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A FUNCTIONAL CENTRAL LIMIT THEOREM FOR WEAKLY
DEPENDENT SEQUENCES OF RANDOM VARIABLES

BY NORBERT HERRNDORF

Mathematisches Institut der Universitat Koln

Let (X,).eiy be a sequence of r.v.’s with E X, = 0, E(Y%, X;)*/n — o2
>0, sup,E(X2 X;)2/n < . We prove the functional c.l.t. for (X») under
assumptions on a,(k) = sup{| P(A N B) — P(A)P(B) |:A € ¢(X: 1< i<m),
B€o(Xim+k=<i=n),1=<m=<n— k}and the asymptotic behaviour of
|| X Il for some 8 € (2, ]. For the special cases of strongly mixing sequences
(X,) with a(k) = sup a,(k) = O(k™°) for some a > 1, or a(k) = O(b™*) for
some b > 1, we obtain functions f3(n) such that | X, ||;= o(fs(n)) for some 8
€ (2, »] is sufficient for the functional c.Lt., but the c.l.t. may fail to hold if
I Xo Ml = O(fs(n)).

1. Introduction and results. Let (X,).cy be a sequence of r.v.’s on some
probability space (2, < P), satisfying

(1.1) EX,=0, EX2<o for n€E€N.

Put S, = 3L, X, for n € N. In this paper we will make the following assumptions
on the variances:

(1.2) ES2/n —,en 62> 0 for some ¢ >0
(1.3) SUp{E(Sy+n — Sn)?/n:m, n € N} < .

Consider the space D = D[0, 1] endowed with the Skorokhod topology (see
Billingsley, 1968, Section 14) with Borel-c-algebra % and define random func-
tions W,:Q — D by

(1.4) W.(t) = Spy/(en*?) for t€[0,1], n € N.

W, is a measurable map from (?, /) into (D, £ ). If (W,)) is weakly convergent
to a standard Brownian motion W on D, then (X,,) is said to satisfy the invariance
principle (i.p.). In this paper we will use the mixing coefficients «,(k), defined by

an(k) = sup{| P(A N B) — P(A)P(B) |:A € ¢(Xi:1 <i < m),
BeEosXim+k=<i=<n),l=m=n-k} k<sn-1
a(k) =0 for k= n.

The coefficient of strong mixing introduced by Rosenblatt (1956) then can be
written as

a(k) = sup,e.an(k) for kEN.
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Let | X | sbe defined in the usual way, i.e.
1 Xls=E"|X|" for BEIL )
| X|ls=-esssup | X| for B = oo

The following theorem is the main result of this paper.

THEOREM. Let B € (2, «] and v = 2/8 (2/ = 0). Let (a,)nexs be a sequence
in [1, »). If (X,,) satisfies (1.1), (1.2), (1.3) and

(1.5) (supizn | Xi [15)(Tiza, an(i)'™ + a777/n'™) —pen 0,

then the random functions W,, n € N, converge in distribution to the standard
Brownian motion W.

The first corollary shows that several known results for strongly mixing
sequences are contained in the above theorem.

COROLLARY 1: Let B € (2, ©] and v = 2/8. If (X,.) satisfies (1.1), (1.2) and
(1.6) Yiew a(i)}™ <o and lim suppen || X lls < o,

then (W,) converges to W in distribution.

The c.l.t. which follows from Corollary 1 has been proved for the strictly
stationary case by Ibragimov (1962), and the general case can be obtained from
Theorem 2.1 (A) of Withers (1981). Yoshihara and Oodaira (1972) proved the
i.p. for strictly stationary sequences under the assumption (1.6), improving a
result of Davydov (1968), but their method does not admit an easy generalization
to the non-stationary situation considered in this paper, since the uniform
integrability of (Sp+n — Sm)*/n, n, m € N, and of | X,|%, n €N, if B < o, is
crucial for their argument. Using his theory of mixingales, McLeish (1975)
obtained an i.p. for the non-stationary case. The above Corollary 1 improves
McLeish’s result, by weakening and simplifying the mixing condition and drop-
ping the assumption 3.8 (c) of his paper.

