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A GENERALIZATION OF STOCHASTIC INTEGRATION WITH
RESPECT TO SEMIMARTINGALES
By M. EMERY
University of British Columbia

On the real line, there exist o-finite measures which are not Radon
measures, but are nevertheless defined on all bounded intervals

1.1 C(=D”
(e.g.;sm;dx, or Y. ~ 81/n).

Similarly, in stochastic calculus, there exist processes that, though not semi-
martingales, can be obtained as stochastic integrals of predictable processes
with respect to semimartingales. This paper deals with such processes.

0. Introduction; notations. To make stochastic calculations more algebraic, L.
Schwartz has recently invented formal semimartingales: If H and H' are predictable
processes and X and X’ are semimartingales, one says that the pairs (H, X) and (H’, X’)
are equivalent if, for some (and thus for any) nonvanishing predictable process K such that
KH and KH’ are bounded, the stochastic integrals [ KH dX and [ KH’ dX’ are equal as
processes. Owing to the “associativity property” of stochastic integration, this is an
equivalence relation; formal semimartingales are defined as equivalence classes for this
relation. The formal semimartingale to which the pair (H, X) belongs is naturally to be
understood as the stochastic integral [ HdX (also written H.X throughout this paper). To
quote Schwartz [12]: << La possibilité d’écrire H-X sans restriction “libére” complétement
des conditions d’intégrabilité, et facilite un grand nombre d’opérations; il n’y a jamais qu’a
regarder, a la fin des calculs, si le résultat est une semimartingale formelle ou vraie (un peu
comme pour les équations aux dérivées partielles, en utilisant des dérivées-distribution, on
ne se préoccupe de la régularité des solutions qu’apres les avoir trouvées en tant que
distributions). >

Given a formal semimartingale H-X, it may be interesting to know if it is a true process
or not. This paper gives a partial answer to this problem by studying a class of true
processes in the space of formal semimartingales. We call them pseudomartingales—
pseudosemimartingales would fit better, but enough is enough! It should be emphasized
that pseudomartingales are by no means the largest subspace of true processes in the space
of formal semimartingales (if ever this is meaningful, which we doubt); see for instance
(2.12).

In the first section, we construct and study stochastic integrals H- X under less restrictive
assumptions than the usual integrability condition H € L (X) due to Jacod [7]. In the
second section, we define pseudomartingales and show that they are exactly the stochastic
integrals H-X constructed in Section 1. The third section is concerned with decompositions
of pseudomartingales and the study of particular pseudomartingales (special pseudomar-
tingales, quadratic and decomposable pseudomartingales).

Throughout this paper, we are given a complete probability space (22, & P) endowed
with a filtration F = (%) fulfilling the “usual hypotheses” of Dellacherie-Meyer [2]. We
use the notations of Dellacherie-Meyer [2] and [3]. In particular, equality between
processes means indistinguishability; a function on [0, «) is cadlag if it is right-continuous
on [0, ») and left-limited on (0, »); a process is cadlag if (almost) all its paths are cadlag.
Given a semimartingale X, the space L (X) of all predictable processes that are integrable
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710 M. EMERY

with respect to X (shortly: X-integrable) has been defined by Jacod [7]; the simplest
exposition is Yan [13]; we shall sometimes use the presentation of Chou-Meyer-Stricker
[1].

A random set JJ is called an optional interval (resp. predictable interval) if it is optional
(resp. predictable) and if all its sections JJ(w) are intervals (not necessarily of the same
topological kind: some may be open, other closed, etc.). Optional intervals are but a mere
generalization of stochastic intervals; their use will make our notations simpler because
they are stable under intersections and increasing limits. If JJ is an optional interval, not
only its debut S = inf{¢: ¢ € J}, but also its end T = sup{¢: ¢t € J} is a stopping time, for
T is the debut of S, o N J°. ‘

If fis a cadlag function on [0, «), one can define a simply additive measure df on the
ring generated by bounded intervals by

df([0, ¢]) = f(¢); df([0, £)) = f(t-)

and, for each interval J, a new cadlag function f7 by f/(¢) = df(J N [0, ¢]). If X is a cadlag
process and o an optional interval, a new cadlag process X may be defined path by path:
X7(w) = (X(w))?“(¢). The following properties are easy to check: X7’ = (X71)?; if
J1 U Jy is an interval, XJ1UJz + XJiNJz = X7t + X72; if J, is a sequence of optional
intervals, with limit <, then X” = lim, X pointwise (for each w, the convergence is uniform
on compact sets of [0, in)). If X is adapted, so is X”; if T is a stopping time,

XﬂO,T] =XT, X[[O,T[[ =XT—

If X is a semimartingale and J an optional interval, then X is exactly the optional integral
I,.X; if H is a predictable, X-integrable process, then H is X ’-integrable and H-(X?) =
(H-X)7

A random set A is said to be thin if (almost) all its sections A (w) are countable (for us,
countable will always mean finite or countably infinite).

1. Pseudointegrability w.r.t. a semimartingale. We begin with two lemmas about
optional and predictable intervals.

(1.1) LEMMA. Let ¢ be a class of optional intervals such that

(i) _# contains all graphs of stopping times;

(ii) #is hereditary: any optional interval included in some element of ¢ is itself in ¢,
(iii) #is stable under disjoint union: if J, and J; are in fwith J, N J2 = ¢ and J, U J;

an interval, then J, U J> is in g,

(iv) there exists a sequence in ¢ covering {0, oof .
Then there exists a sequence of pairwise disjoint predictable intervals in ¢ covering
{0, f.

Proor. Let (J,) be a countable covering of {0, »{ by elements of # call S, the debut
of J,, T, its end, K,, the interval }S,, T, ]. The predictable interval K, belongs to ¢ as the
disjoint union of }S,, T.{ (included in J,) and of a graph of stopping time. Define K, =
{0, S, 1, K% = } T, oo{. The set

(KiU --- UK, =U, N Ki®

(where & ranges over the finite set {1, 2} {“*~*}) is a disjoint finite union of predictable
intervals; hence K,+; N (Upn<,K) € is the union of a finite family 7,4, of pairwise disjoint
predictable intervals, all of them included in K,; and thus belonging to #. Now J% =
U, X, is a countable family of pairwise disjoint predictable intervals such that A =
(Uke »K)¢ = (U, ]S, T, ]) € is a predictable set included in U,{ S, ]; by Dellacherie-Meyer
[2] page 261, A is the union of a countable family 2#” of disjoint graphs of predictable
stopping times. The lemma follows by taking the family s#'U 7. O
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The next lemma involves a transfinite induction which constitutes the core of our
construction of generalized stochastic integrals.

(1.2) LEMMA. Let ¢ be a class of optional (resp. predictable) intervals such that
() # is hereditary: any optional (predictable) interval included in some element of ¢

belongs itself to ¢,

(ii) #is stable under disjoint unions: if J, and J; are in fwith J, N Jy = ¢ and J1 U J;
an interval, then J, U J; is also in ¢,

(iii) # is stable under increasing limits: if (J,) is an increasing sequence of elements of
S, its limit U, J, is also in ¢,

(iv) there exists in ¢ a countable covering of {0, o] .

Then {0, of belongs to ¢.

ProoF. It needs three steps.

