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EXPONENTIAL LIFE FUNCTIONS WITH NBU COMPONENTS'

BY MOSHE SHAKED

University of Arizona

Homogeneous nondecreasing functions of independent NBU random
variables are studied. Two results of Block and Savits are improved. It is
shown that if a coherent system, formed from independent NBU components,
has exponential life then it is essentially a series system with exponential
components. Also, it is shown that if a strictly increasing homogeneous
function of independent NBU random variables has an exponential distribu-
tion then it is essentially a univariate function of one of its variables which
must, then, be exponential. A new characterization of the MNBU class of
distributions of Marshall and Shaked is derived, and a new proof of the closure
of the class of NBU distributions under formation of nonnegative homogene-
ous increasing functions is given.

1. Introduction. Block and Savits (1979) showed that if a coherent system composed
of components (some may be irrelevant) with increasing failure rate average (IFRA)
lifetimes, has an exponential lifetime then it must be a series system and the relevant
components must have exponential lives. Block and Savits (1979) also derived a similar
result for sums of independent IFRA random variables. A related result was obtained by
Kitchin and Proschan (1981).

In this paper we derive similar results under new better than used (NBU) assumptions.
Our theorems strengthen the results of Block and Savits in two ways. First, our NBU
assumption is weaker than the IFRA assumption. In addition, our second theorem ap-
plies to the class of strictly increasing nonnegative homogeneous functions on R} =
{x:x = 0}" (see definition below); sums are members of this class.

In Section 2 we describe some classes of homogeneous functions that will be of interest
to us. The main results are given in Section 3 and some applications are briefly discussed
in Section 4.

In the following we write “increasing” for ‘“nondecreasing” and “decreasing” for
“nonincreasing”. For two vectors x = (x1, -+, x,) and y = (y1, - -+, ¥») in R" we write x
=syifx;<y,i=1 ---,nand writex<yifx; <y, i=1, ..., n. Also, x \'y denotes
(min(xy, y1), -+, MIN(Xn, ¥n)) = (X1 A y1, +++, X A yn). By U= V we denote equality in
distribution of the random vectors U and V. If a random vector U has distribution F then
the corresponding survival function F is defined by F (u) = P(U; > uy, «+ -, U, > ua).

2. Preliminaries. An n-variate function g is called homogeneous (of degree 1) if g (at)
= oag(t) for every « > 0 and t € R". Let g be an n-variate nonnegative increasing
homogeneous function defined on R’;. Clearly g is continuous on rays. From the monoton-
icity of g it is not hard to show that actually g is continuous on R%, = {x:x > 0}; however,
as one referee noted, g need not be continuous on R%. Let 4™ be the class of all n-variate
nonnegative increasing homogeneous functions which are continuous on R%; such functions
can be obtained by taking all non-negative increasing homogeneous functions on R%, and
extending them by continuity to R”. By convention, for every m < n, 4™ C %' because
every m-variate function can be thought of as an n-variate function with specific n — m
irrelevant arguments. Geometrically, there is a one-to-one correspondence between %™
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and the class of all open upper sets in R} (Ais anuppersetifx €A, y=x=y € A). If
g € 9™ then A = A(g) = {x:g(x) > 1} N R’ is the corresponding open upper set.
Conversely, if A is an open upper set in R} then

1
g(x)=sup{s>0:-s—xEA} if{s>0:-2—xEA}#®

=0 otherwise

is the corresponding g € 4™, Clearly, determination of the set {x:g(x) = 1} is equivalent
to determination of g(x) for every x € R%.

We will be interested in the following subclasses of ¥

The class of all g € 4™ which are strictly increasing in each variable when the other
variables are held fixed will be denoted by %3”. For example, g(x) = Y%, x; and, more
generally, g(x) = (Y% ax?)”” where p < o, p# 0 and a@; € (0, ), i =1, ..., n, are
members of 5.

The class of all the functions of the form g(x) = (a1, - -+, a,x,) where a; € [0, ]
i=1,...,n and 7is a coherent life function (in the sense of Esary and Marshall (1970),
allowing irrelevant components) will be denoted by %5™.

The class of all the functions g which are “scaled minimum,” that is, functions of the
form

(n)

(21) g(X) = minlsisnaixi,

where a; € (0, ], will be denoted by %{™. To avoid trivialities we do not allow all the afs
in (2.1) to take on the value 0. Thus, g € ¢{” if, and only if, the set {x:g(x) > 1} is an open
upper orthant (a set is an open upper orthant if it has the form @, = {x:x >y} for some
Y € R%).

Note thatif n > 1then 4. C ¥, 4, C 93 C 9, 92 N ¥%; = D and all the inclusions are
strict. Here, and in the following, when a %is written without a superscript it is understood
that the superscript is (n) unless we write otherwise.

