kuelbs and Zinn (1979) we have (4.10) and the lemma will be proved.

To apply the proof of Theorem 1 of Kuelbs and Zinn (1979) it suffices to show

(4.11) %——) 0 as.,

(4.12) Y=a[A ()] < oo
where

(4.13) An) = YemE | Z;|?/47,
and that

(4.14) Y% 1 Z,;/k — 0 in probability.

Now (4.11) holds since for j € I(n)
121 _ Mol ||X,-||,
J Qan Qan
and % — 0 a.s. since this is equivalent to ¥,=1P (|| X,.|| > evn L:n ) < o for all ¢ > 0 and

the latter is equivalent to (4.2).
To prove (4.12) note that

A(n) = E{

IX11°In < | X|I” < Bn)
2L,2" ’

and hence if Y is an independent copy of X we have

2 _ X1 (an = | X|)* < Br) 1Y P < | Y2 = Bn)
zae] Z"E{ 2L,2" E 2L,2"
IX 1 < | X2 = Ba) | Y [P (an < || Y12 < Bo)
=Y.E . i
Ls| X Ly Y|
IX 12 Y2
(4.15) = nE{—
2B\ Tl YT
I IS 2.4 . )
i = 2" < || X|I°Lo|| X ; =< | YI2LJ Y
<L2||X||2 IXPLAX I L e 1YL Y
X1z 1y)?
= TN nI M=<=2"<
{Lzuxuszn Rk m)

where
1x)z iy
M = max ,
" {Lzuxw LY

and
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m = min{]| X||°La| X ||% || Y |I*L2] Y ||}
Hence

X v
WA 2sE{—"———— Lm — LM)*/log 2
(4.16) AN Lo X|* Ls| Y| m flog

2 CIXE AYE
SlogZE{LzllX"szllYilz(Lm LMY T(X| =YD -

We now estimate the quantity
D= (Lm-LM)I(X|=|Y]|)
(4.17) = [L( X)L X |1*) — L Y |1/ Lel| Y |I)T*

Y|
a(1xp =y ixpLgxpr =Y.
(Il I=IYEIXILA X" = 70

Since there is a constant ¢ < « such that Ly|| Y||? < ¢ Ly|| X || under the above restrictions
we have

(4.18) D =2L| Y|PI(| X|| = || Y| = c | X L= | X)),
and hence by combining (4.16) and (4.18)

4 [Bo§ I YI°Ls) Y*
2
n = E
2 [A (n)] < log 2 EXI:L2"X"2 Y LZ" Y"2

4 X 2 2 2
Ex{ 1X1 } supAEy[ll—l:-"—I-l-a—"—Y—"—I()\ =|Y|=c\ Lz)\] .

Hx]=]Y]= cuXuLquu)H
(4.19)

" log 277 Lo| X L Y|*

Let y(¢) = ¢t Lst/Lyt. Then y'(t) < Lst/Lot for Lst > 1 and hence

I1X11°Ls) X |*

E IA=|X| = cALA
sup, [ Lz"X"2 ( " " C 2 )]

cALoA
(4.20) = supa J' v (¢?) Py x(dt)

A

A LyA

= supkl:y()\z)P("X" >A) + f

A

2y ()P (| X|| > t) dt] .

Since X satisfies the CLT by (4.1), it follows from Theorem 8 of Jain (1977) that
(4.21) supsot’P (| X || > ¢) < oo.

Now using (4.21) in (4.20) we see that there is a finite constant ¢; such that

LA [P Lg? 1
En[)\(n)]z =0 Supx[ﬁ + J; tm . 2-2' dt| < oo,
Hence (4.12) holds and it remains only to verify (4.14). Now for ¢ > 0,
P(|Z5-1Zil/k > ¢) < E||Z3-1 Zi/k| /e,

and by the comparison principle in Lemma 4.1 of Hoffman-Jorgensen (1974) we have for
r =max{j:2’ < k} that
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2v,

2"
E|Zs-1Zi|l = E| X7 Z,ez(n) + 2,_2r+1 P I

n

2
< supi=n=r— E || 2§=1 vl
Qon

2" N
=—E| X5 vl
Qor

Hence there is a finite constant ¢ such that

c
=-E| Y51 vill/an.
Now since we have (4.1) the argument used in Lemma 2.3 of Kuelbs and Zinn (1979) is
easily modified to prove that
Hm:E || ¥5-1 vjll /ax = 0,

50 (4.14) holds as claimed and our proof is complete.
In the case of Hilbert space valued random variables we have the following which
improves Lemma 4.2.

LEMMA 4.3. Let X be a symmetric H-valued random variable such that (4.2) and
(4.3) hold. Further, assume {v;:j = 1} is as in (4.5). Then with probability one

(422) limk Zf’=1 vj/ak =0.

ProoF. As in Lemma 4.2 it suffices to prove thatlim,T,/a2 =0 where T, = Y jern)V;
forn =1.
Let Dy = 3% 511 vj for k € I(n). Then

| Tnll? = Tijeten <vi v;>
= Yietm | Vi|I* + 2 Tictwy <V, Diea>,

(4.23)

on+1

and since Yierm || vi]|2 = 321 || X/ (> we have by the argument in Pisier and Zinn (1978,
page 294) that

(4.24) limnz,gel(n) || U; || 2/ a§u =0.
Thus
2
(4.25) lim sup, —— " T " = 2 lim supnYier <Vi, Di-1>/@5n,

and since the random variables w; = <v;, D;j_;> are square integrable and orthogonal, by
Chebyshev’s inequality we have for each ¢ > 0 that

1
P(| Ziel(n) v, Dio1> | >¢ ai) < ey YietoyE < Vi, Di1> 2
on

1 2
p i jetm,i<j E<v; U;>

T = || XI% N YI* = B}

where Y is an independent copy of X. Hence there is a finite constant c¢ such that
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J = YoP (| Ticte <U; Dic1> | > € abn)
= (/N LE(<X, Y> Lan < | X% | YII* < B)/(L22))

c <X, Y>?
=— nE ——-’-—-—-—I < X 2’ Y 2S .
D) {L2||X||2L2||Y"2 (= IXI% 171 m}

c <X, Y>?
=—E _ nI < X 2’ Y 2S - .
p {L2||X"2L2,,Y"22 (= IXI% 1Y) ,8)}

Thus arguing as in (4.15), (4.16), (4.17), and (4.18) we have another constant d < « such
that

d <X, Y>2
J=—=E{l—"P—e L Y|?
2 {LquuszuYuz o "}

d <X, Y>?
S?E"{EY[_Lzuxuz ]}
<SX, X>

=2 Byl
e "{ L2||X||2}

disi .f x|
= 5 E W <

€
where S is the covariance operator of X and the norm of S, || S|, is finite by Lemma 2.1
since X satisfies(4.3). Therefore o/ <  and by the Borel-Cantelli lemma we have the right
hand side of(4.25) less than &. Thuslim,7,/as» = 0 a.s. and the lemma is proved.