Step 1. If T is a (predictable) stopping time, then its graph [ T'] is in_¢. Indeed let (J,,)
be a countable family in ¢ covering [0, . The (predictable) intervals

An={T} N N (N<nds)

are in ¢ because A, C oJ,; using (ii) one sees by induction that the intervals U,,<, A are in
#; (iii) then implies that | T} = U, A, is also in ¢, which proves the claim.

Now, in the optional case, let #’ be the class of all predictable elements of % Applying
Lemma (1.1) to_# one obtains that ¢’ also satisfies hypothesis (iv); thus we may from now
on restrict ourselves to the predictable case, and the optional one will follow by applying
the lemma to ¢'.

Step 2. Let & denote the class of all closed optional sets E such that, if U and V are
any stopping times with U= Vand [U, V[ N E = ¢, then | U, V| € £ We shall prove that
if E belongs to &, its perfect kernel does also.

(a) If (E.) is a decreasing sequence in &, then E = N,E, is in & Let U and V be
stopping times such that U < Vand {U, V[ N E = ¢. We want to show that [ U, V]
belongs to_¢. Let T, be the debut of [ U, ] N E,, and T the debut of { U, »f N E. Because
[U, VINE=¢,V=T,and | U, V] is included in | U, T]. By (i), it suffices to show that
1U, T} is in # As all E, are closed, the increasing sequence T, goes to T. As E, is in &, |
U, T..] is in ¢ hence, by (iii), A = U,] U, T,] is in #. But J U, T] — A is the graph of a
predictable stopping time; thus, using Step 1 and (ii), } U, T'] is also in_¢, which establishes
the claim.

(b) If E is a closed optional set and T a stopping time such that E N {T}=¢and E
U [T] € &, then E is also in & Indeed, let U < V be stopping times with [U, V[ N E =
¢,andlet T' = (T\y U) A V; T, = (T’ + 1/n) A V. Both 1U, T’} and [T, V] are in ¢
because neither {U, T'[ nor [T, V{ intersects E U [T [;

1T, V] = lim,} T, V]

isin ¢ by (iii) and JU, V] = JU, T’} U }T", V] is in ¢ by (ii).

(c) If E is in &, its derived set E’ is also in &. The optional set E — E’ is thin. By
Dellacherie-Meyer [2] page 261, there exists a sequence (T',) of stopping times with disjoint
graphs such that E — E’ = U, [T..]. Using (b), one sees by induction that E, = E’ U U,,-,
{Tw] isin &; as E, is a decreasing sequence with limit E’, (a) implies that E’ € &,

(d) Now let E € &. We are going to prove that the perfect kernel F of E is in &, and Step
2 will be done. By Dellacherie-Meyer [2] page 260, there exists a countable ordinal « such
that F'is equal to £, the derived set of order a of E. Thus it suffices to show by transfinite
induction that, if « is any countable ordinal, E belongs to & We have just seen in (c)
that, if £ is in &, then its derived set E“*" is also in &, It remains to show that, if Bis any
countable ordinal of the second kind, and if E“' is in & for all « < B, then E* = N,z E
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is in &. Let n > a, be a bijection between N and the ordinals smaller than 8; define a(n)
= max(ao, -+, a,). The sequence a(n) is increasing and sup, a(n) = B. Thus E¥’ =
lim, | E“®) and (a) gives the claim.

Step 3. We know by Lemma (1.1) that there exists in ¢ a sequence (L,) of pairwise
disjoint predictable intervals with U,, L, = {0, «[. Let S, be the debut of L,, T, the end of
L,. Define

E=U, ([S:}U[T.D = (U.]S,, T.])"

This set is closed and belongs to & (because if [U, V[ N E = ¢, U, V] N L, = A, is in
#; but the A, are pairwise disjoint and U,.=. A, is an interval; hence U, A, = U, V] is in
#). Its perfect kernel F also belongs to & by Step 2. But, as E is thin, F is empty. This
proves that 0, f isin ¢ and, as {0] is also in ¢ by Step 1, {0, o[ belongs to_¢ : the lemma
is established. O

We now come to stochastic integrals.

(1.3) DEFINITION. Let X be a semimartingale, H a predictable process. One says that H
is pseudointegrable with respect to X (shortly: X-pseudointegrable) if there exist a cadlag
process Y and a sequence (<J,) of optional intervals covering {0, [ such that, for each n,

HeL(X’) and Y’ =H.(X").
The set of such predictable processes is denoted by D(X).

(1.4) Unicity of Y. Given a semimartingale X and a process H in D(X), let (Y’, (J})) and
(Y”, (J7)) be as in Definition (1.3). Then Y' = Y"”.

ProoF. LetZ =Y’ — Y” and let ¢ be the set of optional intervals J with Z” = 0. We
can apply Lemma (1.2) to ¢ because

() J'CI=Z" = (277,

@) s N o = ¢ = ZIV% = 2 4 7%,
(ili) Jn T J = Z7 = lim, Z”» (pointwise limit);
(iv) if Somn = I OV S, Upn Iy = [0, 0o

Thus {0, »f isin 4 and Y'=Y”.0
This makes possible the following definition:

(1.5) DEFINITION. Let X be a semimartingale, H a predictable X-pseudointegrable pro-
cess. The process Y appearing in Definition (1.3) is called the integral of H with respect to
X, and denoted H-X.

This definition generates no ambiguity: the class D(X) obviously contains the space
L (X) of predictable X-integrable processes, and both integrals agree on L(X). That D(X)
may be strictly wider than L(X) is easy to see, even in the deterministic case: Take

1.1 1
X, =t Hz=;sm; or X1=Enzl/t?> Hy/ = (—1)"n.

Properties of the integral.

(1.6) Y is adapted. (Apply Lemma (1.2) to the class of optional intervals f such that Y is
adapted.) g

(1.7) For any stopping time T, HrAX7 = AY7. (Equality HAX = AY holds on each JJ,,, and
thus everywhere.)
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The next three properties are easy consequences of Definition (1.3) and of the corre-
sponding properties for usual integrals.

(1.8) Linearity in H. D(X) is a vector space, and H — H-X is linear.

(1.9) Linearity in X. If H is a given predictable process, the set of all semimartingales X
such that H € D(X) is a vector space, and X — H.X is linear.

(1.10) Associativity. If X is a semimartingale and H a process in L(X), then a predictable
process K belongs to D(H-X) if and only if KH is in D(X); when this holds. K- (H-X) =
(KH)-X.

Property (1.10) is very important, for it enables us to identify the integral H.X with a
formal semimartingale: if (H, X) and (H’, X’) are two representants of the same formal
semimartingale, and if H € D(X) with H-X = Y, then H' € D(X’) with H'-X’ = Y. It also
makes possible, for any formal semimartingale Z = H-X, to define the space D(Z) as the
set of all predictable processes K such that KH is in D(X). In particular, if, anticipating
Section 2, we call integrals such as H-X, where H € D(X), pseudomartingales, given any
pseudomartingale Y one can define the spaces L(Y) and D(Y), and the corresponding
integrals are respectively semimartingales and pseudomartingales.

As was already noted by Schwartz for semimartingales, this associativity -property
dispenses us from studying integrals H.X where H is a row-vector and X a column-vector
in R" (these integrals were introduced by Gal’chuk [5] for martingales and extended by
Jacod [6] to semimartingales), since such an integral H-X = Y%, H'-X* can always be
reduced to the one-dimensional case by choosing a non-vanishing real-valued predictable
process K such that, for each i, KH' is bounded, and noticing that

1 3 i
H-X =2 (% (KH)-X).

