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ON DISTRIBUTIONS RELATED TO TRANSITIVE CLOSURES
OF RANDOM FINITE MAPPINGS

By Boris PITTEL!

The Ohio State University

For f, a random single-valued mapping of an n-element set X into itself,
let f~! be the inverse mapping, and f* be such that f*(x) = {f(x)} Uf (), x
€ X. For a given subset A C X, introduce three random variables {(A) =
1F(A)], n(A) = |£7(A)], and {(A) = | /*(A)|, where f, 7", f * stand for transitive
closures of f, f~', f*. The distributions of £(A) and {(A) are obtained. (n(A)
was earlier studied by J. D. Burtin.) For large n, the asymptotic behavior of
those distributions is studied under various assumptions concerning m = | A |.
For instance, it is shown that £(A) is asymptotically normal with mean
(2mn)"/? and variance n/2, and (n — ¢{(A))(n/m)”' is asymptotically
%*/2 (% being the standard normal variable), provided m — o, m = o(n). The
results are interpreted in terms of epidemic processes on random graphs
introduced by 1. Gertsbakh.

1. Introduction. Let X = {x;, ---, x,} be a finite set, and let F' be the set of all
single-valued mappings f or X into itself; clearly | F| = n". Introducing ‘the uniform
distribution on F we obtain the random mapping f which assumes all its values with the
same probability n™". Thus all conceivable characteristics of f become random variables.
There are fairly many results [1-17] concerning various characteristics of a random digraph
Gy representing f. (It is the graph having X as a set of its vertices such that, for each x;,
x; € X, an arc goes from x; to x; iff x; = f(x:).)

Gertsbakh [3] suggested using Gy for models of epidemic processes: namely, X is
considered as a population; a contagious disease is initially confined to a subset (subpop-
ulation) A C X, and it is then spread to other vertices (individuals) along arcs of Gy, the
latter being interpreted as the description of acquaintance-type relations in the population.
There were described three versions regarding whether the infection is spread only forward,
i.e. according to the orientation of arcs, or only backward, or in both directions. For the
former two, Gertsbakh proved that, asymptotically almost certainly, no significant fraction
of the population will be infected if | A | = 0 (n), n— . For the latter, an essential portion
of X will be infected, provided |A | — o however slowly. Clearly, these are asymptotic
properties of the distributions of the random variables £(A4), n(A), and {(A) described as
follows. Let f ' be the inverse mapping, and let f* be such that

@) ={f@)Uf'x), xeX
Denote 7, /7', and f* the transitive closures of £, f, and f*, so that, for instance,
fo) = ) U F@I U (fF@) U -+, xEX.
Then
£A) = fA), n@) =7 A =]l

It is interesting to note that, for | A| = 1, the distributions of £(A) and 5(A), and their
asymptotics, have long been known (Harris [4], Rubin and Sitgreaves [14]). For |A|=m
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RANDOM MAPPINGS 429

> 1, Burtin [1] obtained a surprisingly simple formula for the distribution of 1(A). The
derivation is based on his nontrivial result concerning a more general random mapping.
(Another characteristic of this mapping, the total number of components, was studied by
Ross [13].) It made it possible to carry out a detailed asymptotical analysis of the
distribution of n(A) under diverse assumptions regarding m, n. For instance, m = [«/ﬁ]
was proven to be the threshold function for this inverse epidemic process: namely,
1n(A)/n tends to 0 or 1 in probability regarding whether m = o(Wn) or ﬁ =o(m). (J. D.
Burtin obtained these results in 1977, several months before his untimely death.)

We shall derive exact formulas for two other distributions, namely those of {(A) and
¢(A). The derivation involves solving two enumeration problems: let L(u, v), respectively
M ((p, v), count the total number of mappings fof a . + v-element set Z'into itself such that

£() =p + v, respectively (&) =p+ v,
for a given u-element set of of Z. Then (1) and (2) hold whenever |A | = m.