PrRoOF oF THEOREM 4.1. As in Heinkel (1978, 1979) and Pisier (1975) it suffices to
show that

SUp,E || S,/ Vn|| < o0

I1X1*
Eil——ms<®
{Lzll x|
together imply that sup. || S»/a. | < « with probability one.
In Proposition 4.3 of Pisier (1975) it is shown that the hypotheses of the theorem imply
(4.26) sups || ¥ 71 wjl|/a. < o

with probability one, and hence in view of (4.7) and Lemmas 4.1 and 4.2 the proof is
complete.

and

REMARK. For another approach to the proof of Theorem 4.1 see the proof of Theorem
5.1. Note also that since C[0, 1] is a closed subspace of D[0, 1] and any separable Banach
space can be viewed as a closed subspace of C[0, 1], our Theorem 5.1 actually implies
Theorem 4.1.

PrOOF OF THEOREM 4.2. By considering {X,/||S|/*:/ = 1} it suffices to handle the
situation when || S| = 1. Hence in view of Lemmas 4.1 and 4.3, to prove that X satisfies the
bounded LIL it suffices to prove (4.26) holds. To verify (4.26) and obtain the bound claimed
in (4.4), we prove the following proposition completing the proof.

ProrosITION 4.1. Let X be a symmetric H-valued random variable such that (4.2)
and (4.3) hold and | S| = 1 where || S|| is the norm of the covariance operator S for X.
Further, assume {u;:j =1} is as’in (4.5). Then

(4.27) lim sup,|| X1 ui/a.| < V8.
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PrOOF OF PROPOSITION 4.1. To prove (4.27) we proceed as in Lemma 4.3. That is,
here we set T, = Y71 u, for n = 1 and note that

(4.28) | T2 = S5 | will® + 2 35 <wy, Ti-1>.

Hence as in Lemma 4.3 we have

(4.29) lim ¥ [lu;)*/az = 0,

and to establish (4.27) we define

(4.30) M, = Y5 <uy, Ti>I(| <wy, Tior> | <) n=1,
and set

(4.31) =¥ (ISV*Ty)1° v a) n=2.
Then (4.27) holds if we prove that with probablhty one

(4.32) lim sup, —— J_— —— <72,

and

(4.33) P(|<uj, Tj-1> | >jio.) =0.

To see that (4.32) and (4.33) actually imply (4.27) first observe that (4.28), (4.29), (4.32),
and (4.33) imply

‘ . I 7)1
(4.34) lim sup, ——1 —<2v2  as.
$nV2Lssp
Further, we have s2 >§ n2Lan for n large provided 6 > 1 is arbitrary, and hence
1
(4.35) $,V2Lss, = 1 nvL:n v2L3(1/6 n’Lyn) = - a?.
N/ [/
Thus 6 > 1 arbitrary and (4.34) and (4.35) combine to imply
2
(4.36) lim sup, I’ v er o5 4
$nV2Lssn

Now recall || S| = 1. Thus a.s. for n sufficiently large we have
(| Tall? v a2)? < 166s2 Lss,
(4.37) = 166 2':1‘ (IST3* v af) L (231 (IS T1° v @f))
=160* $321 (I TP v @) L2(Z3=1 (1 T v @3))

The equation (4.27) is now an immediate consequence of (4.37) and the following lemma
since 6 > 1 is arbitrary.

LEMMA 4.4. If {c,} is a sequence of positive numbers such that for n sufficiently large

(4.38) cn=p X7 aLla(X,T) p>0,
then
(4.39) lim sup, 55 <p/2.

REMARK. To finish the proof of Proposition 4.1 it remains to prove that (4.32), (4.33)
and Lemma 4.4 hold.
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Proor oF (4.32). Set #, =o(uy, ..., u,). Since
M, — M, = <Un, Tn1> > I(| <y, Tn-1> | = n)
we have
EM,— M, | %-1)=0
and
E((Mn — My-1)?| Fz1) < <STw-1, Tnor > = ||SV2T, 4 ||

with probability one.
Hence {M,, #%., n = 1} is a martingale and by the proof of Lemma 5.4.1, page 299 of
Stout (1974), we have that the process

V. = eAM.—\*(1+c\)s/2

is a supermartingale for n < ¢ provided A¢ < 1. Hence Corollary 5.4.1 of Stout (1974) page
299, applied to the supermartingale V..., where 7 is a stopping rule, yields the inequality

(4.40) P(maxn<c Vurr = a) < 1/a

for A such that Ac < 1.
To prove (4.32) it suffices to show that for § > 1

(4.41) P(M, = 0+25,v2Lss,i.0.) = 0.
For each positive integer & set
me(w) = inf{z:5{ = 0%).

Then each 7, is a stopping rule with respect to {#} and 7, — + a.s. as £ — o. Further,
the probability in (4.41) can be written as (and dominated by)

@) P(max,, ,<n<,[M,, — 032 5,v2L;5,] = 0 i.0. in k)

< P(max,, ,<n=,, Mo =0v2s,,_.1V2L;s,,_+1i0.ink).
Hence it suffices to show that
(4.43) Y4 P(Max,<,, My = 032 s,,_ 4+1¥2Lss,_+1) < c.

1
By construction s%.,; = Y-, 2kL;k so for n large s2 =3 n’Lsn. On the other hand, s%, <
6%* so that

Tily < 9244,

and hence for % sufficiently large
0k+1

,/L202k )

We take c to be the greatest integer in §**'/vL,8?* for (4.40) and set A = VL,0% /9.
Hence (4.40) implies

(4.44) P(max,=,, e\M-—Ns: = e*) < 7%,

™=

which implies
(4.45) P(max,=,, M, < ; +AsZ) e

Setting x = 6L,0%* and recalling our choice of A we then have
(4.46) Y P(max,<,, M, = 0**2VL,0% + 0% 'VL,0%*) < o,
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Now

P(maxu<,, M, = 0***VL,0% + 6*"'VL:6%) = P(max,<,, M, = 20%*2JL,6%),
and by construction s,,_ +1 = 8*71, so the above probability dominates
(4.47) P(maxnsr,, M, = 20337,,_,+10VL233,,_,+1)

for k sufficiently large. Since § > 1 is arbitrary (4.46) thus implies (4.43), and hence the
proof of (4.32) is complete.