(1.11) If H € D(X) with H-X = Y, and if @ is another probability with @ < P, then H is
X-pseudointegrable for @, and Hy X is a version of H) X. (Immediate from Definition (1.3)
and the similar property for usual integrals.) In particular, if H € D(X) and H' € D(X ),
and if A is any event such that, on [0, ©) X A, X = X’ and H = H’, then, on the same set,
HX=H.X.

(1.12) In Definition (1.3), the intervals J, can be chosen predictable and pairwise disjoint.
(Apply Lemma (1.1) to the class of optional intervals  with H € L(X?) and H-X? = Y".)

(1.13) If H € D(X) and H-X = Y, then for any optional interval J, H € D(X?) and H-X~
= Y. (Obvious from Definition (1.3).)

(1.14) Let X be a semimartingale, H a predictable process, Y a cadlag process. If there
exists a countable family (L,) of optional intervals covering |0, oo such that H €D(X*")
and H-X"" = Y', then H € D(X) and H-X = Y. Indeed, for each n, there exists a
countable covering (J})ren of {0, | by optional intervals such that H € L(XL"”Jﬁ), with

LTS _ yLNgh,
H.X =Y K

(1.14) is proved by noting that (L, N J%),., is a countable covering of [0, oof. In particular,
X-pseudointegrability is prelocal: if Y = H-X on each [0, T, [ for a sequence T, of stopping
times, Y = H-X on [0, sup, T.[.

(1.15) ProposITION. Let H be a predictable, X-pseudointegrable process, where X is a
semimartingale. Then H-X is a semimartingale if and only if H is X-integrable.
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Proor. The “if” part is well known. For the converse, assume Y = H.X is a
semimartingale, and let ¢ be the class of all predictable intervals <J such that H € L(X?).
It suffices to apply Lemma (1.2) to_# Hypotheses (i) and (ii) are easy to check; (iv) follows
from (1.12). To verify (iii), assume H € L(X“") for an increasing sequence (/) of
predictable intervals; we want to show that H € L(X”) where J = lim,, J,. Because Y is a
semimartingale, the sequence

H-XJ" = IJ"H’X= IJn'Y

converges, for the semimartingale topology (see Mémin [10]) to I;- Y by the dominated
convergence theorem for stochastic integrals. Thus, the sequence of predictable processes
I, H converges, in the topological space L(X) of Mémin [10], to some limit. It also
converges pointwise to I, H. Identifying limits, one gets I,H € L(X), the desired result. 0

No dominated convergence theorem is true for those integrals, and one cannot expect
much better than (1.13). This is due to the fact that the order structure on the time axis
plays much greater a role here than in usual stochastic integrals. We have lost the globality
featured in modern integration theory; but as stochastic integrals are usually understood
as processes computed in an adapted way with respect to time, this loss is probably not too
serious. The following example shows how important the time structure is in those
integrals.

(1.16) An example where H € D(X) and H-X # lim,(HIjz<)-X). Define sequences
(an)n=1 and (br)n=1 by

(0

nb,
As b, > n/2, one has | a,| < 2/n* and X = ¥, anl{i/n«[ is a semimartingale. Let H be a
predictable process such that Hi,, = b,. Because H1/,AX1/n = nb, = (—1)"/n, His in D(X)
and (H-X); = Yn=1/: (—=1)"/n. Nevertheless L = lim,(HI <) -X) exists, and is not equal
to H-X but to H-X — (1/2)log 2. (For t =1,

HX=-Y+%—-Y%+%— ... =—log2,

bon =30, ban1=3n+1; biypz=3n+2; a,=

Li=-%-Y%+%—Y%—-Y%+%—...=—%log2;
for0<t=1,
L -L= len<l/tH1/nAX1/n =H.X; — H-X,)

So far, Definition (1.3) enables us to check if a given process Y is, or not, the integral
H-.X, but gives no way of constructing Y when H and X are given. Such a construction is,
in fact, hidden inside Lemma (1.2); the rest of this section is devoted to making it explicit.

(1.17) We are given a semimartingale X and a predictable process H. We are going to
define inductively, for each ordinal a, two classes ¢ and ¢/ of optional intervals J for
which the integral p(J) = H-X” can be defined.

First, define % as the class of all optional intervals  with H € L(X"); for J € %, let
u(J) denote the process H-X7; define ¢ = %.

Then, suppose %, and ¢ are defined for some ordinal &, and suppose p is defined as a
process-valued mapping on %, U ¢ . Define #,., as the set of all optional intervals o of the
form J, U J, where J; and oJ; are in ¢, with J; N J> = ¢; define p(J) = p(J) + p(Jo).
Define # ., as the class of all J of the form lim, 1 <J,, with ¢/, € %+, such that lim, p(J,)
exists pointwise; for J € ¢/, define u(<J) as this limit.

Last, suppose ¢, and ¢, are defined for « < B8, where B is an ordinal of the second kind.
Define ¢; and ¢} as U< %..

To make the preceding construction meaningful, we have to show that the definition of
¢ involves no contradiction. More precisely, we must prove that, if u is well defined up to
level a, then the definition u(J) = u(J1) + u(J2) for J € %1 does not depend on the
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decomposition o/, U oJ; of JJ and agrees with the previously defined u(.J) if </ belongs to
some ¢ or ¢ with 8 = «; and an analogous statement for the definition u(J) =
lim, w(<J,). This can be done in a pedestrian but tedious way. It is much quicker to use
what we already know about pseudointegrability: the next lemma makes it obvious.

(1.18) LEMMA. For each a, ¢, and ¢, are hereditary, and, if J belongs to ¢, or ¢ ., then
He DX’ and p(J) = H-X".

Proor. The transfinite induction goes without difficulty, owing to (1.9) (which implies
the additivity of p) and to (1.14) (which implies the stability of u under increasing lim-
its). 0

This construction can be done for any H and X. It leads to a “constructive” character-
ization of pseudointegrability:

(1.19) THEOREM. Let X be a semimartingale, H a predictable process. Then H € D(X)
if and only if [0, [ belongs to 4, for some ordinal a. When this holds, a may be chosen
countable.

Proor. If{0, «of belongs to %, the preceding lemma shows that H € D(X). Conversely,
suppose H € D(X). We claim that {0, ] belongs to_¢#, for some countable a. Define &, as
the class of all closed optional sets E such that, for U and V stopping times with U < V
and {U, V[ N E = ¢, JU, V] belongs to #,. Except that we now have to count the number
of times we use properties (ii) and (iii), the proof is very similar to that of Lemma (1.2), so
we merely sketch it.

First, similarly to (a), one shows that if (E,) is any decreasing sequence such that
E, € &, for each n, then N, E, is in &, +1- Then, as in (b), one checks that if E is a
closed set and T a stopping time with E N [T} = ¢ and E U [T] € &,, then E belongs to

a1

As in (c) and (d), this implies that, if E is in &, its derived set is in &+, for some
countable 8 and its perfect kernel in &, +, for some countable y (8 and v, of course, do not
depend only on a).