The following corollary shows that the moment condition in (1.6) can be
considerably relaxed, if one imposes stronger mixing conditions and adds the
assumption (1.3).

COROLLARY 2. Let B € (2, ®] and v = 2/8. Assume that (X,,) satisfies (1.1),
(1.2), (1.3) and one of the following conditions
a(k) = O(k™) and
| Xl s = o(nt/2-0v/2/A+a0+a)y  for some a > 1/(1 — ¥)
a(k) = O(b™*) for some b>1 and
I X lls = o(n"=""2/(log n)'™"')
then (W,) converges to W in distribution.

(1.7)

(1.8)
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The moment conditions in the above corollary cannot be weakened. In Section
3 we will show by examples that the c.l.t. may fail to hold, if the moment
condition in (1.7) or (1.8) is weakened, by replacing “o0” by “O”.

In the following corollary the above theorem is applied to a class of processes
which need not satisfy a (k) — 0. Define for n € N:

m,=infimeNU{0}:(X;:1<=i<k)and (Xi:k+m<i=<n)

are independent for every k€ {1, -.- n — m — 1}}.

COROLLARY 3. Let 8 € (2, ] and v = 2/B8. Assume that (X,,) satisifies (1.1),
(1.2), (1.3) and

(1.9) supi=a | Xillg = o(n* 2 /m}"?).

Then (W,) converges to W in distribution.

In general (1.9) cannot be weakened. The processes in Example 1 and 2 of
Section 3 satisfy sup;<. | X [l s = O(n*~"/2/m}~/?), but the c.l.t. does not hold in
these examples.

If m = suppexnm, < o, then (X,,) is called m-dependent. For such sequences
we obtain:

COROLLARY 4. Let 8 € (2, ©] and v = 2/B. Assume that (X,,) is m-dependent
and satisfies (1.1), (1.2), (1.3)

(1.10) I Xalls = o(n*"77%).
Then (W,) converges to W in distribution.

The condition (1.10) cannot be weakened even in the independent case. If
(X,)new are independent r.v.’s with P{X,, = +n'/2} = 1/(2n), then as a consequence
of the classical Lindeberg Theorem the c.Lt. is not valid, and one has || X, ||z =
n®72 In Example 3 of Section 3 we will show that it is impossible to find
a(k) > 0 and m, € N U {0} with m, — o such that every process (X,) which
fulfills (1.1), (1.2), (1.3), (1.10) and « (k) < a(k), m, < m, satisfies the c.l.t. Hence
the assumption of m-dependence in Corollary 4 cannot be replaced by any weaker
assumption of strong mixing and m,-dependence without strengthening the
moment condition.

Under the assumptions of our Theorem one can find p, € N such that p, =
o(n'?) and an(pn — k) —nen O for every k € N. Therefore it follows from
arguments of Billingsley (1968) that the assertion of our Theorem can be
strengthened to “(W,) is R-mixing to W”, i.e. P(W, € B|A) —nen W(B) for
every W-continuity set B € 4 and every A € o with P(A) > 0. This extension
is useful for the study of weak convergence, if the indices are r.v.’s (see Durrett
and Resnick, 1977). The proof of our results is given in Section 2. To prove the
c.l.t. we use Bernstein’s blocking argument, which is discussed in Lemma 3.1 of
Withers (1981). We do not use Theorem 2.1 of Withers, since his moment
assumptions are too strong for our purpose. The tightness of (W,) is also
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established by a blocking argument. An important tool is Lemma 2.2, which
extends an inequality proved by Ottaviani for independent r.v.’s.
The following notations are frequently used:
[x] =max{n € Z: n < x} for x E R.
a, ~ b, means a,/b, —,ex 1.
For a set A C Q, I(A) is the indicator function of A, i.e. I(A)(w) =1forw € A
and I(A)(w) = 0 for w & A. For a collection 2 of r.v.’s 6( % ) denotes the o-
algebra generated by these r.v.’s.

2. Proofs. The following lemma follows from formula (2.2) of Davydov
(1968).

2.1 LEMMA. Let (X,)nen be a sequence of r.v.’s with EX,, = 0. Let 8 € (2, »] and
v =2/B. Then for alli,j € {1, - - - n} with i # j the following inequality holds:

|EXiX;| < 12aa(]i = j D' 11 Xl | X1 .