PRroOF oF (4.33). By Markov’s inequality

P(|<w, Ty-1> | >)) = E[<w;, T-1>*1/j*
(4.48)

- ]é E[E((RAZ <u, 5)*[w)].
Since the random variables {<u:,u;>:1 < kB < j — 1} are conditionally independent,
symmetric and identically distributed given u; we have
E(Kuj, ur>|uj) =0
(4.49) E(<uj, up>% | w) = E(<Xs, ui>% | wy)
= <Su;, u;> =||S"u|?
for 1 = k = j — 1. In addition, since
(S48 <y, we>) = Y471 <wj, wnd* + Fisnessio1 Uy, Ur>7<uy, ud?
) + expressions involving cubes or linear terms,
the conditional independence and (4.49) imply that
E(E((Ti21 <wj, we>)*|wy) = E(E[Ti] <wj, w>*
+ Nicharsjor <W, ur > U, ued>?|uil)
(4.50) =Y EE[<X;, Xa>* I[| <X;, Xx> |
=Jj/Lajllw]) +j(j — VE|SVu|*
= (j— DE[X1, Xo>*'I[| < X1, X2 > | = j/L2j]]
+ 2 ISIPEL XML X ) < /L2711
Combining (4.48) and (4.50) we have (4.33) provided the two series

1 . .
(4.51) I=2,’21FE{<X1,X2>4I[I<X1,X2> IS]/Lz]]}
and
1 - .
(4.52) II= ij—z E[ X |*IT) X || = Vj/L2j]1]

both converge.
Now

1 .
I= E[(X],X2>42j21};§I[]2 | (Xl,X2> |L2| <X1,X2> |]]

= E[(X], X >4/<X1, X )2(L2| <X, Xo> I)z]

<X1, X2 >2
=E ——2— >
(Lo < X1, X2> ()
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and since the function ¢ — ¢/(L,¢)” is monotone increasing for ¢ = 0 we have

LX) X } { X P X [P }
I=sE{—F—F——t<E{—— """ __T(IX A | XI|<1
{<L2||X1|| 1%0? CAX [ %p? A%l Al %] =1

1 2] X | }
+ E{i——m——r———I(| Xil| A | X =1
{<L2||X1|| xpr %A 1 Xl=1)

1 P )2 }
<=2E{i——————— _I(IXill<1
{<Lzuxl|| e 1Xd=1

X1 } s
+E -E
{Lzll X)Ll X

I X2 |2 } { (||X1||2)}2
<=2E{—— -t +{E|———— < o0
{<Lz||xz||>2 Lo Xy
1 .
H=E(|X|* 2,2171(1 = || X1 [I”La|| X1 [1%))

I1X:0°
=2E{————} < 00,
{Lzuxluz *

Hence (4.33) holds so it suffices to prove Lemma 4.4.

In addition

PrOOF OF LEMMA 4.4. Suppose that the inequality (4.38) holds for n = N. Set M =
max<n ci. Then for all positive integers n,

(4.53) ca=<p Yt cxla(X32t cx) + M.

Without loss of generality we may assume {c.} is monotone increasing since
{max,<n cx:n = 1} also satisfies (4.53). From (4.53) we therefore obtain

en < p Tic} ;’—:Lz(z‘,z;i cr) + M/cu = p(n — DLo(S3} cx) + M/ca,
and hence
St e < EmPLo(SE ca) + mM]cy.
Thus if 6 > 1 is arbitrary then for m sufficiently large

4
Y1 Cn = ‘% m’Ly(T7-1 cr),

and for x = },7—; ¢, the above implies

x o0

—=—ml

sz 2

For m large this implies x < (p/2)8°m?L,m?® and hence for m large
2
Y= % m?*Lom?2
Recall that ¢, = p(n — 1)L2(3 321 cx) + M/c, for all n, so for n sufficiently large
¢a =< p(n — 1) La(p(6%/2)n2Lan?) + M/c, < fpnLon < 0% a.

Hence the lemma is proved and Proposition 4.1 is verified.
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ProoF oF COROLLARY 4.1. If X satisfies the compact LIL then (1.7) holds, and as
described in Section 1 the canonical set K must be compact. Hence from the remarks
following Lemma 2.1 we have the covariance operator S compact.

Now § is always symmetric and non-negative, and if S is compact, then there is an
orthonormal basis {e.} and constants {A;} tending to zero such that

Sx =Y Ae(x, er) e xEH.

Fixing ¢ > 0 and choosing N so that supz=y A+ < ¢ we define the projection 7(x) =
Z},sn (x, er)er. Then the random variable X — 7(X) satisfies the conditions of Theorem 4.2
and, in fact,

lim sup|| i1 (X; — 7(X;))/a. | < 8e.

Since 7(X) is finite dimensional with mean zero and finite second moment, and ¢ > 0 was
arbitrary, we easily see that (1.7) holds. Hence X satisfies the compact LIL and the
corollary is proved.

For the remainder of the section we shall assume (A): B is a real separable Banach
space, whose norm is twice directionally differentiable and such that the second directional
derivative, D2, is Lip(a) away from zero for some a > 0 and such that

supyj-1[ DX|| < o.
(We refer the reader to Kuelbs (1974) for the definitions of the terms used in (A).)

We will now use the results in Kuelbs (1974) to obtain necessary and sufficient conditions
for the CLT for Banach spaces satisfying (A).

THEOREM 4.3. Let B satisfy (A) and let X be a mean zero B-valued rv. Then X
satisfies the CLT iff the following two conditions hold.

(4.54) EP(|X||=¢t) >0 ast— oo,

(4.55) X is pre-Gaussian.

Proor. By Pisier (1975) we may assume X is symmetric. Then by Theorem 2.1 Kuelbs
(1974), for any 8 >0

P(|Sull= Vn t) = nP(| X|| = Vn) + (x| = £ — B) + Cn*2E(| X|Z*I(| X|| < V7))

for some C = C(B) < « and all ¢ = 28, where p, is the Gaussian measure with the same
covariance as XI(|| X|| < vn ). But, if sup.<4 £P(| X =¢) <38,

E|X|P*I(|X]| < vn) =f P(|X|P* = ¢, | X| =< Vn) dt
0
vn

S Ay f 2+ )t P(| X = ¢t) dt
A

Va
SA*+ (2+ a)d f tldt= A +Mn"‘/2.
a
0
Also, by T. W. Anderson’s inequality (1955) for every convex symmetric set C C B, we
have u(C) < p.(C), when p is the Gaussian measure with the same covariance as X.
Hence, since (4.54) implies nP(|| X|| =vn ) is small for large n, we have-

P(|S.]|=tvn)<e for n and ¢sufficiently large.
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By choosing a simple function 7 such that
Er(X) =0,
supeo 2P(| X — r(X) || = ¢t) = ¢/[C(e) + 1]

and
(13- =) =
and then applying the above to X — 7(X), we see that{S,/ \/r_a} is tight, which suffices.
Combining Theorems 4.1 and 4.3, we have

COROLLARY 4.2. Let B satisfy (A) and let X be a mean zero B-valued rv. Then if X
satisfies (4.2), (4.54) and (4.55), then X satisfies the compact LIL.

REMARKS. (i) Corollary 4.2 applies to L?, 2 < p < o, by Kuelbs (1974). (ii) Pisier has
shown (personal communication) that if a mean zero rv in ¢/, 2 < p < o satisfies (4.2) and
for X = (X*), Y = (Y*) iid.

(4.56) E{(3k | X*Y*|P?)*P} < o0
then X € LIL.

5. The LIL in D[0, 1]. In this section we extend Theorem 4.1 to D[0, 1] valued
random variables. Since D[0, 1] is non-separable in the supremum norm, | - ||, we first
review convergence of laws and the LIL in such a space. The following proposition is very
useful.

ProposiTION 5.1.  (Dudley (1976), Proposition 23.6). In D[0, 1] the o-field %, generated
by the balls (in the supremum norm) is the smallest o-field for which all coordinate
functions are measurable.