Now, the set E in Step 3 of the proof of Lemma (1.2) belongs to &, thus its perfect
kernel, ¢, is in &, for some countable y. Hence ]0, [ is in £, and [0, »[ in #,.,, which
proves the claim. 0

(1.20) REMARK. In the construction of ¢/, from #, .., we required the sequence (.J,) to
be increasing. Facts (1.18) and (1.19) remain true if we drop this requirement. Indeed, if <J,,
is a sequence of optional intervals with limit oJ, if H is in D(X”") for all n, and if lim,, H-X""
exists, then H is in D(X”) and H-X" is equal to this limit. This follows at once from (1.14)
and from the inclusion J C U, oJ,..

2. Pseudomartingales. In this section, we shall make use of the notion of
“semimartingale in an open set” studied by Meyer and Stricker [11] after an idea of
Schwartz. We first recall quickly a few facts from [11].

Given a process X and an open random set A (for us, A will always be optional), we say
that X is a semimartingale in the open set A if there exist a countable covering of A by
optional open sets A" and a sequence of semimartingales X" such that, for each n, X = X"
on A". The next two facts are proved by Meyer-Stricker:

(2.1) If (A,).eris a (not necessarily countable) family of open sets, and if X is a semimartin-
zale in each A, then X is a semimartingale in the essential union ess U,c; A,. This implies
that, given a process X, there exists a largest open set A (up to evanescent sets) such that
X is a semimartingale in A; if X is optional, so is A.

(2.2) If T is a stopping time, and if an adapted process X is a semimartingale in the open
set [0, T'[, then there exists an increasing sequence of stopping times T, with limit T,
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such that each X”" is a semimartingale.
A consequence of (2.2) is the following translation into our notations of a particular case
of Theorem 4 of Meyer-Stricker:

(2.3) LEMMA. Let Y be a cadlag adapted process and O an optional open set. If Y is a
semimartingale in O, there exists a sequence (L,) of pairwise disjoint predictable
intervals covering O such that each Y is a semimartingale.

PrOOF. For s =0, the process ¥ = (Y,),=sisa semimartingale (for the filtration (%) =)
in the open set [s, [ N O (open in s, «[). Let T* be the debut of [s, ] N 0% ¥is a
semimartingale in s, T*{. By (2.2), there exists an increasing sequence (7'3) of stopping
times such that T§ = s, lim, T = T* and Y571 is a semimartingale. The family
({s, T2+, where s ranges over the rational numbers, can be ordered to get a sequence
(Jk)ren of predictable intervals covering O and such that each Y is a semimartingale.
The oJ; are not disjoint, but noticing that J; N (Ui, J) is a finite union of disjoint
predictable intervals, it is easy to replace them by a disjoint sequence (L,) as in Lemma
(1.1).0

We are now ready to define pseudomartingales:

(2.4) DEFINITION. A process Y is a pseudomartingale if it is cadlag, adapted, and if there
exists a thin closed set E such that Y is a semimartingale in E°.

Using (2.1) it can be remarked that a cadlag adapted process Y is a pseudomartingale
if and only if the smallest closed set E such that Y is a semimartingale in E° is thin.
Pseudomartingales are a vector space.

The next two theorems show the relationship between pseudomartingales and pseu-
dointegrability.

(2.5) THEOREM. For a cdadlag adapted process Y, the following three conditions are
equivalent:

(i) Y is a pseudomartingale;
(i) there exists a sequence (<J,) of optional intervals covering [0, o such that each Yo
is a semimartingale;
(iii) there exists a semimartingale X and a predictable X-pseudointegrable process H
with Y = H-X.

When they hold, the J, in (ii) may be chosen pairwise disjoint and predictable, and
the process H in (iii) positive and bounded away from zero.

Proor. Denote by (ii’) the statement (ii) with /, predictable and pairwise disjoint,
and by (iii’) the statement (iii) with H = 1. (i) = (i"). Let E be a thin optional closed set
such that Y is a semimartingale in E¢. According to Lemma (2.3), there exists a covering
(L) of E* by pairwise disjoint predictable intervals such that Y. are semimartingales.
Now (U, L,)“ is a thin predictable set, thus the union of a sequence (G,) of pairwise disjoint
predictable graphs. As Y is cadlag and adapted, each Y% is a semimartingale. Reordering
the G, and L, into a sequence (J,,) gives the result. (ii’) = (iii’). Let (a,) be a sequence in
(0, 1] such that

d(a, Y7, 0) <27,

where d is a complete, translation-invariant distance on semimartingales, compatible with
the topology of semimartingales (see Dellacherie-Meyer [3] page 315; if he prefers, the
reader may stop all processes at a fixed time ¢, choose a new probability for which each Y7
is in the Banach space &' of semimartingales, and use the & '-norm instead of d). Such a
sequence (a,) exists because the space of semimartingales is a topological vector space.
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The partial sums of the series ¥, aY?" are a Cauchy sequence for d; hence the series has
a sum which is a semimartingale X verifying X = a,Y”". Define H = ¥, (1/a,)I;; His a
predictable process with H = 1, and for each n, H is X”-integrable (because H is bounded
on oJ,) with H-X”" = Y?. Thus, by Definition (1.3), H is X-pseudointegrable and H-X =
Y. (iii) = (ii) follows immediately from Definition (1.3). (ii) = (i). Let 0 = U, <}, where <,
is the interior of JJ,. Then Y is a semimartingale in each o,, thus in 0, and 0° is included in
U, d<,, hence thin. 0

(2.6) REMARK. Another variation on assertion (ii) will be useful in the sequel: if Y is a
pseudomartingale, there exist a sequence (s,) of deterministic times and a sequence (S,)
of stopping times such that each Y!*S! ig a semimartingale and (U, }s,, S.})¢ is thin.
(This follows from a standard argument in the theory of semimartingales in open sets,
already used in Lemma (2.3): for each rational s, there exists by (2.2) a sequence (7'%)
of stopping times such that Y™l is a semimartingale and sup,7'; is the debut of
{5, o N 0°)

We already saw, in the remark following (1.10), that, given a pseudomartingale Y, one
can define the spaces L(Y) of predictable Y-integrable processes and D(Y) of predictable
Y-pseudointegrable processes. It is easy to check that properties (1.6) to (1.15) still hold
when the semimartingale X is replaced by a pseudomartingale.

(2.7) THEOREM. Let X be a pseudomartingale, H a predictable process, Y a process.

Then H is in D(X) with H-X = Y if and only if

(i) Y is a pseudomartingale, and

(i) for all optional (resp. predictable) intervals J, H is X”-integrable if and only if Y7 is
a semimartingale, and, for every such J, Y’ = H-(X”).

Proor. Replacing X by X*, where L is a suitable predictable interval, and using (1.14),
we may suppose X is a semimartingale.

If H is X-pseudointegrable with H-X = Y, we already know that Y is a pseudomartingale;
if J is any optional interval, we have seen in (1.13) that H € D(X”) and H- X7 = Y, if Y’
is a semimartingale, (1.15) implies that H is X ’-integrable.

Conversely, suppose that (i) and the predictable form of (ii) hold. By Theorem (2.5),
there exists a sequence (Ly) of predictable intervals covering [0, »[, each Y* being a
semimartingale. Then H € D(X) and H-X = Y by Definition (1.3). 0

In the rest of this section, we are interested in the behaviour of “pseudointegrals” under
a change of filtration and in the Jacod-Meyer convexity property for pseudointegrability.
The proofs rest on similar properties for semimartingales in open sets that we lazily borrow
from Meyer-Stricker [11].