The proof of the following lemma is omitted, since it is very similar to the
proof of Lemma 1.1.6 of Iosifescu, Theodorescu (1969).

2.2 LEMMA. Letm, --- 0, ber.v.’s. Put
a=sup{| P(ANB) — P(A)P(B)|: A€ a(n, - -+ m),
BE a(mes1, -+ M)y 1<=k=sn-—1}
Then for every ¢ > 0:

P{|zs;lm|>§}+na

P{maxi<,=n | Xic1 | > ¢} =

. &
mlnlsrsu—lp{l e mil| = 5}

PRrROOF OF THE THEOREM. Let (X,).ex be a sequence of r.v.’s. Assume that
(1.1), (1.2), (1.3) are satisfied. Let 8 € (2, ], v = 2/8. Let. (a,).ex be a sequence
in [1, ©) such that (1.5) is fulfilled. We define a sequence (b, )nex in [1, ®) by

BE/R1T = Tima, ()T + a2 /n .
Then the following conditions are satisfied:
(23) (@) bZ7/n'™" —uen 0
(b)  Fizs, anli)'™ = b7 /'Y

(¢)  supic. | Xill3 = o(n*™/b27).
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Now we will construct sequences of positive integers p(n), g(n) with the following
properties:

q(n)

p(n) =0

(24) (a)

p(n)
n

(b) -0

(€ Tisgm @) "sUPic, | X 13 — 0

p(n)2 i

(d sup;i=, | X; | — 0

(e) an(g(n)) - 0

( )
(2.3) (a) and (c) imply that there exists a sequence r(n) of positive.integers with
r(n) — «, r(n)b(n) = o(n) and sup;<, || X: |5 = o(n'""/(r(n)*>"b2™)). Choose q(n)
=2 inf{i € N: i = b,} and p(n) = r(n)q(n). Then (2.4) (a)—(d) follow immediately.
Since k£ — a,(k) is non-increasing, one obtains

1- 1—
n Y Y

n . - b
(p—(n_) an(Q("f))) = ( )1_7 b Zl>b an(l') ( )1_7

Now we proceed as in Lemma 3.1 of Withers (1981). With p = p(n), ¢ = q(n) and
= [n/(p + q)] we define

=Y {Xujlp+q +1=<i=j(p+q) +p} 0=j=k-1
=Y{Xejp+q@+p+1=<i<s(+1(p+q)} 0<j=<k-1
=Y {Xik(p+q@ +1=<i=<nj
Si=3%5¢&  Si=3Yk
To prove the c.l.t. it suffices to show that for n — o
(2.5) (a) n'ES’* >0
(b) 17! To<icj<r1 | EEEj| — 0
() koo
(d) | E exp(iuS;) — [1%3 E exp(iut,) | —nen 0
uniformly over u € R.

() nt Y3 EEHL g > eon'?) —nen 0 for every &> 0.
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To (a): Using 2.1 and (1.3), one obtains
ES!? < ko E{? + 2 Dicicn Yivpw=n | EXi X |
= C(kq +p+ Q) + 24n 2i>p an(i)l_‘ysul)isn " X; "123

where C is the constant of (1.3). Now (2.5) (a) follows from (2.4) (a), (b), (c).
To (b): By a similar application of 2.1 follows

Sosici<e-1 | EEi&j| < 24n Yinq an(i) 7 supi=n | X: 3.

Thus (2.4) (c) implies (2.5) (b).

(c) follows immediately from the definition of k and (2.4)(a), (b). Arguing as
in the proof of Theorem 18.4.1 of Ibragimov and Linnik (1971), one obtains (d)
from (2.4)(e).

To (e): 1st case: 8 = », v = 0. Then (2.4)(d) implies

SUPo<j<k-1 I & e = 0(n1/2)-

Hence the sum in (2.5)(e) equals 0 for all sufficiently large n.
2nd case: 8 € (2, ®), v € (0, 1). Then we estimate the Lh.s. of (e) by

n~'k(ean'’?)*Psuposj<h1 E | £1° = n7 k(eon'?)*PpPsup;<, | Xi 5
~ (e0)* (P> "n" supiz. || X: 15)"*

which goes to 0 according to (2.4)(d).
All points of (2.5) are proved. Hence we have proved the c.l.t. under the
assumptions of our Theorem. Using (1.2) we obtain

(2.6) W, (t) —.en W(t) in distribution for every ¢ € [0, 1].
Let0< ¢t < ... <t <1be given. We wish to show:
2.7 (Watr), -+, Waltr)) —nen (W(t1), ---, W(tx)) in distribution.