Hence by a D[0, 1] valued random variable Y we mean Y (¢, w) is a real random variable
for each ¢ € [0, 1], and for each w, Y (-, w) is in D[0, 1]. Thus the sum of D[0, 1] valued
random variables is a D[0, 1] valued random variable and hence both the bounded and
compact LIL have immediate formulations in (D[O0, 1], || - ||). To identify the limit set in
the compact LIL as the unit ball of some Hilbert space determined by a covariance
structure can be done as in Kuelbs (1976a, pages 747-748). One can also apply the results
of Section 2 provided there is a tight Borel measure u on (D[0, 1], || - ||) with the given
covariance structure and this is always the situation in the cases we study.

By the law of a D[0, 1] valued random variable Y, we mean the measure on %, induced
by Y.

DEeFINITION (Dudley, 1976). A sequence of laws {u,} is said to converge to the law

p(pn = p) if
limnffdnn=deu

for all real-valued, bounded, and continuous functions f on D[0, 1] which are %,-
measurable.

REMARK. The reader should compare this definition and the results on tightness that
follow with Theorem 2.3 and Remark 2.10 of Erickson and Fabian (1975).

Since in our theorem the limit measure is Gaussian, the following proposition is useful.
For the proof see, for example, Jain and Kallianpur (1972).
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ProrosiTiON 52. If a mean zero Gaussian measure p on (D[0, 1], %) has a
continuous covariance function, then u(C[0, 1]) = 1.

As a consequence of Theorem 5.1 and Theorem 15.5 of Billingsley (1968) one can easily
prove the following proposition.

ProposITION 5.3. Let p,, p be probability measures on (D0, 1], %) with p(C[0, 1])
= 1. Then p, = p iff
() limg,. sups pn(x:|x(0)| > a) = 0.
(5.1) (ii) For each & > 0, limsyo lim sup, pin (x:SUpjs—¢j<s | X(s) — x(¢) | >¢€) =0
(iii) w, o 7' = p o w7 for every finite set T C [0, 1].
We can now state the main result of this section.
THEOREM 5.1. Let Y be a D[0, 1] valued random variable. Assume that EY(t) = 0,
EY%(t) < « for all t € [0, 1] and that R(s, t) = EY(s)Y(¢) is continuous. Then, if Y

satisfies the CLT with limiting Gaussian measure p. and E|| Y |*/La|| Y||*> < o, then Y
satisfies the compact LIL in (D[O0, 1], || - |)-

REMARK. There are a substantial number of results regarding the CLT in D[0, 1] and
C[0, 1] (see e.g., Strassen, Dudley (1969), and Giné (1974), Dudley (1974), Jain, Marcus
(1975), Hahn (1976, 1978)). Hence our Theorems 4.1 and 5.1 can be applied (provided the
covariance is continuous.)

Proor. Using the argument in Lemma 3.16 of Dudley and Kuelbs (1978) or Corollary
7.2 of Crawford (1976) it suffices to assume Y is symmetric.

Now let Y3, Y3, - - - be independent copies of Y. Then by Theorem 4.2 of Kuelbs (1976a)
it suffices to prove that

(5.2) P(limsyo lim sup, supjs—sj<s| Y7=1 (Y;(s) — Y;(¢))/a.| = 0) = 1.
To establish (5.2) fix e > 0, 0 < ¢ < 1 and define
w = VI(|| Yj||* < ean)
v = Yil(ean < || Y;|I* < Br)
w; = Y;I(Bx <[ Y;||)

for j € I(n) where I(n), a., and B, are as in (4.5). Then by the proofs of Lemma 4.1 and
Lemma 4.2 we have with probability one that

lim sup,|| ¥ -1 vj/ax|| = 0
and .

lim sup,|| ¥7-1 wj/a» | = 0.
Since ¢ > 0 was arbitrary and supjs—¢j<s| f(s) — f(¢) | = 2| f|| we will have (5.2) established
if we show there is a § > 0 sufficiently small such that with probability one

(5.3) lim sup, sup;s—<s| Xi=1 (;(s) — u;(t)/an| <e.
If S, = },7-1 Y}, then Propositions 5.2 and 5.3 and Y satisfying the CLT with continuous
covariance implies that for every ¢ > 0,0 < ¢ < 1, and a > 0 there exists r = r (¢) such that

(i) supn. P(|S.(0)|>n'%a) <e
(5.4) and
(i) supn P(||S.ll->n"%/2) <e/2 1=s/¢=<r

where || f|l; = supy/r<t=ar | F(£) — f(ZT].
Using (5.4) we now follow Jain (1977) and Pisier (1975) to obtain a bound on E|| S|
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By using the inequalities 1- ¢t = e ‘and 1 — e* = ¢/(1 + ¢) and Levy’s inequality we
have that
V=1 P(|Stm — St—vym |- > m'*n'%)
1+ 22‘:1 P(" Skm — Ste—1ym ||¢’> ml/znl/ze)

= P(maxksn " Skm - S(k—l)m "¢’> m1/2n1/2£)

< P(maxg<s, || Sim ||, > m'*n'%/2)
=2 P(| Spm ||l o> m*n%e/2) < &/2.

Hence we have for 1 < /=< r that

e/2
1—-¢/2

(5.5) nP(||Snlls> m"*n"%) = <e

since 0 < ¢ < 1. Thus for n = 1 and any ¢ such that
nZe<t<(n+1)"%
we have for 1 < /=< r that
(5.6) P([|Snll-> m'?t) = 26°/¢* t=e
But then for any integer a and n; = Y; — u; we have by symmetry that for 1 < /< r
P (|| Zacjzatmitills> m'2t) = P(|| Tacjsatm(@; = mj + 1 + w)) | > 2m'*¢)

(5.7) =2 P(|| Sucjsasm Y|l e > m?t)

= 4(*/t?) t=e.

Hencefor1l =/=<r

(5.8) E|m™? Y eyzarmlt; || o< € + f P(||Sa<icarmits]l o> m'2t) dt < Be.

From (5.8) and the proof of Proposition 4.3 of Pisier (1975) there exists a fixed constant
A such that for B as prior to (4.5) we have

1
2k . 1/2 —_
(5.9) Pz uslle> ABK™ ) = oo 1=<¢=<r.

Finally by Levy’s inequality (5.9) implies
P(maxi<m=st || Y71 ujll.> A B¥? €) < 2/(ktx2)?
and hence by standard arguments we have a fixed constant L such that
(5.10) lim supy|| Y72 @il ga, < L € 1</¢<r.

Since ¢ > 0, 0 < ¢ < 1, was arbitrary and L is fixed (5.10) easily gives (5.3) so the theorem
is proved.