(1) PEA) =m+s) = (” B ”‘)L(m, S,

@) PGA)=m+s) = (” P m)M(m, S)n—m— s n"
It turns out (Lemmas 1, 2) that ‘
®) Lip,») = (p+7») Ti=o (—1)”-1'(]”.)(” + ),

@ M(p,v) = (u+ )" = Tia (})ﬂ"lm +v =),

(A similar number for n(A) can be shown to be the number of forests on p + » vertices,
which consists of u disjoint trees such that some p fixed vertices belong to distinct trees,
times (v + p)*. By Cayley’s formula for forests, this number is therefore u (v + ) **~*. This
relation can be used for an alternative derivation of Burtin’s formula for the distribution
of n(A).)

Using (1-4), we shall prove the following two theorems about asymptotical properties
of £(A) and {(A) for large n.

THEOREM 1. (a) Let m (= | A |) be fixed; then

(5) PtAn?=x)— 2™ m - 1)) f y*™lexp(—y?/2) dy, x> 0.
0

(b) Let m — o« and n — m — ; then

(6) P((£(4) — a)/Vb < x) - (2m)7 J’ exp(—y?/2) dy, —o<x <o,

where a is the root of the equation

(7 exp(a/n) = (n —m)(n — a)”},

and

_(n— a)[a®(n — m) + a mn — mn?]

® b (n — m)a?

In particular,
a~2mn, b~n/2 if m=o(n),

a—m~m—-—m)(l—et), b~@n—-—m)(l—ee' if n—m=o(n).
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Ifm ~ xn, x € (0, 1), then a ~ an, b ~ Bn where o,  are determined from

_ (1 — a)[a®(1 — x) + ax — x]

(9) e“=(1-x1-a), B T=Da?

(c) Finally, let n — m be fixed. Then £(A) — m is asymptotically binomial with parameter
1—e™.

Note. Loosely speaking, this Theorem indicates that in the direct epidemic process
the number of all eventually infected individuals is of order (mn)'/2. It also shows that the
distribution of £(A) — m, i.e. of the number of newly infected points, is concentrated
asymptotically at values of order o(n), unless m/n is bounded away both from 0 and 1. In
the latter case, the distribution of £(A) — m is concentrated around a — m, a being
determined by (7). It is easy to prove the following: let 2 be the root of an equation ze”
= 1; then z, = 0.57 and

maxn(a — m) = (@ — M)|m=my ~ (20 + 20" —2) - n= 033 n, m~ (2—2z5)n= 024n.

THEOREM 2. (a) Let m be fixed; then

(10) PEAn"=x)—>c, f Q-y2.ymtdy, x€l0,1],
0

(11) em = 2712m — DN/ (2(m — )1,

so that {(A)n"" is asymptotically beta-distributed with parameters m and %.
(b) Let m — «, m = o(n); then

(12) P((n - {(A)(n/m)™ = x) > j (ry) %™ dy, x>0,
0

50, as a consequence,
plimn~'¢ ) =1.

(c) Let mn™' — a € (0, 1); then

(13) P(n—{(A)=k) > (1-p)k**/K, k=012, ...,

where y = (1 — a)e ™" and p is the root of the equation

(14) o= (1-a)exp(p — 1).

Note. Thus, for the two-sided epidemic process, an essential fraction of the elements
are eventually infected even if only one element is initially infected. (The expected value
of this fraction approaches to % as n — «.) Furthermore, with high probability, nearly all
the elements will be infected provided m grows with n however slowly. Quite crudely, the
number of elements the spreading infection will not reach is of the order n/m.

2. Evaluation of L(», p), M(v, p). Let f be a mapping of a finite set into itself. It is
well known, and can be easily proven, that each component of the digraph G has just one
cycle. (The vertices constituting cycles are called cyclic.) The arcs which do not belong to
cycles form trees each having exactly one cyclic point, and the arcs of each tree are
oriented toward its cyclic point. It is natural to consider a cyclic point as the root of the
tree it belongs to. A mapping is called connected if its digraph has a single component.