Suppose we have another filtration G = (%,).<0 on (2, % P), satisfying the usual
conditions and larger than F (i.e. V¢% C % C ); this implies that every F-predictable
process is (-predictable. Wherever necessary, we shall use such notations as Dy (X) or
H; X. We shall start with two lemmas belonging to semimartingale theory (the prefix
“pseudo” does not appear):

(2.8) LEMMA. Let S be a G-stopping time, X an F-semimartingale such that X° is a G-
semimartingale, and H a predictable process in both Ly (X) and L;(X5). The integrals
H; X and H; X® are equal on {0, S].

ProoF. The result is obvious if H = I, qxa,where A is in .%. It can be extended to all
bounded, F-predictable processes H by the monotone class theorem. In the general case,
H" = Hlms<n is a sequence of bounded, F-predictable processes such that H; X =
lim, Hf # X and Hg X° = lim,, Hg ¢ X5, where the limits are to be taken in the topology of
compact convergence in probability (see Dellacherie-Meyer [3]); this proves the lemma.

]
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(2.9) LEMMA. Let S be a G-stopping time. There exists a sequence (T,) of F-stopping
times, such that sup, T, = S, with the following property: If an F-semimartingale X is
such that X5 is a G-semimartingale, and if an F-predictable process H belongs to Lg(X5),
then H is in Lg(X™) for all n.

Proor. Let @ stand for the F-optional projection of Ijo,s;; define
T,,=inf{t:Q,5712-}; T = inf{t: @, = 0}.

Because P[S > T'| #7] = @r=0,S = T a.s; as @ is a positive supermartingale, @ sticks at
zero when it hits it, and 7' = lim, T, (see Dellacherie-Meyer [3], page 86). Thus lim, T,
=S

If A is any F-optional right-continuous increasing process, one has

T,— @
—’17 E[Ar_]= E{ @ dA,] = E[j Iyos1 (2) dA,:l = E[As].
0 0

The topology of the F-semimartingales may be defined with the quasinorm
[ Xl = Xm 27" supkx E[1 A supi<m| K- X|],

where K ranges over all F-predictable processes with | K| < 1; similarly for @. If X is an F-
semimartingale such that X° is a (-semimartingale, the preceding inequality applied to

A; = 1A sups=inn| K-X|s
yields
X7 oy = nl| X5 e

Now if H is an F-predictable process in Lg(X5), the sequence H*. XS (where H* stands
for HI <y ) is a Cauchy sequence for | [|«a), hence the sequence H*- X"~ is a Cauchy
sequence for || ||«); this implies H € Ls(X™") (see Chou-Meyer-Stricker [1]), whence
He Lp(X™).0

The filtration @ still being larger than F, we now study how pseudointegrability for G
implies pseudointegrability for F.

(2.10) THEOREM.

(a) Every F-adapted G-pseudomartingale is an F-pseudomartingale.

(b) Let X be a pseudomartingale for both filtrations, and H an F-predictable process in
D (X). Then H belongs to Dy (X), and H; X = Hp X.

Proor. (a) This is a corollary of Theorem 12 of Meyer-Stricker [11] (if a cadlag F-
adapted process is a G-semimartingale in some open set, it is an F-semimartingale in some
larger F-optional open set).

(b) There exists a countable covering (L) of {0, o by F-optional intervals such that
XL: is an F-semimartingale. It suffices to prove the theorem for each X+, thus we may
suppose that X is an F-semimartingale. By (2.6), there exists a sequence of intervals J;, =
Ise, Sk} such that s, are constant times, S, are G-stopping times, X”*and (Hg X)”*are G-
semimartingales, and (U.eJ;) € is thin. Let Y = H; X. Using Lemma (2.9), construct a family
T3 of F-stopping times such that sup,7f = S, and H € Ls(X"), where I} =
sk, T#]}. We are going to demonstrate that Hz X" = Y’#; because the complementary of
Us. 1% is thin, and because AY = HA X, this will prove the theorem.

So, restricting ourselves to I, we may suppose that H € Lr(X) and we want to show
that Hr X = Y. Lemma (2.8) implies that Y — Hf X is constant on each interval [s;, T
A S, ], thus on Js;, S;{. As these intervals cover {0, [ but a thin closed set, and as Y —
Hy: X is continuous (because AY = HAX) and null at time zero, Y = Hg X. [0
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By what we have just seen, when the filtration is replaced by a smaller one, pseudoin-
tegrals behave as nicely as ordinary integrals. We now turn to the converse problem:
enlarging the filtration. We are going to see that, in this case also, pseudomartingales
behave like semimartingales: not better, but not worse. The filtration G being, as always,
larger than F, we try to deduce pseudointegrability in G from pseudointegrability in F.

(2.11) THEOREM. Suppose that, for F, X is a pseudomartingale and H a predictable X-
pseudointegrable process; suppose that, for G, X and Hf. X are still pseudomartingales.
Then H belongs to Dg(X) and H; X = Hf X.

PrOOF. There exist F-optional intervals L, covering {0, o{ such that X*is a semi-
martingale and H € Lr(X"). Restricting ourselves to such an interval, we may suppose
that X is an F-semimartingale and H € Lp(X). Put Y = H: X. As X and Y are
pseudomartingales, there exists by (2.6) a sequence of G-optional intervals J, = }s,, S, ]
(where s, are constant times) such that (U,..J,,) ¢ is thin and X?"and Y“~are G-semimartin-
gales. Let K = (1 + |H|)7", so that K and KH are bounded and K never vanishes. The
associativity property for stochastic integrals implies Kz Y = KHp¢ X, whence (Kz Y)7 =
(KHf: X)7». Applying Lemma (2.8) to the translated filtrations (#)e=s, and (%,)s=,, nOW
yields K; Y7*= KHg X”. It is possible to integrate K" on the left-hand side, hence also
on the right-hand side, and, using associativity again, one finds that H is in Lg(X”") with
Hg X7 = Y7». Because (U,d,)° is thin and HAX = AY, this implies H € Dg(X) and
H;X=Y10

In this theorem, the assumption that H# X is a G-pseudomartingale is not a consequence
of the other hypotheses. A similar phenomenon is known to occur for semimartingales, as
shown by an example due to Jeulin-Yor [8], where the processes are continuous. We give
below an example of a semimartingale A (for both filtrations F and @) and a process H in
Lg(A) but not in Dg(A): the F-semimartingale Hf A is not a @-pseudomartingale. This
example involves jumps; there probably exist similar examples in the continuous case but
we do not know any.

(2.12) EXxaMPLE. For n =1 and k odd with 0 < & < 2", let A™* =¢, ; Ijso-, Where &, ,
are i.i.d. random variables with P (e, » = +1) = P(e, » = —1) = %. For their natural filtration
F,A=Y%,,4"A"" and M =Y, , 2"A™* are square integrable martingales; moreover M
= H-.A, where Hj-» = 2", For the constant filtration G, where %, = % Vt, A is still a
semimartingale, because it has finite variation. But M has infinite variation on every non-
empty open subset of [0, 1]; this implies that there exist no non-empty open subinterval of
{0, 1} on which M is a G-semimartingale, and M cannot be a G-pseudomartingale.