6. Applications to Weighted Empiricals. In this section we apply Theorem 5.1,
Theorem 4.2 and Corollary 4.1 to processes of the form

o[ I(U=t)—-t] if te(0,1)
0

6.1) Y(e) = { if t=0o0rl

where U is uniformly distributed on [0, 1]. Since we will compare our results with those of
James (1975), we need to discuss the relationships between the various conditions on the
weight function w given in (6.1). This will be done in a sequence of lemmas which will
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follow the statements of a theorem of O’Reilly (1974) on the CLT for Y (see also Shorack
(1979)), a theorem of James (1975) on the compact LIL for Y, and our theorem concerning
the compact LIL for Y. These results are all taken with respect to the supremum norm.
After this we switch our attention to L2[0, 1]. A direct application of Theorem 4.2 and
Corollary 4.1 yields some results on the Cramer-von Mises statistics. However there is no
known condition on a covariance function which is necessary and sufficient for the
associated covariance operator from L*[0, 1] to L*[0, 1] to be bounded. Hence for ease of
applications we give some conditions on w which are sufficient to ensure the existence of
a bounded covariance operator and which are close to being necessary.
Now for the sup-norm results.

THEOREM A. (O’Reilly (1974)). Let w satisfy the following conditions:

(i) w is a continuous strictly positive function on (0, 1);
(6.2) (ii) for some y > 0, we have w is nonincreasing (nondecreasing) on
O, yI([1 =y, 1).

Then a necessary and sufficient condition for Y to satisfy the CLT in (D[0, 1], ||-||) is
1
(6.3) texp(— —— | dt<w, forall e>0,i=1,2,
A ki(t)

where ki(t) = tw?(t) and ka(t) = (1 — t)w?(2).

THEOREM B. (James (1975)). Let w satisfy the following conditions

(i) w is a non-negative function on (0, 1),
(6.4) (ii) for some y > 0 we have w is bounded on [y, 1 — v],
(ili) tw?(£)((1 — t)w?(t)) is monotone increasing (decreasing) on (0, Y]([1 — vy, 1)).

Let K = {f: f(t) = [6 g(s) ds, [0 &%(s) ds <1, and [} g(s) ds = 0}. Then a necessary and
sufficient condition for Y to satisfy the compact LIL in the sup-norm with limit set wK is

1 W)

(6.5) f "——L 1
’ 2(t(l - t))

REMARK. If w is not in D[0, 1] then the compact LIL is in the Banach space of
bounded functions on [0, 1] with sup-norm.

dt < oo,

THEOREM 6.1. Let w satisfy (6.2) and (6.3) (the conditions of O’Reilly’s Theorem).
Then Y satisfies the compact LIL in (D[0, 1], | - ||) if and only if (6.5) (James’ integrability
condition) holds.

We now give the promised sequence of lemmas.

LEMMA 6.1. If w satisfies (6.2) and (6.3) (the conditions of O’Reilly’s Theorem), then
(i) limyo tw®(t) =0
(6.6) and
(ii) lim,y; (1 — t)w?(2) = 0.

Proor. We only prove (6.6i), the proof of (6.6ii) being similar. By (6.3), as u — 0

“1 1 “1 1
0+« f - exp(— T‘) dt = f - exp(——2——) dt
o ¢ tw*(t) b ¢t tw*(u) (by (6.2))
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J-uwz(u) 1 ( 1)
= —exp| —— ] ds.
R s s

LEMMA 6.2. Assume that (the conditions of O’Reilly’s Theorem) (6.2) and (6.3) hold.
Then E || Y||?/Lz|| Y||? < o iff (the integrability condition of James) (6.5) holds.

Hence (6.6i) holds.

ProoF. First we note that a.s.
[| Y|l = max {supo<i<v tw(t), supy=e<1 (1 — t)w(t)}.

Now the function a(t) = ¢/L.t is both increasing and subadditive. Hence, E | Y||?/L.|| Y ||?
< oo iff

1
(6.7) fo%d‘Kw’ i=12
where

£1(1) = Supo<e<u t*w(t)
and

£ 2(u) = supu=i<1 (1 — t)%0%(¢).
We now use (6.2) and (6.3) to simplify (6.7). If u = 1 — v, then
£1(1) = SUPo<i<i—y L202(t) + SUP1—y=t<u t202(E)
=¢1(1—v) + w*(u) by (6.2ii).
Also we clearly have,
£1(1) = Sup1—y=e<u t°0%(t) = (1 — y)20?(u).

Hence by the properties of a,

1
Z1(u) 2(u)
< iff < oo,
fl_, L ™ <7 f Loo"w)
On the other hand, by Lemma 6.1, ¢; is bounded on (0, 1 — y]. Hence

1
Z1(u) w(u)
szfl(u)d <w iff f szz(u)du<oo.

Similarly,

1
£2(u) 2(u)
fo Lotaw) <" f o)

. . [R1 .
Since w is bounded on [y, 1 — y], E ——-5 < = iff
L| Y|
1 2
w*(u)

Now, if r < yissuch that fort <7 and ¢t =1 — 7, 0*(¢) = e

T T 2 T 2
fz“f%dt=f ‘f’(t) dtzf w(®) dt.
o 2¢ 0 L( 1) 0 L(log(/l('r)) +log<21§))

log(£2w?(t)) + log p
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T 2 t T 2
Hence f 90 _ 1t < o implies f 9O 4t < . Similarly,
0

Low™(?) 5 1
Lz(t(l = t))

1 2 1 2
t
f ©0 <o implies J — 90 gcw
1

Lyw(t)
-1 2 1-7 L2 1
t1-t)
Hence by the boundedness of w on [y, 1 — v],

1 2 1 2
t
f w () dt < o implies I—Ldt<w.
1) (1] L

Lyw?(t) 1
e = t))
For the other direction we let

1/2
A= {t [0, 7] exp{(L %) } = wz(t)} .

2 2
f———Lw (zt) dtsf 207(8) dt < o
4 L2 (t) N Lzl
t

Then,

Also by the properties of «,

1 1/2
f())
W (£) ¢

AU f N w
J:o,fl\A Lyw*(2) [0,71\A L, 1
t

Hence

T wi(t)

wi(t) e .
dt < o implies A LokD)

it

t1—1¢)

dt < o

The remainder of the proof follows similarly.

LEMMA 6.3. If w satisfies (6.4) (James’ regularity condition) and (6.5) (James’
integrability condition), then w satisfies (6.3) (the integrability condition of O’Reilly).
ProoF. First we note that
Y 2 Y 2
=f —O s [
‘ulmss) )

t1—t) t1—vy)

Y 2 2
=f _ W %dtz—uf’-LL (g) by (6.4).
u L2< 1 1) L2< 1 1)

-yt A-yu
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Now for ¢ = 0, t?/2 < e’ which implies e /* < 2¢2. Hence

1 1\|°?
Y Y 2 Y 0L2(1 y;)
1 2 -
f-exp<—+)dtsf 3[”“’ “’] dts%fl &
o t tw*(t) o & £ e )yt L<I>

t

which is finite. The finiteness of the other integral follows similarly.

Proor oF THEOREM 6.1. By Lemma 6.1 the covariance function of Y is continuous;
hence by Theorem 5.1 and Theorem A we need see that E || Y ||?/L.| Y||* < « iff (6.5). But
this is the statement of Lemma 6.2.

REMARK. Since E || Y||?/L.| Y||* < « is a necessary condition for the bounded LIL it
follows by Lemma 6.3 that with the additional hypothesis (6.2) we can reobtain James’
result. On the other hand, Theorem 6.1 is applicable when the hypotheses of Theorem B
are not satisfied.

