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ON THE EXPANSION FOR EXPECTED SAMPLE SIZE
IN NON-LINEAR RENEWAL THEORY

By CHARLES HAGWOOD AND MicHAEL WOODROOFE'

Dartmouth College and University of Michigan

An asymptotic expansion for the expected sample size in the non-linear
renewal theorem is shown to hold under an alternative set of regularity
conditions. The alternative set requires fewer moments than existing condi-
tions in an important special case, but is more restrictive in other ways.

Let X1, X5, - - - be i.i.d. random variables with finite, positive mean and variance 0 < y,
02 < oo, and let S,,, n = 0, denote the random walk S, =0and S, =X; + --- + X,,, n = 1.
Further, let £, &, - - - be random variables for which £, is independent of the sequence X,

k > n, for every n = 1, and consider the process

Zn=8p+ &, n=1.
Let
Te=inf{n=1:8,> a},
te=inf{n=1:Z,> a},
and

R.=2Z,,—a, on ({t,<oo}, a=0,

where the infimum of the empty set is o, by convention. Observe that T = 7, is the first
strict ascending ladder epoch, in the terminology of Feller (1966). It is well known that if

X does not have an arithmetic distribution, then S,, — @ has an asymptotic distribution
H as a — o, where

(1) H{dr} = (1/E(S;)) P{S. >r} dr, r>0.

See, for example, Feller (1966, pages 354-355). Similarly, if X; has an arithmetic distribution
with span d, then S,, — a has a limiting distribution as a through multiple of d. In this case
the limiting distribution H is discrete and assigns mass H{kd} = (d/E(S,)) P{S, = kd}
to the points kd, & = 1.

Recently, Lai and Siegmund (1977), Hagwood (1980), and Lalley (1980) have given
conditions under which R, has a limiting distribution. The main result of Lai and Siegmund
is stated for reference.

THEOREM 1. Suppose that there is an a, % < a < 1 for which
a
(2) a""(ta - —) —,0, as a— ox,
o

and the following condition holds: for every ¢ > 0 there is a 8 > 0 for which
@) P{maxocp<snc| Enri — &n| = €} <&

for all sufficiently large n. If X does not have an arithmetic distribution, then R, has the
limiting distribution (1) as a — o.
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Hagwood (1980) and Lalley (1980) obtain related results in the arithmetic case under
additional conditions on ¢, n = 1. The limiting distribution in the arithmetic case is more
complicated than H, and will not be described.

The Condition (3) is most intuitive in the special case that a = 1; for then it requires
that &., n = 1, be uniformly continuous in probability, as in the original formulation of
Anscombe’s (1952) theorem. Observe that, if « = 1, then Condition (2) will hold if

4) max{|&i], -+, ||} =0p(n), as n— .

We will say that £,, n = 1, are slowly changing iff they satisfy (3) with « = 1 and (4).

In a later paper, Lai and Siegmund (1979) gave conditions under which powers of R,
are uniformly integrable and the expansion (12) for E (¢,) is valid. In this note we give an
alternative set of conditions under which the expansion for E (¢,) is valid. We compare
these conditions with those of Lai and Siegmund, after proving the result.

Let o/, = 6{(Xk, £x) & < n} be the sigma-algebra generated by (X, &), k < n forn =
1, and observe that 7, is independent of the sequence X, k£ > n, in view of the standing
assumptions on &, £ = 1. In the theorem below, we suppose that there are .«/,-measurable
events A,, n = 1, constants f(n), n = 1, and ./ ,,-measurable random variables V,,, n = 1, for
which:

(5) Yi=1 P(Ufon A%) < 05

(6) (&, =f(n)+V, on A,, n=1,

(M SUPn=1MaXozk=ns| f(n + k) — f(n)| = 0, as &§— 0

(8) maXosk=n| Va+r|, n =1, are uniformly integrable;

9) Y1 P{V, = — ne} < o, e, O<e<up;

(10) V. converges in distribution to a random variable V, asn — oo;
and

(11) P{t,<ea} =o0(1/a), de>0, as a— oo,

In Theorem 2 below, the constants f(n), n = 1, are extended to a function on [1, ©) by
linear interpolation.

THEOREM 2. Suppose that Conditions (5) through (11) are satisfied and that V,,
n = 1, are slowly changing. Then there are events B = B, for which P(B) — 1, R.Iz,
a > 0, are uniformly integrable and

(12) E(t,,)=1{a+J R. dP—[f<g>+E(V)}}+o(1), as a—s oo,

CoroLLARY 1. If Xi is non-arithmetic, then [gR. dP may be replaced by
p=E(S})/2E(S,),

the mean of the distribution H, in (12).

Proors. If V,, n =1, are slowly changing, then so are £,, n = 1, by (5), (6), and (7). So,
the corollary follows directly from Theorem 1 and the uniform integrability asserted in
Theorem 2.

In the proof of Theorem 2, we write ¢ = ¢,. By (11) and Lemma 3 below there are ¢; and
& for which 0 < &; < &, < 0 and

(13) aP{t<n1}+J tdP — 0, as a— o,

t>ny

where n, = ni(a) = [e1a], n2 = na(a) = [e2a], and [—] denotes the greatest integer which is
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less than or equal to —. Next, let N = N(a) = [p"'a];let 5 = b(a) = a — f(N); and let

B=Ba={nlst5n2,7b>n1}ﬂﬂf=,,lAk, a>0.

Then it follows easily from (5), (13), and the standing assumption that X; has a finite
variance that P(B’) = o(1/a) as a — . So,

fS,dP=f (a+ R, — &) dP=a+J (Re — &) dP + 0(1), as a— oo,
B B B

We need

f S, dP = uE(¢t) + o(1)
(14) B
f ¢ dP = f(f) + E(V) +0(1),
B n
and the uniform integrability of R,Is, a > 0. The first of these assertions follows from

Wald’s Lemma and (13) by an argument which is nearly identical to the proof of Lemma
4 in Lai and Siegmund (1979). The others are estblished in Lemmas 1 and 2 below.