Denote ¢(n) the total number of rooted trees on n labelled vertices, C(n) the number of
connected mappings and F(rn)(= n") the number of all mappings of {1, .- ., n} into itself.
(By Cayley’s formula, ¢(n) = n""".) The exponential generating functions



RANDOM MAPPINGS 431

t(x) = Yn-1 t(n)x"/n!, F(x) =33 F(n)x"/n!, C(x) =351 C(n)x™/n!

are known to satisfy

(15) t(x) = x exp(¢(x)), (Pélya [8])
(16) F(x) = t(x)(1 — t(x))",

(Riordan [11])
17) 1+ F(x) = exp(C(x)).

Let = (x1, *++, Xu4s), & = (%1, -+, %,). Denote (see Introduction)
Lp,v) =[{f: - X&) =p+r}],
M, v)=|{f: - Z| ) =p+r}|.
LEMMA 1.
18) M(p,v) = (u+ )" =351 (;)fj_l(ﬂ +r =Y, p+rzl

Proor. Notice first that {(&/) = u + » iff each component of Gy has at least one
element of <. Hence

M(p, v) = Y=t (R T upmpin e« +vp=rips=1wg=0 (”1 M ﬂk)
(19) ) )

(, o Vk) T4 Clus + 94).
So, introducing the exponential generating function of M(u, »),
Vet M, 2)x"y” /0! = Tpmt (R 7" Tuimivezo [[5=1 Clps + we)atey”s/ustod!
= Yot (k)7 [Tusim0 Clp + »)xty” /ul!]?
= exp[Yu=1=0 C(u + #)x"y’/ulp!] — 1.
Here
Yuztwzo C(p + )x"y"/ulv! = Yra C(n)/n![21+u=n;,el (Z)x"y”]

=¥ra Cn)/nl[(x+y)" —y"]1=Cx+y) — C»).

Therefore,
Yutvm1 M (p, v)xty”/plv! = exp(C(x + y))/exp(C(y)) — 1
(by (17))
=(1+Fx+y)/01+F(y) -1
(by (16))
=1+F@x+y)A—-ty) -1
Hence

M(p, v) = pv! coeffu,[(1 + F(x + ) - (1 — £(y)) — 1]
= wol[coeff,u, N5-o 7 (x + y)/j! — coefbu, Fmjm AT 72 - ¥ & + )21t 0!]

+ P S AN
= M!V![(M + V)"”(“ u V)/(# + ) = Timprizrizp '152(1,:)/11!12!]

=(p+ )" —Zja (;)fj_l(ﬂ +v—
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Note. For a partial check, let u = 0 and » = 1 in (18). Then clearly M (0, ») = 0 and
we get

v =Y (”.)jf-lw -,
J
which is one of Abel’s identities, [12].

LEMMA 2.

(20) L(p, v) = (p+v) ¥j-o (—D”"(;)( + )

Proor. (1) Let #(p, ) be the number of all rooted trees on p + » vertices x1, « + + , X4
such that all leaves belong to & = (x4, -« -, x,). This would imply #(0, ») = 0 for all » = 1;
however for notational convenience in the sums below we define #(0, 1) = 1. Introduce the
exponential generating function ¢(x, ¥) = Y,+v=1 t(g, v)x*y"/ulv! of these trees. We want to
show that

(21) t(x, y) = (x + y)exp(t(x, y) — y).
To begin, notice that
(22) t(p, 0) =t(n), p=1, and ¢(0,1)=1, ¢t0,»)=0 for v=2.

Let p = 1, » = 1. A feasible tree has a certain root, some 2 = 1 adjacent vertices and the
correspondent % feasible subtrees rooted at them, so that the sth subtree has some y; (resp.
vs) elements of & (resp. /°), 1 =< s < k, subject to restriction

(23) Bs + Vs = 1, (ﬂs, vs) # 0, 1).

Therefore

tpv) =Y By e by =i L ey, = (23) p=1 v H’§=1 t(us, vs)
= 1 Hee by =p— Ly ey =y B, ooy Vi, eee, W £h

» v—1 k
+ v zﬂl+,..+,,,h=u;y]+...+yk=y—1;(23) ([Ll,' .., Hk) (Vl, .o, Vk) Hs=1 t(‘ll.s, Vs):l .