We now turn to the application of Theorem 4.2 and Corollary 4.1 to Cramer-von Mises
statistics. To do this we need only check the conditions of these theorems in the case the
process has the form (6.1). Of course we assume w is Lebesgue measurable on {0, 1].

We first give necessary and sufficient conditions for Y to be an L?[0, 1] rv

LEMMA 6.4. Y is an L?[0, 1] rv iff

1
(6.9) j Ai(t) dt < where A(t) = t(1 — t)w(t).
0

ProoF. First Y € L*[0, 1] as. iff | Y||3 = J§ t2%0?(t) dt + [ (1 — t)%w%(t) dt < » a.s.
which happens iff (6.9) holds.

We now show that under (6.9) Y is a rv in L*[0, 1]. Since L[0, 1] is separable, its Borel
field is generated by the cylinders. But, if f € L*[0, 1],

U 1
<[Y>= J' (—t)w(t)f(t) dt +j (1= tw(t)f(t) dt.
o U

Now each term being the integral of an element in L'[0, 1], is a continuous function of U
(0 < U < 1), which is of course measurable.

THEOREM 6.2. Assume A € L?[0, 1]. Then Y satisfies the bounded LIL in L*[0, 1)) iff
the following conditions hold:

1/2 ¢
(1) f tf(t)w(t)[%f f(s)sw(s) ds] dt<cw, forall f€ L*[0,%]);
0 0

(6.10) e ,
(ii) j tw(l — t)f(t)[%f f(s)sw(l —s) ds] dt < oo, forall fe L2[0,1/2];
0 0
and
(6.11) 1 -—’-‘i&du < ® .
' | La(ri(u)) ’ 1=12
where ri(u) =[5 t%%(t) dt  and  r(u) = [i (1 —¢t)%%(¢t) dt.

Proor. First we show that Ef*(Y) < o for all f € L*[0, 1] iff (6.10) holds.
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2

1 1 1
EfA(Y)=E j fOw@O[I(U=t) —t]dt =j f fE)f(s)w (t)w(s)[t A s — ts] dt ds.
0 o Jo

Now the double integrals over each of the sets [0, 4] X [%, 1] and [%, 1] X [0, %] are finite
since tw(¢) € L*[0, %] and (1 — t)w(t) € L*[%, 1]. We also note that for the same reason

1/2 172
J' f f(OF(s)w(t)w(s)ts dt ds < oo
0 0

1 1
J' (8w (t)w(s)(1 — t)(1 — s) dt ds < .
1

72 J172

Hence, since £ A s — ts = (1= 1) A (1= s) = (1= #)(1 = 5), Ef(¥) <  iff
1/2 r1/2
J j (O f()w(t)w(s)t A sdtds <
] 0
(6.12) and

1 1
f f@E)f(s)w(t)w(s)(1 —¢) A (1 — s) dt ds < .
172 J172

But by symmetry and a change of variable (6.12) is seen to be equivalent to (6.10).

One can now use the properties of a to see that E|| Y ||3/L:| Y || < « iff (6.11) holds.
Hence by Theorem 4.2 the proof is complete.

We now give a useful condition on « which implies the bounded LIL. Of course, if
Jb w?(¢) dt < o then Y is a uniformly bounded random variable with values in L5[0, 1] and
hence Y satisfies the compact LIL by Corollary 4.1, i.e., E| Y ||> = [} w%(t) df < » implies
the covariance operator is compact by the remarks following Lemma 2.1.

COROLLARY 6.1. Assume A € L*[0, 1]. Then Y satisfies the bounded LIL in L0, 1]
iff (6.11) holds. Further if O’Reilly’s regularity condition (6.2ii) holds and  is bounded
on [y, 1 —v], then X\ € L[0, 1] is necessary for (6.10), i.e., for the covariance operator to
be bounded.

Proor. To show A € L™[0, 1] implies (6.10) it clearly suffices to show f € L?[0, 1]
implies 1/¢ [6 f(s) ds € L*[0, 1]. But, this is a consequence of Hardy’s inequality as given
on page 72 of Rudin (1966).

To see the necessity we let f,(¢) =Joa(®) for 0 < a <y. Then || f.||z = 1 and by (6.2ii)

Va
2 a t
(6.13) Efi(Y) = % s (i“) L JO sdsdt= 115 a?w?(a).

Hence if the covariance operator is bounded supo<a<, a’w?(a) < «. By symmetry and
boundedness of w on [y, 1 — y] we have A € L[0, 1].

COROLLARY 6.2. Assume A € L*[0, 1] and
(6.14) lim, o A(¢) = lim,,; A(¢) = 0.

Then Y satisfies the compact LIL in L?[0, 1] iff (6.11) holds. Further, if O’Reilly’s (6.2ii)
holds and « is bounded on [y, 1 — y), then the conditions \ € L™[0, 1] and (6.14) are
necessary for the compactness of the covariance operator.

Proor. We need only show the covariance function is weak-star sequentially contin-
uous. Hence we will assume f, + 0 weak-star and we must show that Ef2(Y) + 0. But for

any g € L[0,1], g =0,
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1,1
EgiY) = f f g()g(s)w(t)w(s)[t A s — ts] ds dt
o Jo

1/2 1
= 2[] £(s)sw(s) ds] l:j g (1 — tw(t) dt]
0 1/2

172 1 t
+ 2 f g(B)tw(t) [;j £(s)sw(s) ds] dt
o o

1 1
+ 2 J gt)(1— t)w(t)[%_tj g(s)(1 — s)w(s) ds] dt.
1 t

/2
For any h € L*[0, 1] we also have
ErX(Y) = 8{Eh{5(Y) + Eh%15(Y) + Eh%iys1-5(Y) + Eh}i_s11(Y)),
where ha(t) = h(t)L4(2).

Hence by symmetry we need only show f, + 0 weak-star implies
lim sups+o lim suppsw I, =0 and limgsw IT, =0
where
8 1 t
I,= f fa ()t (2) [; f fa(s)sw(s) dS] dt
) 0
and

172 1
II, = J fr (&)t (t) [?f f(s)sw(s) ds] dt.
s 8

But, if we choose § > 0 so that tw(f) < e
L= Ezllfn "2" T('ﬁll) "2’

where
t

(Te)(®) =% f g(s) ds.

1)
Hence, by Hardy’s inequality (see e.g. Rudin (1966), page 72)
I, < 2¢% sup, || £ ||} = 2K?%?,

and K is finite, e.g., by the uniform boundedness principle.
On the other hand if C(8) = sups<u=1/2 @ (1),

c® ‘ 2 c®
<Y )||fn||2(j s ds) Ts1/n(t) = 35/2) Kt L5172 (2)
()

1 t
7 L fa(s)sw(s) ds :

which is in L0, 1]. Therefore by the Lebesgue dominated convergence theorem
t
%J fa(8)sw(s) ds+0 in L0, 1].
8

This then yields
1L, = 2| M|l fo llzll T (Fd1/21) [l > O

and the proof of sufficiency is complete.
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For the necessity we note that the functions {f,} used in the proof of Corollary 6.1,
converge to zero weakly as a -+ 0. Hence, if the covariance operator is compact Ef2(Y) +
0. (6.13) and its counterpart near 1 then imply (6.14).