According to the definition of Marshall and Shaked (1982), the n-variate nonnegative
random vector X (or its distribution) is called multivariate NBU (MNBU) if g(X) has an
NBU distribution for every g € 4. Marshall and Shaked (1982) showed that X is MNBU

if and only if
Eh -I—X < Eh" —l-X En'™ iX
a+b a b

whenever a >0, b > 0, y € (0, 1) and 4 is a nonnegative increasing function defined on R%.
Using a standard induction argument it can be shown that the random vector X is MNBU

if and only if

1 1

(2.2) Eh (——————X) =JI% Eh'\"<— X)

a+ .- +an a;
whenever m is a positive integer, a; >0, v, € (0,1),i=1, .-, m, Y~ vi=1land hisa
nonnegative increasing function defined on R%. Setting a;=y;=m™,i=1, --., min (2.2)
it follows that if X is MNBU (and, in particular, if its components Xi, ..., X, are
independent NBU random variables) then
(2.3) Eh(X) < [ER*a"X)]"*, a=m™, m=12,....

This result should be compared with Definition 2.1 of Block and Savits (1980).
It follows that if F is a univariate NBU distribution then for every nonnegative
increasing function A defined on [0, ),

(2.4) ( j h(x) dF(x)) < J’ h(i) dF(x)
0 0 a
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where a=m™, m=1,2, ... Block and Savits (1976) showed that F is IFRA if and only
if (2.4) holds for every a € (0, 1].

3. The main results. The first theorem is an improvement of Theorem 2.1 of Block
and Savits (1979). Block and Savits (1979), page 915 observed that their Theorem 2.1 can
be improved and so did Mark Brown. However, no proof of the stronger result has been
written so far. From personal communication with Henry Block we gather that the proof
which is given here is different than the one Block, Savits and Brown had in mind.

THEOREM 3.1. Let Xi, ..., X, be independent NBU random variables, having life
distributions Fi, - -, F,, and let g € 9s. If g(X) is exponential then there exists § € %
(that is, for some a; € (0, ], i =1, -+, n, §(X) = min;<;<,a:x;, X = 0) such that g(X)=
&(X) and X; is exponential if a; < ®, i = 1, ---, n. In other words, there exists a
subcollection 1 < i; < ... < i}, = n such that the distribution F of g(X) satisfies

F@t) =TI} Fi(®), t=0,

and each F; is exponential.

REMARK. In Theorem 3.1 we cannot conclude that g € %,. For example, if X; is
degenerate at 0 and X, and X; are exponential then max(X;, min(X;, X)) is exponential.

THEOREM 3.2. Letg € %;andletX,, .- -,X, be independent NBU, random variables,
n > 1. If g(X) is exponential then for somej € {1, ---,n} and a >0,

g(O, ...,O,xj,o, ...,O)=a;x:',~,
and, with probability one, X; is exponential and X; = 0 for i # j.

Note that Theorem 2.8 of Block and Savits (1979) follows from Theorem 3.2 by recalling
‘that every IFRA distribution is NBU and that g(xi, - - -, x,) = Y1 x; is a member of %.

4. Applications. Marshall and Shaked (1981) have introduced some classes of mul-
tivariate NBU distributions which are analogous to the classes of multivariate IFRA
distributions of Esary and Marshall (1979). In particular, (T4, - - -, T5) is said to belong to
the class Gs if there exist independent NBU random variables Xj, - - -, X and functions
&1, +++, & € 95 such that

(Tsy e, To) = (@(X), - -+, 8u(X)).

Also, (T4, - - -, Ty) is said to belong to the class G; if there exist independent NBU random
variables Xj, - - ., X; and functions g, - - -, g of the form

(4.1) gi(xl, ...’xk)=2;°=1 a}i)xj, i= 1,..-,n,
where af” € [0, »), such that _
d
(Ty, -+, Tn) = (&1(X), -, g (X)).

Another class which will be discussed in this section is the class of MNBU distributions
which were defined in Section 2.

Example 3.2 of Block and Savits (1979) can be used to show that MNBUZ Gs. That
example is MNBU because it is MIFRA (see Block and Savits, 1980). But, by Theorem 3.1
if this distribution belonged to the class G, its survival would be of the form

F(t,, &) = exp{— Yl1 max(ti/ai, t2/b:)}, t, =0

for some a; € (0, ©], b; € (0, ], i=1, ..., kand k2 € {1, 2, ---}. However, it is not.
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In a similar manner, using the fact that g’s of the form (4.1) with positive a{”’s belong
to %5¥ and using Theorem 3.2, it can be shown that Example 3.3 of Block and Savits
(1979) yields a counterexample which proves MNBU¢Z G..

It should be mentioned that Marshall and Shaked (1981) showed that G, ¢ MNBU and
G; C MNBU.