By (22),
tx,y) = t(x) +y + Yu=1m1 L, v)xty”/ulv!
24) =t(x) + ¥+ Xi-1 ) 7T[x + Ttz 4 4= 1323) [Lom1 (s, ¥5)X Y™ /pslws]
+ Y o Dbzl e n=0,23) []o=1 & (s )X ey"s /st w!] .
Denoting two sums inside the square brackets }; and Y., we have
21 = TuerztwamEon [Ti-1 £, v)x4y" /vt — Tuzr [T8=1 £, 002" /!
(25) = [Durrztwn=on t, )2ty /] = [T et /p]?
= (t(x,y) = )" = t"(x),
and, similarly,
(26) Yo = (t(x,5) = ¥)* = =2 £(0, 2)y" /¥)* = t*(x, y).
By (24-26),
tHx,y) =tx) +y+ (x+) - Tior (E(x,9) — )R — x 35 tH(x) /R
= (x + y)exp(t(x, y) — y) + t(x) — x exp(¢(x))
= (x + y)exp(t(x, y) — ), (by (15))
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(21) is proven.

(2) Let C(n, ) be the number of all connected mappings f of & = (x1, «++ , Xu+,) into
itself such that {(&##) = u + », & = (1, ---, x,). The graph G, of any such mapping f
consists of an oriented cycle and a forest of disjoint trees rooted at, and oriented toward,
cyclic points. Obviously, the leaves of each tree must belong to 7. Let u = 1, » = 1; then

Cly v) = Tzt B+ B sppgmin - v 21 (Ih, M, Hk)
(27)
. V k
(Vly ) Hs-l t(‘ll.s, VS)’

cee,

t(-, -) is defined in the preceding section. (Really, Gy has some & = 1 cyclic points, so that
elements of & and /¢ are distributed among k% disjoint trees whose roots form an oriented
cycle. Besides, the leaves of each tree must belong to <) Also

(28) Cu,0=C,p=1 and C(0,»)=0,vr=1
In view of (27), (28),
C(x, ¥) = Turr=1 Cl, v)x4y"/pl ¥ = C(x) + Tpzrz1 €, #)xty” /pd
=C(x) + Yr=t BT e Tr vzt bnzisrzt [Lomt (s, )25y /! v,

Now,
Z;LI+-.'+;L,.,21;V,+-~'+v,_‘21;p.r+v_~21 = Zp‘.\+vx2];lsssk - EM\ZI,VS-O;ISsSk - 2#.,=0,u‘21;lsssk

= th(x,y) — th(x) — ¥
Hence
C(x,y) = C(x) + Tp=r k7" [t*(x, y) — t"(x) — ¥"]
=In[(1 — )1 = ¢t(x, )71+ C(x) —In[(1 — ¢(x))"],
and, by (16), (17),
(29) C(x,y) =ln[(1 - )1 — t(x,y)']

(3) Introduce L(x, y) = Y, +»=1 L(u, v)x"y"/p! ¥, the generating function of all (not
necessarily connected) mappings such that §(A) = p + ». We have then

(30) 1+ L(x, y) = exp(C(x, y)),

a relation which is of the same kind as (17) and can be proven in essentially the same way
as (17), [11].

(4) By (29), (30),

L(x,y) =exp(C(x,y)) —1=(01-y)(1—t(x )" -1

Besides, according to (21),
t(x,y) = zexp(t(x,y)), z=(x+y)e”,
and, by (15), (16),
(IT—te,y) ' =1+¢txy)A—tx, )" =1+ F(2).
So
Lity)=(1-y)1+F@) = 1=(1-3) Ym0/ +yYe?/l -1,
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and

L(u, ») = p! ! [coeff, 3,20 /(x + y)e™/j! — coeff, Y =0 J/(x + y)Ye /5],

which after some elementary transformations yields

L) = (@ +9) %o (—1)”"(;)(41 +

Note. For a partial check of the last relation, choose p = 1. It is easy to see that
L1, ») = (v + 1)!. On the other hand,

(v+1) Tieo <—1>v-f<1”.)(1 +)" =+ 1) Theo (;)[2;-0 (—1)”‘1'(]”.)#]

= (v + 1) Theo (;)A (k, »),

where A(k, ») is the number of distributions of % balls among » cells leaving none of them
empty, [12]. So

@+ 1) Tizo (,’;)A(k, v)= @+ 1)(:)A(V, V)=@+1) 0=+ 1),

too.