It follows from Prohorov’s classical characterization of tightness that (2.6) implies
the tightness of (Wn(t1), - - -, Wa(te))nen. Let @ Z (R" ) be the weak limit
distribution of some subsequence of (W,(t,), - - -, Wa(tx)). According to (2.6) the
marginal distributions Q' are normal with variance t;. Take r, = (2 + a,)/n,
where (a,) is the sequence in the assumption of the Theorem. Then r, — 0 and
an([nr,] — 1) — 0. Using (1.3) one obtains E(W,(t; + r,) — Wa(t:))? —nen 0.
Therefore Q(m; , 7, — m:, - - -, T, — ™, ,)” ' is the weak limit distribution of some
subsequence of (W, (t1), Wn(tz) — Wyo(ts + rn), - -+, Walte) — Wi(te-1+ 11)). Now
an([nr,] — 1) = 0 implies that =, , 7, — m,, - - -, m, — m,_ are independent under
Q. Hence Q is the distribution of (W(t;), - - -, W(tx)). This argument proves (2.7).

Finally, we have to prove the tightness of the sequence (W,). According to
Billingsley (1968) Theorem 15.5, it suffices to show for every ¢ > 0:

(2.8) lim;jolim suppen P{w(W,, 8) > ¢} = 0.
Let ¢ > 0 be given. For § > 0 and n € N holds

P{w(Wn’ 6) > 8} = 24[11=/3] P{maX[na5]<rs[n(a+l)i)] I Sr - S[naﬁ]l > eo_nl/2}.
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For the next step of the proof let a € {0, ..., [1/6]} be fixed. Let p = p(n),
g = q(n) be sequences of positive integers satisfying (2.4). Put m = m(n) =
max{i €EN: (p + q)i < [n(a + 1)8] — [nad]}. For j € {0, - .., m — 1} define

#; =T {Xi:[nad] + j(p + @) + 1 =i =<[nad] + j(p + q) + p}
¥ = X {Xit[nad]l + j(p+q@) +p+1=i=<[nad] + ( + D(p + g)}.
Then we have
p {maxlna5]<r5[n(a+1)6] | S; — Stras) | > ¥ 80’11/2}
< (m + 1) maXopen—(p+q) P{MaX1<rpiq | Sprr — Sp| > Voeon/?}
+ P{maxo<,<m—1| Y=o ;| > Yoeon'/?}
+ P{maxo<rsm—1| D=0 ¥j| > Yoeon'/?} = I + II + III.

To estimate I we distinguish two cases.
1st case: 3 = o, v = 0. Then we have in I

ess sup | Spir — Sy | = (P + @)supiz | Xi [l = o(n'?)

according to (2.4) (a), (d). Hence I equals 0 for all sufficiently large n.
2nd case: 8 € (2, ©) vy € (0,1). Let b€ {0, ---, n — (p + q)}. Then we have

P{max;<,<p+q | Sor — Sp| > Yoeon'?} < P{YEH | Xpsi| > Yoeon'/?}
=< (¢6/9)"n™"2(p + @)’supi, | X; 1§
Using the definition of m and (2.4) (a), (d), we obtain
(m + Dn™(p + q)Psupiza | X I§ ~ 8(p* "n" " supics | X [15)*> —nem 0.

Hence I goes to 0 for n — oo,
Now we will estimate IT and III. Using 2.1 and (1.3), we obtain:

max co,....m-1E(Xjes ¥)?*/(a’n)
< Yosizm-1 EY}/(0°n) + 2 Yizizn Ditp=j=n | EXiX;|/(c”n)
< Cmgq/(o°n) + 24072 Yiop aa(i)* "SUPi<n | Xi |5 —new O.
Similarly:
maxcy,... m-11E(Xjes Yj)?/(a*n)
< Yosiz=m1EP}/(0°n) + 2 Yizizn Dite<i=n | EXiX;|/(0?n)
< Cmp/(a°n) + 24072 Yinq an(i) 7" supi=, | X: |3.