Further applications of Theorems 3.1 and 3.2 are discussed in Marshall and Shaked

(1981).
5. Proofs. The standard proof of the first lemma is omitted.

LEMMA 5.1. Let F be a nondegenerate univariate life distribution and let F=1— F.
If

F¥x)=F(ax) forallx=0, and a=m™, m=1,2, ...

then F is an exponential distribution.

PROOF OF THEOREM 3.1. Let g € ¥3; then for some b; €[0, ©],i=1, ---, n, and some
coherent life function 7,

(X, ove, %) =7(b1X1, + o0, buxy), X=0.

If g(x) is exponential, then there is at least one b; in (0, ). Hence, without loss of
generality, it can be assumed that for alli = 1, --., n, b; € (0, ) because otherwise the
problem reduces to a similar one in a lower dimension. But then, without loss of generality,
it can be assumed that b; = ... = b, = 1 because the property of NBU is preserved under
changes of scale.

Under these assumptions, the assertion of Theorem 3.1 is equivalent to the assertion of
Theorem 2.1 of Block and Savits (1979) except that “IFRA” of Block and Savits (1979) is
replaced here by “NBU”. To prove the NBU for version of Theorem 2.1 of Block and
Savits (1979) one can follow word for word the proof of Block and Savits (1979) using some
of the results here. Their Lemma 2.2 is used now in exactly the same manner by taking a

"= m™ for some integer m. The inequalities which are needed follow from (2.4). The value
ao at the top of page 913 in Block and Savits (1979) is replaced now by mg' for some
integer mo. The exponentiality of F; follows in Block and Savits (1979) from the equation
Fi(aT) = Fg(t) for all 0 < a < 1 and ¢ > 0. It follows here, by Lemma 5.1, from the
equation F;((1/m)t) = [F;(¢)]"/™ for all integers m and ¢t > 0. 0O

The next results will be needed in the proof of Theorem 3.2.

LEMMA 5.2. Ifg€ 9™ — 4™ n=2, and g # 0 then
(5.1) p{(x,y):8xAy)=1<gx)Ngy)} >0

where  is the Lebesgue measure on R3".

Proor. We will actually show that there exist x, y € R’ such that g(x) = 1, g(y) =
1 and g(x A'y) < 1; (5.1) then follows from the continuity and homogeneity of g.

Pick a point z such that g(z) = 1. Since {u:g(u) = 1} is a closed upper set and
z € {u:g(u) = 1}, it follows that there exists at least one closed upper orthant containing
z which is contained in {u:g(u) = 1}. Let x be the vertex of such an orthant which is not
contained in any other orthant which contains z (see Figure 1). By continuity and
monotonicity of g,

g(x) =1

Since g 91" it follows that {u:g(u) = 1} is not a closed upper orthant (see discussion
in Section 2), thus {u:g(u) = 1} — @« * & and hence {u:g(u) =1} — @y, # . Lety €
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{u:gu) =1} - Q,f, then
gly) =1

Since y & Qx it follows that at least one coordinate of y is less than the corresponding
coordinate of x. Hence x A y < x and at least one coordinate of x A\ y is strictly less than
the corresponding coordinate of x. Thus, by definition of x,

gxANAy)<l1 O

LEMMA 53. LetX,, ---,X, be independent NBU random variables with support R.,
(that is, each X; has an absolutely continuous portion which has a density which is
posttive on R.). Let g € 4. Then g(X) is exponential if and only if g € % (that is, for
some a; € (0, 0], i =1, ..., n, g(X) = mini<;<,a;x;) and X; is exponential if a; < o, i =
1,..--,n.

PRO%F. Assume g(X) is exponential. Let Y3, .-+, Y, be independent of the X;’s such
that X =Y. Let s > 0, ¢ > 0 then

(62 plgX)>s+t)= P{g(s—it x) > 1} Sp{g<<% x) A (% Y)) > 1}

where the equality follows from the homogeneity of g and the inequality follows from the
monotonicity of g and the fact that (since the X/’s and the Y,’s are NBU) X;/(s + ¢) is
stochastically smaller than min(X,/s, Y;/t),i=1, ---, n.

Denote X; = X;/s, ¥; = Y:/t and let ¢ be the indicator function of the set {x:g(x) =
1}. Then, from (5.2) obtain

(5.3) P{gX)>s+t)<=E¢(XAY).
For every x, y € R%

(5.4) o(x Ay) = ¢(x) ¢(y).