To conclude this section, we now give the “pseudo” version of the Jacod-Meyer
convexity property. We are given the space (2, & P), the filtration F, and a (finite or
infinite) sequence (P,) of probabilities absolutely continuous with respect to P, such that
the events Q, = {dP,/dP > 0} (defined up to a P-null set) cover 2. Let F, denote the
filtration F completed for P,. According to (1.11), pseudointegration is not affected when
(F, P) is replaced by (F,, P,). Here is a converse result.

(2.13) THEOREM.

(a) If an F-adapted process is an (F,, P,)-pseudomartingale for each n, it is also an
(F, P)-pseudomartingale.

(b) Let, for (F, P), X be a pseudomartingale and H a predictable process. If, for each n,
H is X-pseudointegrable under (F,, P,), then it is also X-pseudointegrable under
(F, P).

PROOF. (a) For each n, there exists a thin closed set E, included in R+ X &, such that
the given process Y is an (F,, P,) semimartingale in E. By Theorem 10 of Meyer-Stricker
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[11], Y is an (F, P) semimartingale in the (non F-optional) open set O, = E; N (R+ X
©,), thus in the union O = U, O,; but O° is thin because O° = U, E,; so Y is an (F, P)-
pseudomartingale.

(b) Replace 2, by @, = £, N (Unn<.n)¢, define P}, as the probability P, conditioned by
Q, if P,(2,) > 0 and replace P, by P;; drop the P, for which P, (£2,) = 0. This gives a new
(perhaps shorter) sequence (F;, P;) which satisfies the hypothesis of the theorem and
such that the events £, are pairwise disjoint. Hence we may suppose that the sets £, are
pairwise disjoint. Denoting the integral H-X computed under (F,, P,) by Y", there exists
a cadlag process Y such that, on J, = R, X ,, Y = Y". Let G be the smallest enlargement
of FF such that %, contains all the events &,,. As those events are disjoint, the P, -completion
of G is G, = F,. The process X is (G-adapted, and it is a (G,, P,)-pseudomartingale for
every n; by (a) X is a (G, P)-pseudomartingale.

For fixed n, let L} be a sequence of (F,, P,)-optional intervals covering {0, [ such that
H is XLi-integrable with H . XL/ = YL up to P,-indistinguishability. The intervals J; =
Li N (R+ X Q) are G,-optional, and H is in L;(X7*) up to P-indistinguishability. As
Un, ki = {0, oof, this implies that H is X-pseudointegrable for (@, P), with integral Y. By
(2.10.b), H is also X-pseudointegrable for (F, P) with integral Y. [

3. Quadratic and decomposable pseudomartingales. In this section we shall
attempt, given a pseudomartingale Y = H.X, where X is a semimartingale, to split X into
parts that make the integral easier to define or to study. In other words, we are looking for
decompositions of pseudomartingales into simpler processes. The main result is (3.10): A
pseudomartingale is the sum of a local martingale and a process that can be studied path
by path if and only if it has a continuous martingale part.

Our first step will be to define H-X, when possible, path by path. All that has been done
so far can also be done in a deterministic setting, where we deal with functions on [0, o)
instead of processes, where cadlag functions with bounded variation on compact sets
replace semimartingales, and Stieltjes integrals replace stochastic integrals. In this frame,
a measurable function A is naturally said to be pseudointegrable with respect to a cadlag
function a with bounded variation on compact sets if there exist a cadlag fand a countable
covering of [0, ®) by intervals J,, such that, for each n, A is a”-integrable (in the Stieltjes
sense), and f7"= h-a”. Linearity, associativity, etc. ... remain true for those integrals
(just apply the corresponding probabilistic properties to the case when P is a Dirac mass).
There is no ambiguity in writing D(a) for the space of all measurable a-pseudointegrable
functions. Functions such as A4 -a, where A is in D (a), will be called primitives of measures;
they are the deterministic counterpart of pseudomartingales. By (2.5), a primitive of
measure can also be characterized by the existence of a countable covering of [0, ») by
intervals on which it has finite variation.

(3.1) DEFINITION.

(a) A process is a primitive of measure if it is cadlag, adapted and if (almost) all its paths
are primitives of measure as functions.

(b) The process A being a primitive of measure, a process H is pathwise pseudointegrable
with respect to A if, for (almost) all w € &, the function H (w) is in D (A (w)).

The space of all predictable pathwise A-pseudointegrable processes will be denoted by
Dyan(A). It is included in D(A):

(3.2) PrOPOSITION. Let A be a primitive of measure.

(a) A is a pseudomartingale. More precisely, there exist a predictable process H=1, a
process B with finite variation and a countable covering of {0, «{ by pairwise disjoint
predictable intervals J, such that H-B”"exists in the Stieltjes sense and is equal to
A

(b) If K is a predictable, pathwise A-pseudointegrable process, K is A-pseudointegrable,
and both integrals (K-A and the integral computed path by path) agree.
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Proor. (a) The proof uses the fact that the set ¥ of all processes with finite variation
is a complete t.v.s. for the quasinorm

1X] = . 2‘"E[1 /\j IdXsl] .
0

For s > 0, define stopping times 7', by

T =inf{tzs:j | dA.| zn};
.41

let L3, = }s, T%{ and 0 = U, , L}, where s ranges over the rational numbers. Each AL is
a process with finite variation. Using the fact that 0° is thin and that A!"! is in ¥ for each
stopping time 7, Lemma (1.1) gives a sequence (<J,) of pairwise disjoint predictable
intervals such that each A”"is in #. Now choose a, € (0, 1] such that ||a, A7 |, = 27",
define

1
B = En anAJ"; H= Zn - IJ,ly
Qn

and the required property is easy to check.
(b) Using the stopping times

Tfl=inf{t2 s:f a1+ IKuI)IdA.,Izn},
(s,¢]

it is easy to construct countably many optional intervals <J,, such that A7»is in ¥; K-A’~
exists as a Stieltjes integral and is equal to Y”/», and (Un,<J,,) is thin. As AY = KA A, this
proves the proposition. [

S0 Dypatn (A) is included in D(A). What about the converse? In Example (2.12), H is in
D(A) (and even in L(A)), but, as H-A has infinite variation on every non-empty open set
in (0, 1), H-A is not a primitive of measure and H cannot belong to Dpatn (A ): the converse
is not always true. But it holds when A is predictable.

(3.3) ProposITION. If A is a predictable primitive of measure, Dp.n(A) = D(A).

(3.4) LEMMA. If X is a predictable pseudomartingale and if H is X-pseudointegrable,
then H-X is predictable.

This lemma is an obvious consequence of the following characterization of predictable
processes (Dellacherie-Meyer [3]): A cadlag adapted process Z is predictable if and only if
AZ7 = 0 for every totally inaccessible stopping time T"and AZr is #r—-measurable for every
predictable stopping time 7. O

Proor or ProprosITION (3.3). Let A be a predictable primitive of measure and H an
element of D(A). By the preceding lemma, H-A is predictable. There exists a countable
covering of {0, o[ by predictable intervals ¢/, such that A7is a semimartingale and H €
L(A”"). Both semimartingales A”-and H-A“ are predictable, thus special. Theorem 1 of
Yan [13] shows that the integral H-A 7~ is pathwise computable. Hence H is in Dyain(A).

0

The next natural question is the behaviour of integrals H-M, where M is a local
martingale. We need to define a restricted class of pseudomartingales:

(3.5) DEFINITION. A pseudomartingale Y is special if there exists a local martingale M
such that Y — M is predictable.
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Of course, a semimartingale is special as a semimartingale if and only if it is special as
a pseudomartingale: this definition creates no ambiguity. As a matter of fact, Schwartz has
extended the definition of specialness to formal semimartingales.