3. Distributions of £(A), {(A) and their asymptotics. Recall that

(31) P(£(A)=m +5s) = (n ; m)L(m, ™" 0=s=n-m,

32) PlA)=m+s)= (n _s m)M(m, s (n—m—3s)"""°/n", 0=s=n-—m,

|A|=m.

ProoF oF THEOREM 1. By Lemma 2, we obtain

L(m, s) = (m + s) ¥j-o (—1)”_’(;) (m +j)mr=

= (m + S) (dm+s—l/dxm+s—1)I:E;;=0(_1)s—j(j)e(mﬁ)xj]

|x=0
= (m + s)(dm+s—1/dxm+s—1)[emx(ex — 1) 3]|x=0.
Then, by Cauchy’s formula,
(33) L(m, s) = 2#ni) Hm + s)! J e™(e® — 1)°2~ "+ dz,
C

where C stands for a counterclockwise oriented contour in the complex plane surrounding
the origin.

(a) Let m be fixed and s — . In (33) choose C the circle of the radius s™. Set z =
s'e'?, ¢ € [— 7, 7); then

e™ =1+ o(1),

(e° — 1) =2°(1+ 2/2 + O(2%))° = s"exp(isp + e'?/2 + 0(1)),



RANDOM MAPPINGS 435 |
uniformly over ¢ € [— o, ). Hence

L(m,s)=(m+ s)!(2vri)'1f s%exp(isp + €'?/2) s™ e~ Mgl L e®(1 + 0(1)) dop
=(m+ s)!s'”'l(2vr)‘lj exp(e*?/2)e” ™ V7. (1 + 0(1)) dp

~ (m+ s)!s™ 1 (27)7! j exp(e®/2)e™ ™% dg

-(exp(€'?/2) = Y7, e*?/2%R1)
= (m+ s)!s™ /2™ (m — 1)),
or
(34) L(m,s) ~ (m+ s)'s™ /2™ (m — 1)}, s—> oo.
Let n — «, s — o so that for some ¢ > 0
(35) x=(m+s)nV2=e
Then, by Stirling’s formula and (31), (34), uniformly over x satisfying (35), there is
PEAR " =x) ~ (2" (m —1)!s)™ - exp[mIn s + (n — m)In(n — m)
—(n-m=—sn(n—m—3) —slns+ (s +m)ln(s + m) — (s + m) — (m + s)in n]
(expanding logarithms)
~ (2™ Y (m — 1)) x* lexp(—x?/2) - n7V2

Therefore, for a fixed x > 0,
PEAI ™ =x)—> 2" (m -1 . J " lexp(—y*/2) dy.
0

(b) Let now m — « and n — m — . In view of (33) and Stirling’s formula, (31) becomes:
forn—u— o, u—m— o,

1/2
(36) P(¢(A) = u) =( (n — m)“m)) . @mi)! j exp(h(z, u)) dz,
C

(n = m)(u—m),
h(z,u) = (n —m)in(n — m) — (n — w)ln(n — u)
(37) —(u—mn(u—m) +ulnu—u
—ulnn+mz+ (u—m)ln(e* —1) —uln 2.

To estimate the integral in (36), we shall apply the saddle-point method. To this end, let
us choose C the circle of the radius r = r(x) which is the root of the equation

(38) " dhfdz=m+ (u—m)e*(e*— 1)1 —uzt=0.