Let

A={xy)¢xANY) <o(x)o(y)} ={(x,¥):8xNy)=1<g(x) Ag(y)}.
By Lemma 5.2, if g % then u(A) > 0 where p. is the Lebesgue measure on R3". Thus
(5.5) EsX)N oY) -EsXAY)=P(X,¥)€ A4} >0,
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because the support of (X, ¥) is R3". Combining (5.3) and (5.5) obtain, using the
independence of X and Y,

P{gX) > s+ 1t} < EsX)¢(Y) = EsX) Eo(¥)

- P{g(% x) > 1}P{g(—1— Y) > 1}
=P{g(X)>s}P{g(Y) > t}.
But this contradicts the exponentiality of g(X), hence g € 1. It is easy to see now that

if g € ¢, and g(X) is exponential then the relevant X,’s must be exponential. 0O

REMARK. The proof of Lemma 5.3 suggests an alternative direct proof of a weak
version of Corollary 3.6(b) of Marshall and Shaked (1982). The following proof is due to A.
W. Marshall.

ProposITION 5.4. If X, .-, X, are independent NBU random variables and g € 4
then g(X) is NBU.
Proor. Use the notations of the proof of Lemma 5.3. It is shown there that
P{gX)>s+t} s EoXAY).
But, from (5.4), using the independence of X and ?,
E¢XAY) = E¢X) Es(¥) = P(g(X) > s} P(g(Y) >¢}. O

In the proof of Theorem 3.2 the following notation will be used. Let g € ¥, then for
fixed nonnegative xz, - -+, Xn, g(x1, X2, - - -, X») is a strictly increasing continuous function
of x; € [0, ), hence it has an inverse which will be denoted by g;;,,.,xn, that is, for x; = 0,
t=0,

g(xl) M) xn) =t g;:,---,x,.(t) = X1.
It is easy to verify, using the homogeneity of g that for every a >0, t = 0,

(5.6) g;zl,---,xn (at) = ag;zl/a,u-,x,./a(t)'

ProoOF OoF THEOREM 3.2. Assume first that none of the X/’s is degenerate at zero. If all
the X/’s are exponential then, by Lemma 5.3, g € ¥, thus g € ¥;—a contradiction. Hence
at least one of the X/’s, X; say, is not exponential. Denote by F; the distribution of X;. By
Lemma 5.1 there exist x and « = m ™, where m is some positive integer, such that

Fi(ax) > Fi*(x)
and by right-continuity there exists a nonempty open interval (b, ¢) C [0, ») such that
(5.7) Fi(ax) > F{(x) for every x € (b, ¢).

Since, by assumption, the X/s are nondegenerate at zero there exist ys, ---, ¥» such
that, for some ¢’ > 0,

(5.8) Fi(y; + ) — Fi(yi—€) >0 whenever €€ (0,¢']

andy; — ¢ >0,i=2, ..., n. By assumption, g is strictly increasing, thus

g<b,&"">y_n’) <g(c,'23,.,,;22>,
43 o a o

and by continuity of g, for some ¢” > 0,

+  + - n—
g(b’y2 ny"'yy n><g(c)y2 n,"'yy n)
a o o
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whenever n € (0,¢”]and y; — ¢” > 0,i =2, ..., n. Let ¢ = min(¢’, ”).
Choose ¢ such that

+ w + - w—
g(b,y2 8,...,y 8) < t<g<c,y2 e,.”’y 8),
s a o

then g, ... 2./a(t) € (b, ¢) whenever z; € (y; — &, yi + €), i =2, - - -, n. Thus, by (5.7) and
(5.8) .

yot+e Ynte _ .
(5.9) j e Fi(agrye,....0/a(t) dFy(2,) - - - dF3(2)

Y2—€ Yn—¢€

yote Ynte _
> f f F3@ T nsa(®) A (z) -+ dFa(22).

y2—e In—E

Hence, for a and ¢ as above, and for some A > 0, by the exponentiality of g(X),

e Mt = f cee f Fig7l... ..(at)) dF.(z) --- dFa(22)

9=0 =0

_ j j FuQg .. e () dFa(2) -+ dFa(z), by (5.6)

9=0 =0

\"

j e j F(goya . ,m/a(®) dFu(2) -+ dF(2), by (5.9)

2=0 n=0

= (J oo J’ Fl(g;:,zn(t)) an(Zn) e dE(ZZ)) ’ by (2’3)
29=0 2,=0

.
But this is a contradiction, hence X; is an exponential random variable. Similarly it can be
shown that X;, - - ., X,, are exponential random variables. But this is impossible as argued
above. Thus, at least one of the X/’s is degenerate at zero.

Assuming now that n — 1 of the X/’s are nondegenerate at zero, Xj, - - -, X,_; say, apply
the same proof to g(x;, - - -, X»—1, 0). This is also a strictly increasing function and the proof
goes through to show that at least two X;’s are degenerate at zero.

Continue this way to obtain that n — 1 of the X/'s are degenerate at zero. Hence g must
satisfy g(0, ---,0,%;,0, ---,0) = axjforsome a >0andjE€ {1, ---,n}. O
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