(3.6) THEOREM. Let M be a local martingale, H a predictable, M-pseudointegrable
process. If the integral H-M is special, it is a local martingale, and H is M-integrable.

Proor. Let H-M = N + Z, where N is a local martingale and Z a predictable process;
let # denote the class of all predictable intervals < such that H € L(M”) and H-M” is a
local martingale. We shall apply Lemma (1.2) to ¢ Hypotheses (i) and (ii) are obviously
fulfilled, (iv) is a consequence of (1.12). It remains to show that, if J, is an increasing
sequence in g its limit < also belongs to ¢

We have

H.M?=N’+27;, HM’ =N+ 27

Because each H.-M7"is a local martingale, so is Z“». We want to show that Z7 is also a local
martingale. Since Z is predictable, the increasing process Z}* = sup,<; Z?2 is locally
integrable; thus, by stopping, we may assume that Z., exists and Z.* is in L% Now Z”7" is a
square integrable martingale such that, when n goes to infinity, Zr converges to ZZ, the
convergence being dominated by 2 Z.*; thus Z’"tends to a limit in the space of square
integrable martingales. As Z”"goes to Z” pointwise, identifying limits shows that Z” is a
martingale. 0 '

When it is not special, the integral H.-M need not be a semimartingale. Here is an
example, borrowed from Lepingle-Mémin [9] via Meyer-Stricker [11]:

Let (£.) be a strictly monotone convergent sequence in [0, ). Define a process Y,
constant but for independent jumps at times &,, by

1 1
(—D"”(n - = ) with probability —
n n
AY, =

1 1
—1)" = with bility 1 — —
(-1) - with probability .

With probability one, all but finitely many jumps have the value (—1)"1/n, and the series
Yr AY, converges; thus Y is a pseudomartingale. As E[A Y, ]=0, it is easy to write Y as an
integral with respect to a square integrable martingale. But Y is not a semimartingale, for
if H is a predictable process with H, = (—1)", the integral H-Y does not exist (it should
have a jump of size 1/n at time ¢, for all but finitely many n).

Given a pseudomartingale Y (or more generally a formal semimartingale), it is easy to
see that its “continuous local martingale” part Y and its quadratic variation [Y, Y] are
well defined as formal semimartingales: writing Y = H.X, where X is a semimartingale,
one verifies that neither H-X° nor H*.[X, X] depend on the choice of H and X. If[Y, Y]
is a pseudomartingale (i.e. if H> € D([X, X])), it is an increasing process and H”-[X, X] is
a Stieltjes integral. Such pseudomartingales Y will be called quadratic pseudomartingales;
we shall come back to them later. If Y° is a pseudomartingale, by (3.6) Y° is a local
martingale and H € L(X“). When this happens, we shall say that Y is a decomposable
pseudomartingale because of (3.10) below. To avoid the statement “a pseudomartingale is
decomposable if and only if it has a decomposition,” this name will be used only after
(3.10); temporarily we shall merely say that “Y* exists.” There are pseudomartingales Y
(even continuous ones) such that Y° does not exist.

(3.7) ExampPLE. We need three ingredients: a continuous local martingale M on [0, 1981)
with explosion at time 1981, so that [M, M]is = + = (e.g.

t
1
M = P E— EE)
¢ fo 1981 — sdB
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where B is a brownian motion), a diffeomorphism f between [0, 1981) and [1, 00)( eg. f(t)
1 .
=~ 581 ), and a bounded difference of two convex functions, ¢, such that | ¢pieq (x) |

=1 for all x (e.g. ¢ (x) is the distance from x to the nearest even integer). Define

f(t)

Y_{—l o(f(t)M,) for 0=t<1981
)=
0 for ¢=1981.

Because | Y,| = 1/f(t) || ¢ || for ¢ < 1981, Y is continuous; being a semimartingale on each
interval [0, 1981 — ¢], Y is a pseudomartingale.
The Tanaka-Meyer formula shows that

N, = j bl (f(s)M,)dM,
0

is the martingale part of the semimartingale Y on each interval [0, 1981 — ¢]. For ¢ < 1981,
[N, N], = [M, M];; thus N explodes at time 1981, and there is no pseudomartingale
agreeing with N on [0, 1981); hence Y* is not a pseudomartingale.

We arrive at the decomposition theorem. The proof uses the space .#"' of martingales
M such that [M, M]./? is integrable; the reader who likes hieroglyphics can decipher [4]
and use the topology of local martingales instead; he will save a localisation in the proof of
the theorem.

(3.8) LEMMA. Let M be a martingale in #"' with M = 0 and H a predictable process M-
integrable in #"'. There exists a sequence of martingales with finite variation (M") in
A", such that each H-M" exists in the Stieltjes sense, and lim, M" = M, lim, H-M" =
H-Min #".

Proor. Let (7)) be a sequence of stopping times with disjoint graphs that exhausts all
jumps of M; define

A" = Y= AM7, L)1, i -

Compensating A” yields a martingale M" in .#"' with finite variation; as [M", M"] <
[M, M], one has

(HZ.[MH, Mn])l/zS (HQ'[M, M]I/Z)’

and H is M"-integrable in .#"'. But H-M" — H-A" is predictable; hence H-M" has finite
variation and this integral exists in the Stieltjes sense. Last, M" goes to M in "' for

M—M"M— M= Cin AMF,)'"?

goes to zero in L' (convergence dominated by [M, M]Y?); similarly, H-M" goes to H-M in

#'.0

(3.9) THEOREM. Let Y = H-X, where X is a semimartingale and H a predictable X-
pseudointegrable process. Then Y* exists if and only if X = M + A, where M is a local
martingale, H is M-integrable in the sense of local martingales, A is a primitive of
measure and H is in D,.n(A).

Proor. If such a decomposition exists, H-M* exists; let </, be a sequence of intervals
covering {0, o] with A”"in ¥ and HE L(A”"); as (A7) =0, (H-A”")* = 0, whence (H-A)¢
exists (and is zero). Thus Y* exists.

Conversely, suppose Y* exists. We already know that H is X‘-integrable, where X is
the continuous local martingale part of X; it remains to find a decomposition of X — X*.
Thus we may suppose X = Y = 0. There exist disjoint predictable intervals ./, such that
H € L(X"); hence there exists for each n a decomposition N” + B" of X" such that
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H.N" exists in the sense of local martingales and H-B" in the Stieltjes sense. We may
suppose

N"=1I,-N"; B,=1I,-B,.

As the result we want to prove is local, we may, by stopping, suppose N"” and H-N" in
#". The preceding lemma gives a sequence N™* of martingales with bounded variation
such that H-N™" exists in the Stieltjes sense and, in #*,

lim, N** = N"; lim, H-N™* = H.N".
For each n, chose k(n) such that
" Nn,k(n) — N* " s+ " H-N"’k("’ — H.-N" ",}f/' < 2~n;

define M = ¥,,(N" — N™*"™) where the series converges in #'. One has H-M =Y, H.(N"
— N™*™) and H is M-integrable in the martingale sense. Putting A = X — M,

AJ,, — (Nn + Bn) _ (Nn _ Nn,k(n)) = B" + Nn,k(n)

shows that A “" has finite variation and H-A”" exists in the Stieltjes sense, whence A is a
primitive of measure and H € D,,n(A). O

(3.10) CoroLLARY. A pseudomartingale Y can be decomposed into a local‘martingale
and a primitive of measure if and only if Y° exists.