REMARK. One can now show by direct calculation that for

1

1 1 Ve
- ”’[L(tu = t))“(ta = t>>]

Y satisfies the compact LIL.

7. Some examples in Hilbert space. Let ¢ denote the Hilbert space of all real
sequences with canonical basis {e;}, ie. 2= (0,...,0, 1,0, ...) where the number one
appears in the 2% position. Throughout Theorem 7.1

(7.1) X = Yi=1 meer

w(t) =

where {1} is a sequence of independent random variables such that for 2 =1
(7.2) P = tVer) =1/2c

Ppp=0=1—-1/c
and ¢ = e’ We will prove the following result.

THEOREM 7.1. Let X be defined as indicated in (7.1) and (7.2), and let X1, X,, . .. be
independent copies of X defined on (2, %, P). Then

(i) Xis WMQ.

(ii) The covariance function of X is

T(f,g)=(f8) [ 8E

and thus the Hilbert space Hy ) determined as in Lemma 2.1 is actually ¢; with the ¢»
norm. Hence in this case K is the unit ball of ¢..

||Xu2>
0 E(Lzuxu <=

(iv) -&5 — 0 in probability.

n

(v) With probability one, C( {%}) = K and hence is noncompact.

n

(vi) X satisfies the bounded LIL in ¢,.
(vii) If {A\+} is a sequence of positive numbers converging to zero and A denotes the
linear operator

Ax) = Y1 Ae(x, er)er XEls

then the random variable AX satisfies the compact LIL in ¢; with limit set AK =
{y) ey, (y:/N)E=1).

REMARK. If, in addition to Az =+ 0, {A:} is such that Y71 A1 = o, then AX is an
example which shows the condition (3.3) of Theorem 3.1 of Pisier and Zinn (1978) is not
necessary.

The following clarifies the condition (3.3) of Pisier and Zinn (1978).

ProrosiTiON 7.1. A Hilbert space valued rv X with E(X) = 0 satisfies (3.3) iff
E[(y, X)?*] < » for each element y of the Hilbert space and the covariance is given by an
operator of Hilbert Schmidt type.
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LemMmA 7.1.  If X has a continuous covariance operator, C, and E[(X, Y)?] < « where
X, Y areiid. then C is Hilbert Schmidt and

ICIE = E[(CX, X)] = E[(X, Y)*].

ProoF. Let dP denote the distribution of X on H. Then (3.3) of Pisier and Zinn is
equivalent to

Y= j f (x, )* dP(x) dP(y) < .
HJH

But for each fixed y,
j (x, y)* dP(x) = (Cy, y).
H

Hence

y= j (Cy, ) dP(dy) = E[(CX, X)] = E[|| C'*X|]*].
H

But since || C'/2X || is square integrable, the covariance of the rv C/2X determines a trace
class operator. Now

E[(y, C'’X)(z, C'°X)] = E[(C"?y, X)(C"*2, X)]
= (CCY?%y, C'?2)
= (C%, 2).
Hence, C? is trace class. Moreover, trace C? = E[|| C'/2X||?] so

ICII = E[(CX, X)].

PROOF OF PROPOSITION 7.1. For n > 0 let X" denote the truncation

n_]X |X|=n
X ‘{o I1X]| > n.

Then X" has a continuous covariance operator C, and the lemma implies that
I Call = E[(X", Y")*] = J (x, ) dP(x) dP(y) < E[(X, Y)*] = .
llxll=n Jjx|=n
Hence, || C..||3 < y for all n. For fixed y in H, (y, X")? is monotone increasing in n so that
lim""w E[(y) Xn)Z] = E[(J’, X)z]'

But, E[(y, X")*] = (Cny, ») < || Cull2l| ¥ I> < V¥ || ¥ |* s0 X determines a bounded covariance
operator. The lemma then implies that the operator is of Hilbert Schmidt type.

The converse assertion follows easily. That is, if X has Hilbert Schmidt covariance C,
then

Cx = Yr Ae(x, er)er

where {e;} are orthonormal and || C||3 = 3 A} < ». Hence

EX Y)Y = J' j (x, y)? dP(x) dP(y) = f (Cy, y) dP(y) =Yx Ak < .
HJH H

Proor oF THEOREM 7.1 If f= {f.} and g = { g:} are elements of ¢} (which we identify
with ¢, throughout) then Y5-; fomx and Y5-1 gwme both converge in L3(Q, % P) and it is
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trivial to verify that Ef(X) = 0 and T'(f, g) = E(f(X)g(X)) = (f, &). Hence (i) holds and
(ii) holds if we employ the construction of Hy(x) indicated in Lemma 2.1.
To prove (iii) observe that

[ ) i —2
7.3 E <Y B[ ) =Ye k%< oo,
(7.3) <L2||X||2 oy o i1 0
IIXIIZ) . ( x| )
Now E| ——= | < 0 iff E < oo so (iil) holds.
(Lzuxu LIXT" (

To verify (iv) we prove the following proposition.

ProrosiTioN 7.2. Let X be a B-valued random variable such that EX = 0 and

2
E (%) < oo, If B is a type 2 space and X1, Xz, . . . are independent copies of X, then
2
(7.4) S./a, — 0 in probability.
PrOOF. Let

« _[% #1xl=a
sn 0 otherwise

for 1 <j < n. Let m, = E(XI(|| X|| < @,)) and fix & > 0. Then for large n we have

S, on — Mn
(7.5) p( il PR 5) = P( 2;;1-(‘){"—“"‘_1 > s/z) + nP(|X| > ax)
2
since £ < l'!jf)"(">2< oo easily implies lim,.ain [lm. | = 0.
Now E(%) < o also implies ¥, P(]| X| > a.) < o, and since the terms P(|| X| >
2

a,) decrease in n this implies P(|| X || > a.) =o(%). Hence lim,, nP(|| X || > a,) = 0, so (7.5)
implies (7.4) if

Xjn — ma)

(7.6) py =Y ( -0 in probability.

Qan
Now B being a type 2 Banach space implies that there is a constant C such that
(7.7) E||Z541 Xjn — ma) |* < CnE|| Xin — ma |,

and since || m, ||> < E || Xy, ||* we also have E || X1, — m, ||> < 4E || X1, ||>. Hence by Markov’s
inequality we have

2C
52L2n
Since | X|| = a, implies 1/Lyn < 2/L. || X || for r sufficiently large, we have for such n that

E"XLn"2<2 E(||X||ZI(||X||5P))+E||X|IZI(||X||>P)
Lon Lon L || X|| '

(7.8) P(| 251 Xjn — ma)|| > ean) = E| X |I*.

(7.9)

Letting n approach infinity and then p approach infinity we have (7.6). Hence the proof of
Proposition 7.2 is complete.