LEMMA 1. Relation (14) holds.

Proor. Clearly, ¢, = &y + (£ — én) and

JgNdP=f<g>+E(V)+o(1), as a— oo,
B

Since ., n = 1, are slowly changing, t/N — 1 and (£, — év) — O in probability. So, it
suffices to show that (£, — £n)Ip are uniformly integrable; and this follows easily from (7),
(8), and

|£t - $N|IB = maxn,sksnzlf(k) - f(N)l + 2maxn]sksn2| Vi |

Observe that the proof of Lemma 1 shows that the random variables [& — f(N)]Ig =
Valg + (& — &én) I, a > 0, are uniformly integrable too. In fact,

Ma=maxn|sksn2|§k_f(N)|’ a>0

are uniformly integrable.
LEmMA 2. R.Ip, a > 0, are uniformly integrable.

Proor. Since [& — f(N)]Ig, a > 0, are uniformly integrable, it suffices to show the
uniform integrability of the positive parts of _

R:=[R.— (& —f(N))p= (S — b)Ip.
Let
C=0C,(x) = {M, = x}, a, x> 0.
Then

P{R:>2x,BC) =Y P{t=n,S,> b+ 2x, BC)

=3, P{t=nS,>b+2x,BC}, ax>0

Now if B and C both occur and if ¢ = n, then 74+, = n for all x > 0; for B requires Tp+, =
s =ni,and C{t = n} requires S, =Z, — & =2, — f(N) = [&— f(N)]=a — f(N) + x
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= b+ xfor ni < k < ns. So, for n1 = n < ns,
P{t=n,S,> b+ 2x, BC} = P{tp+x=n,S, > (b + x) + x, BC}
=P{tpsx=n,S, — (b + x) > x};
and

P{R;>2x, BC} =Y P{7psz=n,8,~ (b+x)>x)

= P{S.,,. — (b + x) > x} = supe=o P{S,, — ¢ > x}

for x > 0. The latter function is integrable w.r.t x over (0, «), by Theorem 4 of Lorden
(1970) or a careful reading of the proof of Corollary 1 in Lai and Siegmund (1979). The
uniform integrability of R} now follows easily from that of M,, a > 0, and the relation
P{R}>2x,B} = P{R}>2x,BC} + P(M,> x}, a, x> 0.

LEMMA 3. There are &, and ¢; for which 0 < ¢; < e < o and (13) holds.

Proor. The existence of ¢ for which aP{t < ¢;a} — 0 as a — o follows directly from
(11). To establish the existence of e, let € be as in (9), 0 < & < y; let § > 0 be so small that
e+ 86<p;andlet e, =2/(u — e — 8). Then, for n > K, = [%e;a], @ — nu < —n(e + §), so that

(15) P{t>n}=P{S,—np+ & <a—nu)=P{S,—nu<—-nd} + P{§& < — ne}.

Denote the right side of (15) by v, n = 1. Then vy,, n = 1, are summable by (9) and the
standing assumption that X; has a finite variance. See, for example, Baum and Katz (1965).
It follows that

f tdP < 2f (t-K)dP=2%" y.=o0(l), as a— .
t>2K, t>2Ka ‘

This completes the proof of Theorem 2.

The Condition (7) of Theorem 2 is clearly stronger than the corresponding Condition
(13) of Lai and Siegmund. On the other hand, Theorem 2 imposes fewer moment conditions
than Theorem 3 of Lai and Siegmund (1979)—at least, in the context of the following
important special case.

EXAMPLE. First Exit From a Square Root Boundary. Let Y,, Y, - - - be ii.d. random
variables with finite mean » # 0 and finite positive variance; and let

to=inf(n=1:|Y1+ -+ + Y,| > V(2an)}, a>0.

Then ¢, has the right form with Z, =%nY? and Y, = (Y, + -+ + Y,)/n, n = 1. Now, Z,
may be written in the form Z,, = S,, + &,, where

S, =%n* + nv(Y,—») and &, = %n(Y, - »)? n=1.

It is easy to check that the standing assumptions and Conditions (3) through (10) are
satisfied, under the sole assumption that E(Y?3) < . Indeed, letting A, be the entire
sample space and f(n) = 0 for n = 1, Conditions (5), (6), (7), and (9) are clearly satisfied.
Condition (4) follows from the S.L.L.N.; the asymptotic distribution of V,, = ¢, is a multiple
of Chi squared in (10); and Conditions (3) and (8) follows from standard maximal
inequalities.

Condition (11) is satisfied if E| Y1|* < o for some a > 2. To see this first observe that
v(2an) — nv > Van for all n < ea for sufficiently small ¢ > 0. Thus, for such ¢, ¢ < ea
implies that

Bi = {maxu<st | Y1+ «+« + Y, — nv| > V(a2¥1)}

occurs for some k < K, = [logz(ea) + 1]. By the submartingale inequality,
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/2
(16) P(B:) = <E> E|2772(Y1+ oo + Yo — 2%) | k=1

and, by Theorem 3 of von Bahr (1965), the expectation in (16) remains bounded as
k — . That condition (11) is satisfied follows immediately.

Thus, if E|Y:|* <  for some a > 2, then the expansion (12) holds for ¢,; and if X; =
%»* + »(Y, — ») has a non-arithmetic distribution, then p may be substituted for [sR,dP.
This example has been considered in detail by Woodroofe (1976) and Lai and Siegmund
(1979). Theorem 3 of Lai and Siegmund appears to require that Y, have a fourth moment.
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