As for u, it will suffice to consider the case when it is close to a, the root of the equation

(39) oh/ou|.=rw = In[(n — u)u(e” — 1)/(u — m)nr] = 0.
Combination of (38), (39) shows after some manipulations that
(40) exp(a/n) = (n — m)/(n — a),

(41) p=r(a)=a/n,
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and, somewhat unexpectedly, that

(42) h(p, a) =0.
It can be proven that
= (2mn)3(1 + o(1)), if m = o(n),
(43) ayE[ein,cn], 0<ei=e:<1 if none of m, n — m is o(n),
=m+Q—-eHYn—-—m)A+o0(Q), ifrn—m=o(n).
Let u in (36) be such that
(44) |u—a|=c(n—m)7
¢ > 0 and fixed. It follows then from (38), (41), and (43) that
p(1 + O(m™"?), if m = o(n),
(45) r=4ol+ 0(n™%), if neither m nor n — m is o(n),
o(1+O0((n —m)2.n™), ifn—m=o(n).

Setting z = re‘? in (36), we get

f exp(h(z, u)) dz = ir exp(h(r, u)) Jﬂr exp(H(p)) do,
(46) c -
H(gp) = h(re'®, u) — h(r, u) — ip.
Here, since
le* — 1| = (e!*! — 1)exp[(RIz — | 2])/2],
we have (see also (37), (41), (43))

RIH(p) = mr(cosp — 1) + (v — m)r(cos ¢ — 1)/2
47)
= — ciurg?, c1>0.

Expanding H (¢) in powers of ¢ shows that
@) H(p) =— z:q) + iprfm + (u —m)e’(e" — 1) — wr™] — @*/2)a(Z, u) (by (38))
= —ip — (¢*/2)a(Z, u),
where
“49)  alz,w) =zlu+ (w—m)(e —1—ze) (e — 1), 2= Fe?, |§| € [0, |p]].
Since
—05=(e*—1—2ze*)(e°—1)2=<0, z=0,
(50) 0.5 ru<a(r,u) <ru;
0, in particular, (see (41), (43), (45))
(51) lim,_a(r, u) = «,

Using (47 — 51), we can prove the existence of ¢ = ¢(n) such that ¢ — 0, & (a(r, u))** —
oo, for which
ela(r,u))l/2

52) J’ exp(H (p)) dp ~ J' exp(H (p)) dp ~ (afr, u))'l/zJ’ exp(—y?/2) dy

—e(alr,u))/?
~ Q27/alr, u))*2
Hence (see (36), (46))
(53) P(£(A) = u) ~ (27b(w) " exp(h(w)), h(u) = h(r(u), u),
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(n—u)(u—m)a(r, u)

(54) bu) = (n — m)ur?

To simplify (53), observe first that, according to (40 — 45) and (49),

—_ 2 _ _ 2
(55) b(u) ~ b(a) = (n a)[a (n’ m) + amn mn ]

o =0(n—m).

Second, expanding 4 («) in powers of # — a and invoking (38), (39) and (42), we get
(56) h(u) = (u— a)®h”(@)/2, G=6a+ (1—-8)u, 6€]0,1]
To evaluate A”, notice that (see (38), (39))
h'(u) = dh(r, u)/ou + (3h(r, u)/ar)-r'(u)
=0h(r,u)/ou =In [(n — w)u(e" - 1)/(u — m)nr]
=In[(n — u)/n(l - r)],

2 2
r=- ai:u Z—u’: =m{u(e" — D[(x—m)e (e — 1) — ur 2]},
soh"(u)=—(n—u)'+rQad-r.

Two last relations, together with (40), (41), imply that
— h"(a) = a*(n — m){(n — a)[a*(n — m) + amn — mn?]}?,
or, (see (55)), that
—h"(@)=b""a). ()
With the aid of (41) and (43-45), it can be shown then that (56) is replaced by
h(w)=->b"a)-(u—a)?/2+0(1), |u-al|=c(n—m)2
Putting it together with (53), (55) we conclude that
P(£(A) = u) ~ (27b) exp(=b ' (u — @)*/2), b= b(a),
uniformly over these u’s. As a direct consequence of this local limit property and the

estimate b = O (n — m), it follows then: for fixed x; < x5,

P(x1= (§(A) — a) /b = %) - (27)‘1/2f exp(—y*/2) dy.