To verify (v) is a simple application of Theorem 3.1. That is, since Hyx) = £ with both
spaces having the same norm, it is easy to see from Lemma 2.1 that we can take [[n(x) =
Sio1 (%, ex)er and Qn(x) =Y 5-n+1 (x, ex)er. Hence since S,/a, — 0 in probability we have
(3.1) and (3.2), and since the sequence {n:} consists of independent random variables we
also have (3.3). Thus Theorem 3.1 implies (v).
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Now if we are given (vi), and that A is a compact linear operator, we then have (vii) as
an easy consequence of the method of proof in Corollary 3.1 of Kuelbs (1976a). Theorem
7.1 is proved once we establish (vi) and this follows immediately from Theorem 4.2.

The condition sup.o t?P(|| X|| > ¢) <  is known to be necessary for X to satisfy the
CLT and was thought to perhaps also be necessary for the LIL. That this is not the case
follows from our next example. This example is also important in that it shows that no
condition defined only in terms of the law of the norm will allow one to prove the “middle
sum goes to zero” as in Lemma 4.3. That is, we will see that one must take into account
the existence of the covariance function as well as the norm condition (4.2) to obtain the
analogue of (4.22) holding even on the real line.

DEFINITION. Fix r = 0. Define the quantity 2% by 2% = & and 2% = 22,
Let {e;} denote the canonical basis in ¢, as above, and assume {§;} and {Z;} are
independent sequences of random variables such that

a) 8:6;=0 @T#7j);
6 6
(7.10) b) P(§j=1) = ﬂsz, P@i=0=1- ﬂsz;
¢) Z;is symmetric with
,”2 ]'2
2% with probability — - I(j < 2%,)
ij — 6 k°2;

0 otherwise.

We now can prove the following result.

THEOREM 7.2. Let {§;} and {Z,} be independent sequences as given in (7.10) and set

(7.11) Y = Y% §Zje;.
Then Y is a symmetric ¢>-valued random variable such that
1Y )
El————] < or r=2;
“ (Lz YT f
(7.12) b) lim supr t°P(| Y| >8) =0 for r=3;

¢) Y satisfies the compact LIL in ¢, for r=2.

Further, if G is a symmetric real valued random variable such that £(G*) = £(| Y|
and r > 4 then

(7.13) Yi1v/an$0  as.
where
(7.14) vi=Glla.<|G|*< B) JEIn),n=1

provided {G;} is a sequence of indepedent copies of G.

ProoF. By construction, if Y # 0, then there is exactly one j such that §; = 1 and
hence Y = Zje;. Thus Y takes valuesin £, and forr=2, k=1
w%?

777 Gkt I(j = 2%,) = 2k /2%

P(|YIP=27) =Xt P =1,2Z] =2) = 375

Thus for r = 2 (7.12a) holds since

| Y)? 2k 2k,
E =Vt < o,
<L2||Y||2 Lo o<
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Also, for 2% < ¢ < 21,

k+1
21‘—2

= V2 > 9k+1
P(IYI> 0 = PUYI = 2" = 5 o

so that for £2 =25 — 1,

P Y||>¢) = 1 27
“2k+1)*

Hence (7.12b) holds for r = 3.
In view of Corollary 4.1 to verify that Y satisfies the compact LIL it now remains only
to show that Y has a compact covariance operator.
Now for r = 2,
6 2

a? )
E8}Z}) = E(8))E(Z}) =7TT]-221¢ 2¢E-kz—2r;;l(15 25_)

1 . .
=ZkPI(js2f_2)—>0 as j—o oo,

so for each x € ¢, it is easy to prove that the series Y ; x;8,Z; converges in mean square.
Hence (x, Y) = Y, x;0;Z; is square integrable for each x in ¢4, and Y has covariance
operator

Sx =Y, E(6}Z})(x, ¢)e; X E £t

Since E(82Z% — 0 as j — o we have S compact, and (7.12c) holds.
Now take r = 4. We first note that there exists at most one % (called k,) for which

(7.15) a=2k<g,
where a, and B, are as in (4.5). Let

A= {n=1:3k, satisfying (7.15)},
2kn,\?
J= {n EA: 20> a,,(#) },

J' =J°NA.

and

If G is a symmetric real valued random variable with £(G?) = £ (|| Y||?) and {v;} is as
in (7.14) we thus have for H; = 2"v;/az, j € I(n), n = 1, that

1Y P < || Y|* = ﬁn)}

An) =Y jerm E(H,z)/4" = E{

212"
(7.16)
22 A
_J2L2  oFR "
0 if nZA.
Since a, ~ Lizg and B, ~ 2"L,2" one can show that
2:
(7.17) Swer A) < 54 3 22 _ o5 k) <o
. ned = Lk L{nk,=k} 2£k2(2L22n) = k k2 )

and further that
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2ML:2"(k32)
2,’-222

= Ynes exp{—M'k}}
(7.18) =Yk Yinerb,=t) exp{—M'k?}

= Y 28 ; exp(—M'E?)

_J<e rs4M>0
Tl r>4,M>0.

Yner exp{—M/A(n)} = Ynes eXP{—

In (7.18) we write Y« cx = Yz di to denote the fact that there are strictly positive constants
¢1 and ¢, such that ¢; < cx/dr < ¢2 (k= 1).
Now let T\, = Y jern) Uj for n = 1. Then as in Lemma 4.2 we have (7.13) iff
T
Qan

(7.19) lim, — # 0.

To verify (7.19) notice that
T./az =Y jerny Hj/2",

and hence as above T,/az; — 0 a.s. iff Y%, H;/k — 0 a.s. Now let
W,={Hj JEIn),neJ

0 otherwise
Rj=H; - W; jz 1
Then we will show
(7.20) Y . Ri/k—>0 as,
and
(7.21) YA Wi)/kA0  as.

Thus Y%, Hx/k % 0 as., so (7.19) holds as claimed and the theorem is proved once we
establish (7.20) and (7.21).
To verify (7.20) we again need only prove

Yietm R;/2"— 0 as.,
and by the Borel-Cantelli lemma this follows if we show that for every ¢ > 0
(7.22) Y P(|Yjerm) Rj| > €27) < oo,
To prove (7.22) note that
Yn P(| Yjern) Rj| > €2") = Y nes P(|Y jer Hj| > €27)
since R; = 0if j € I(n) and n € J°. Hence

1
Yn P(| Y jerm Rj| > €2") < = Yres Aln) <

by (7.17), so (7.22) holds. Thus (7.20) is verified and it remains only to prove (7.21). Now
(7.21) will be proved by applying the SLLN in Theorem 1 of Chung (1951).
To apply this result we first must show that

(7.23) M, = maxjerm | W;| = 0(3 jerm E(W3)/2%).
Now (7.23) holds since
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0 ng&d’
maneI(n)l W]I = on 2k,, O(zn)
r—2 n ’
a_zr:(zfn)l/zsa'lt/z_ki_.z/az":Ti_’ ned,
and
2’!
2"A(n) = %2 for nedJ’
E(W?) "
el -
0 otherwise.
Hence by Theorem 1 of Chung (1951) we have (7.21) iff for some ¢ > 0
(7.24) Ynes exp{—e/A(n)} = .

Now (7.24) follows from (7.18) provided r > 4 and hence the theorem is proved.
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