The next two theorems treat the canonical decomposition of a special decomposable
pseudomartingale.

(3.11) THEOREM. A pseudomartingale can be decomposed into a local martingale M
and a predictable primitive of measure if and only if it is special and decomposable. If
one requires M, = 0, this decomposition is unique.

Proor. The necessity is obvious. For sufficiency, suppose a pseudomartingale Y is
both special and decomposable. As Y is special, Y = N + Z, where N is a local martingale
and Z a predictable process; define M =N+ Y°— N, A=Y — M, so that Y = M + A with
M° = Y° and A predictable. It suffices to prove that A is a primitive of measure. As Y is
decomposable, Y = L + B, where L is a local martingale with L° = Y° and B a primitive
of measure. There exist predictable intervals ¢J,, covering {0, o such that B7*has finite
variation. Thus A7 = B’ + (I, — M)”"is a predictable semimartingale, with (477)¢ = 0.
This implies that A 7 has finite variation, and A is a primitive of measure.

As for unicity, if a local martingale N with Ny = 0 is also a predictable primitive of
measure, there exist predictable intervals J, covering [0, o[ such that N7 is a predictable
local martingale, null at time zero, with finite variation. Hence N7 = 0, and N = 0.0

(3.12) PROPOSITION. Let X = M + A and Y = N + B be two special decomposable
pseudomartingales, with their canonical decompositions; let H be in D(X) with H-X =
Y. Then Hisin L(M) with H-M = N and in Dyan(A) with H-A = B.

Proor. Choose predictable intervals J, covering [0, oof such that A7» and B~ have
finite variation. The semimartingales X”» and Y7 are special, with canonical decomposi-
tions M7 + A7 and N”* + B?"; moreover H € D(X’") with H-X?" = Y, which implies,
by (1.15), that H € L(X”r). Now Theorem 1 of Yan [13] implies that

HeLM?) with H-M7 = N’
HeL(A”) with H.A”’=B".

So H€E€ D(M) with H-M = N, and H € D(A) with H-A = B. By (1.15), H € L (M) and by
(3.3) H € Dypan(A). O
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We now turn to quadratic pseudomartingales. We shall show that they are decompos-
able, and that they give rise to a nice characterization of specialness and to a more accurate
version of (3.9).

Recall that a pseudomartingale Y is quadratic if, when written H-X with X semimartin-
gale and H € D(X), H? is [X, X]-pseudointegrable (hence also integrable in the Stieltjes
sense); this does not depend on the choice of H and X.

(3.13) PROPOSITION. (a) Quadratic pseudomartingales are a vector space, in which
[Y+Z,Y+Z]=<[Y, Y]?+[Z, Z]'?

holds.
(b) Every quadratic pseudomartingale is decomposable.

ReMARK. The Kunita-Watanabe inequality also holds for quadratic pseudomartin-
gales; we won’t need it.

ProoF. (a) Write Y = H-U and Z = K.V, with U and V semimartingales, and
approximate H and K by bounded predictable processes H" and K". The desired inequality
is true for Y" = H".U and Z" = K".V, taking limits, it holds for Y and Z.

(b) Write Y = H.X, where X is a semimartingale. As H?-[X, X] exists, so does H*. (X",
X°¢), and the integral H-(X°) exists in the sense of local martingales. 0

Of course, the converse is not true. Even in the deterministic case, though all pseudo-
martingales are decomposable, some are not quadratic, for the convergence of the series
Y x. dose not imply ¥ x7 < oo.

(3.14) PROPOSITION. A quadratic pseudomartingale Y is special if and only if the
increasing process [Y, Y1'? is locally integrable.

Proor. If Y is special, then Y = M + A where M is a local martingale and A a
predictable primitive of measure. As [M, M]'"? is locally integrable, it suffices to show that
[A, A]* has the same property. But, because A is predictable, so are [4, A] (see (3.4)) and
[A, A% this gives the result.

Conversely, suppose [ Y, Y]"/? is locally integrable; we want to show that Y is special. As
specialness is a local property, we may suppose [Y, Y]/? is integrable. Let (7%) be a
sequence of stopping times with disjoint graphs that exhausts the jumps of Y; define

A" = Ypen AY 1 Ly 0 -

As each AYr, belongs to L', A” is integrable. Compensating A" yields a martingale M"
such that (Dellacherie-Meyer [3] page 307)

E[[M", M"]¥/*]1 < 3E[[A", A"]¥%].
Now [A", A"]. = Y=n AY% = [Y, Y].. implies that the sequence (M") is bounded in the
space #'. As the increments M"*' — M" are orthogonal in the sense of Lemma 3 of Meyer-

Stricker [11], the sequence (M") converges, in #’’, to a limit M. If T'is a totally inaccessible
stopping time,

AMr=1lim, AAT = AY7;
if T is predictable,
AM7 =lim,(AA% — E[AA%| %r-]) = AYr — E[AY 7| Fr_].

Putting Z = Y — M, this shows that AZr = 0 for totally inaccessible T and AZ7y =
E[AZ7| %r-] for predictable T. Hence Z is predictable and Y special.
A consequence of this proposition is the possibility of making special a given quadratic
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pseudomartingale by a suitable change of probability. For a nonquadratic pseudomartin-
gale, this is false in general, even in the decomposable case. Here is an example of a
(nonquadratic) bounded pseudomartingale Y, with Y° = 0, that is not the sum of a
semimartingale and a predictable process (hence no change of probability can make Y
special).

Let (7) be a sequence of independent random variables with uniform laws on (277},
27"] respectively. The process

Y= Zn(—l)n nil/ZInTn,mﬂ

is a pseudomartingale for its natural filtration (it is even a primitive of measure); the
stopping times 7, are totally inaccessible. If Y = X + Z where Z is a predictable
pseudomartingale, then AX7 = (—1)"n""? whence

X, X]s = S AX} =+,

and X cannot be a semimartingale.

The next proposition shows that, for quadratic pseudomartingales, a slightly stronger
version of Theorem (3.9) holds: the primitive of measure A can be chosen with finite
variation. Though this proposition is stated only for quadratic pseudomartingales, it also
holds, with the same proof, for pseudomartingales that can be made special by an
equivalent change of probability, i.e. pseudomartingales of the form X + Z, where X is a
semimartingale and Z a predictable process.

(3.15) PROPOSITION. Let X be a semimartingale, H a predictable X-pseudointegrable
process such that H-X is quadratic. Then X can be decomposed into a local martingale
M and a process A with finite variation such that H is M-integrable in the sense of local
martingales and pathwise A-pseudointegrable.

Proor. Let Y = H-.X. There exists a probability @ equivalent to P that makes
[X, X]1'? and [Y, Y]"? locally integrable. For @, X and Y are special; let N + B be the
canonical decomposition of X. Proposition (3.12) shows that H is in L (N) and in Dyaw (B);
though this is proved using @, it also holds under P. Now split N into M + C, where M and
H .M are local martingales (for P) and C has finite variation and H- C is a Stieltjes integral.
The process H is pathwise pseudointegrable with respect to B and C, thus also to A = B
+C.0 -
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