1

(c) Let n — m = k be fixed. By (20), (31): for0 <s <k,

P@E(A)=m+s) = (1:) n~"h S — ke + 5)Y 5 (—1)8—1'(;)(” — k4 jynhee

- (1;) o (—D“’C)(l = (k= j)n7)" +o(1),
sSo

limn.. P(¢(A) = m + s) = <’:) St (_1)s-,~<;)e-<k—n

= <k)(1 —_ e—l)S(e—l)k—s.

s

ProOF oF THEOREM 2. Let m be fixed. By (19),

7 M(m, s) = Yie1 Mi(m, s),
Mi(m, 5) = m!sU kD™ Tor..commmisyt o+ simsimzamo 1t Clme + ) /mel s,
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To estimate Mj(m, s) for s — oo, introduce M (m, s) the sum similar to My.(m, s) except
that s, = [s"%], t=1, ..., k; obviously M) = M,. Since
C@) = (7/2)"%" 21 + o(1)), » — oo,
(Katz [5], and Rényi[10]), and Stirling’s formula, we have: for s, = [s'/?],

(7/2)1/2(mt + st)m4+s,—1/2
m,\(2ms.)"*(s/e)*

= (1/(2mt!))[st(mt + st)]_l/z(mt + St)mt(]. + m,/st)s’-es’

C(mt + st)/mt!s,! =

= (1/@2m.)) s7 ' exp(m, + s.).
(Note that A = B means that lim A/B = 1.) Hence

58) My(m, s) = m!s! exp(m + s)(2*k!) ! IS—— | -2 )

. k my—1
Es,+-~-+s,,=s;s,2[s“2] Ht=1 Se” .

Denote the innermost sum Y ,.( m, s). A standard argument shows that
Yi(m, 5) = 8™ J e f (T ™A — D5 x)™ ! day e+ dxes
ate o+ x=<1Lx=0

=s""[(m — D '[&: (me — DL
Therefore, (see (58)),

My (m, s) = ms! exp(m + s)s™ 'f (m, k),
(59)
f(ma k) = (2kk')' Zm|+...+m/,=m;m,21 HJI?=1 mf_l’

and, consequently,

M(m, s) = Sy My(m, s) = ms! exp(m + s)s™ " 'f(m),
(60)
flm) = Y31 f(m, k).

To evaluate f(m), introduce F(z) =Y m_1 f(m)z™. By (59), (60),
F(2) = Yo 27(X81 @YD Tt smpmmimyz 1R M)
=21 %) Yt mim [Ler 27/ my
= Y1 %) [In( — 2) ']
=exp[(1/2)ln(1 —2) ] —-1=(1—2)""* - 1.
Therefore
61) f(m) = coeffun[(1 — 2)2 — 1] = (— 1)"1(‘,171/2) = @m — D/2"m).
Combination of (57), (60), and (61) yields an estimate
M(m, s) = s! exp(m + s)s™ 'cm,
cm = (1/2)[(2m — D!]/[2(m — )!].
Now, consider P({(A) = ») for v — 0, n — » — . By (32), (62),

(62)

P({(A) = v) = cns! exp(m + s)s _1(n ; m) (n—m—s)""™°/n" s=v—m.
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Here
s!<n P m) = (n—m)/(n = vl = (1 — v/n)"/

cexp[(n — m)In(n —m) — (n — »)In(n — v) + m — »]
~ (1 —v/n)exp[(n — m)Inn — (n — »)In(n — ») — »],
and, after cancellations,
P($(A) =») = cu(l — v/n)72s™ 'exp(—m In n)
(63) = (n7)enl(l = v/n) " w/n)"
= g(x,)Ax,, x,=v/n, Ax,=n"",
where
g(x) = cn(l — %)™, x€[0,1).
The last estimate is uniform over » such that

vr=(1—¢n, &€ (0,1) and fixed.

Observe that g(x) is the density of the beta-distribution G, with parameters m and %. Let
G be the limit of a subsequence of the distributions of {(4)/n. By (63),

G(x2) — G(x1) = Go(x2) — Go(x1),

whenever x1, x» € (0, 1) are continuity points of G. This inequality implies that G(x) =
Go(x), x € [0, 1]. Hence the distribution of {(A)/n converges to Gy as n — ® in any way.
To study the case m — o, we shall need the following.

LeEmMA 3. For p =1,

(64) Mg, v) = (u + »)*"1 — t(w)],
(65) tx) = Y5t/ w=v(p+v— DM (p + 0)H* < el

where t(x) is the exponential generating function of rooted trees, t(j) = j/.

Proor oF LEMMA 3. By Lemma 1,
(66) M(p, v) = (p+ )" = 250 M)+ v = j)e
First, let us prove that
(67) g =p+r =" = (u+r)u, 0=sj=<v.

It is trivially true for j = 0, whence it suffices to show that u~g(j) decreases as j increases.
We have

u Y+ 1)/uvg(j) = u N (v — j),
‘I'(Z) = Z(,U. +z— 1)#+z—1/(” + 2)”+z,

By taking the logarithmic derivative of ¥ it can be shown that ¥(z) is an increasing
function, provided p = 1. Therefore, by the definition of g(j) and u,

uwItg(j + 1)/u7g(j) = u'g(1)/g(0) = 1.

Second, it is well known that the series for ¢(x) converges provided | x| < e~ Observe
that, by monotonicity of ¥,

u=Y@ <lim,..¥(z) =e ..
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Hence, by (65-67),
M(p, ) = (+ )L = $p G2/ u’]
> (p+ )" =Y (Y]
= (p+ "1 - t(u)].

(b) Suppose m — o, m = o(n). Let £ — «, k < c(n/m). By (32) and Lemma 3,

P(n—{(A) =Fk) = (” ; m)M(m, n—k—m)k*/n"
(68)
>[1- t(u)](n P m)(n — k)" *R*/n,
where
(69) u=(n—-k—m)n—k—1)"*(n—- k)"
Exponentiating the right side of (69), and expanding the resulting logarithms, shows that
(70) u=e"[1— (m/n)(1 +O(m™)].

Also, it easily follows from (15) that, for x — e™! from the left,
1—t(x) ~ (2(1 — ex))"?,
whence, (see (68)),
P(n—¢(A)=k)= (2m/n)1/2<n ;m)(n .
(71) (by Stirling’s formula)
= (m/mkn)'*exp[ W(m) — W(0)],
W(x)=(n—x)In(n —x) — (n— x — k)ln(n — x — k).

But
W(m) — W(0) = W (0)m + W”(g)m?/2
@€ [0,m])
=mIn(1 — k/n) + O(m?k/n?
(72) = —m(k/n) + O(mk*/n® + m?k/n?
(k=c(n/m))

=—-m(k/n) + O(m™" + mn™")
= —m(k/n) + o(1).
In view of (71), (72),
P(n —$(A) = k) = q(y:)Ayr, 3 =k(n/m)”", Ay = (n/m)”",
q(y) = (my) e
Let us notice that ¢(y) is the density of the distribution of #2%/2 where % is the standard
normal variable. Therefore, as in the item (a) of the current proof, we conclude that

P((n—¢A)(n/m) ' =x)—> f o(y) dy, x>0.
0

(c) Finally, suppose m ~ an, a € (0, 1). Let k be fixed. According to (68), (69),
P(n — {(A) = k) = (1 — t(w) (/R — k/n)"*

-exp[(n —m)ln(n —m) —(n—m —k)ln(n —m—k) —klnn— k],
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u~@1-m/n)1—-1/(n— k)" "> (1 —-a)e
Furthermore,
n—mn(n—m)—(n—m-—-—kKInn—m—-—k)—klnn—=~%
=n—m)n(n—m)—(n—m—k)In(n—m) —k/(n—m)]—klnn—%k+ o(1)
=kIn(l —m/n) + o(1) = kIn(1 — a) + o(1),
whence

P(n — {(A) = k)= (1 — o) k*y*/R!, k=0,

1

y=0—-a)e", p=¢t(y).
But {(1 — p) k*y*/k!} i~ is a probability distribution. Really, by (16),
Yo (L= p) kM /Rl = (L= t(y)(L+ F(y)) = (1 = ¢(y))(L — ¢(y)) "' = L.
Therefore, like two times before, we infer that

lim,_P(n — {(A) = k) = (1 — p)k*y"/RY, k= 0.
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