Using (2.4) and the definition of m, we obtain that the last expression converges
to Co~26 for n — o, where C is the constant of (1.3). We can choose §y(¢) > 0
such that

(18/¢)%Co~23¢(e) < Y.

From now on we will assume 6 < 6¢(¢). Then we obtain by an application of
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Tschebyscheff’s inequality
MiNg<r<m—2 P{| X%+ @i| < Vis eon'’?} = %
for all sufficiently large n. Now we apply Lemma 2.2 and obtain:
P{maxo<,<m-1| Y=o Yj| > Yo ean'/?}
< 2P{| 37" @;| > Vis ean'/?} + 2ma,(q + 1).
(2.4) implies ma,(q + 1) —,e . 0. Since
I 276" ¥/ (o nM2) |2 —new O
I (Stntornis = Strast = SE2* @5 + 43/ (7 nV2) |5 —mene O
we obtain:
lim supen P{maxo<,<m—1 | Yieo Pj| > Yo ean'/?}
< 2 lim supnenP{| Sn@+1) — Sinas) | > Yveon'/?}.
Another application of T'schebyscheff’s inequality and Lemma 2.2 yields
lim sup,en P{maxo<rsm—1 | Xi=o ¥;| > Yo eon'/?}
< 2 lim sup,enP{| 270" ¢;| > Yiseon'?} + 2 lim suppexman(p + 1) = 0.
Summing up our results fora = 0, - - -, [1/5], we obtain:

lim sup,enP{w(W,, §) > ¢} < 2 T lim sup,,ENP{ LS ["‘““"2 = Stoari] fg}
g

< of! [ e me e |

Here we have used the weak convergence of W,((a + 1)§) — W,(ad) to N(0, 5),
the normal distribution with mean 0 and variance 6. Now the proof of (2.8) is
complete, and this was the last step of the proof of our Theorem.

PROOF OF COROLLARY 1. Since finitely many X, may be truncated, without
affecting the asymptotic behaviour of (W, ), we may assume w.l.g. sup,ex | X, | 5
< o, Then (1.6) implies (1.5) for every sequence (a,) with a, — « and aZ/n'~"
— 0. Using Lemma 2.1 one obtains

E(Snin —Sn)><n SuPiew || X; I3 + 24n Yien a(i)l_’supiew Il X; "123

Hence (1.3) follows from the assumptions of Corollary 1.

Proor oF COROLLARY 2. W.l.g. we may assume || X, |z < o for all n € N.
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Then the moment conditions in (1.7), respectively (1.8), imply
Supi<n " Xl " 8= O(n«1—7)/2)((1/(11-}-1))_(1/2)(1/(a+1)))
respectively
supi<, [| X; |5 = o(n"""2/(log n)* ).

If (1.7) is fulfilled, then apply the Theorem with a, = n*/*V, If (1.8) is fulfilled,
then take a, = max(1, log n/log b).

Corollary 3 follows by an application of the Theorem with a, = m, + 1. To
prove Corollary one may assume w.l.g. || X, |3 < o for all n € N. Then one has

supi<, || Xi |l s = o(n*="/2) and the assertion follows as a special case of Corollary
3.

3. Examples. In Lemma 3.1 the common structure of the examples in this
Section is discussed.

3.1 LEMMA. Letg: N — N have the following properties
(i) g is non-decreasing
(i) g(n) > o for n —
(iii) g(2n) < Mg(n) for all n € N with some constant M.
Denote g7'(n) = min{i € N: g(i)) = n}, n E N, G(n) = Y%, g(i), n € N U {0},
G~ (n) = min{i € N: G(i) = n}, n € N. Let (Y;);en be an independent sequence of
r.v.’s with

G@)*| _ 1 g@)

_1 _ &)
g6) | 2 GGy’

G()

P{Y,':i PlY;=0} =1

for i € N. Consider the process (X,),e,., defined by X, = Y; for GG — 1) <n
< G(i). Then (X,) has the following properties:

(82) EX,=0,EX2 <o forn EN

(3.3) ESZ/n —pen 1

(84) E(Spin—Sn):<nforn meN

(3.5) a(k) < sup{g(i)/GG):gi) =k + 1} for kEN
(36) m,<g(G'n)) —1fornEN

(3.7) For B € (2, »], v = 2/8 holds

I Xalls = (GG () */(g(G™(n))™* for nEN
(3.8) (X.) does not satisfy the c.l.t.
PROOF. (3.2) is obvious. To (3.3): (i), (ii), (iii) imply g(r)/G(n) — 0. Hence
gG7(n)) _ _ 8(G'(n) g(G™(n))

n T GG -1 GG (n) - gG(n)

—>neN 0.
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Let n €N, i = G }(n). Then G(i — 1) < n < G(i) and one has:
ES% = ¥4 g)’EY?: + (n — GG — 1))’EY?
=GGE—1) + (n— GG — 1))*/g@i)
|ESZ/n— 1| = |(Gi — 1) = n)/n + (n — G(i — 1))*/(ng(i)) |

= g(i)/n —nen 0.
To (3.4): Let m,n€E Nand G — 1) <m+1=<G@(),Gi+t)<m+n=
G(i + t+ 1) for some i E N, t € N U {0}. Then one has:
E(Smin— Sn)?
= (G(i) — mPEY? + 2t g0)’EY; + (m + n — G(i + £))’EY}en
= (G(i) — m)*/g(i) + Xt 80) + (m + n — GG + t))*/gli + t + 1)
<GG@)—-m+ Tt g0 +m+n—-Gi+t)=n

If GG — 1) < m + 1 < m + n < G(i), the assertion follows similarly. °

To (3.5): (X1, -+ -, X») and (X,+x, Xn+r+1, - - ) are independent, unless there
exists i € N with GG — 1) < n, n + k < G(i). In the latter case it follows from
Lemma 8 of Bradley (1981) that
sup{| P(A N B) — P(A)P(B) |: A € o(Xy, - -+, X.), B € 0(Xn+k, Xnskr1, -+ )}

< sup{| P(A N B) — P(A)P(B) |: A, B € o(Y))}.
Since P|o(Y;) has an atom with measure 1 — g(i)/G(i), it is easy to check
that | P(A N B) — P(A)P(B)| =< g(i)/GG) for A, B € o(Y;). Hence a(k) =
sup{g(i)/G@i):g(i) = k + 1}.

To (3.6): m, < max{g(i) — 1:G(i — 1) < n} =g(G™'(n)) — 1.

(3.7) follows easily from the definition of X.

To (3.8): Consider Z, = Y% n_1)+1 X, = g(n) Y,.. Then (Z,.)ne, is an independent
sequence with EZ, = 0, EZ2 = g(n), E(3%: Z;)* = G(n). It suffices to show that
Y, Z/G(n)Y? is not asymptotically normal. Since max<i<:g()/G(n) =
g(n)/G(n) — 0, the Lindeberg condition is necessary for asymptotic normality.
Hence it suffices to find ¢ > 0 such that

G(n)™* Y, E(Z3 | Z;| = ¢G(n)'/*}) + 0,
ie. G(n)™' ¥ {g(i):1 =i =< n, GG)Y? = «G(n)*/*} - 0.

The assumption (iii) implies G(2n) < 2M G(n) for n € N. Put ¢ = (2M )"2. Then
one obtains

G(2n)™' ¥ {g(i):1 = i = 2n, GG)? = (2M)™/*G(2n)"*}
= G2n) ! Y {g(i):n =i < 2n} =%,

which proves our claim.
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EXAMPLE 1. For every a > 1 there exists a process (X,).e. such that (1.1),
(1.2), (1.3) are fulfilled, and

a(k) = O(k™), m, = O(n'/*V)
I Xallp = O(nO—072-0=D/@0) - for all B € (2, ], v = 2/8
but (X,,) does not satisfy the c.l.t.

PROOF. Define g(n) = [n'/?]. Then (i), (ii), (iii) of Lemma 3.1 hold, and one
has the following asymptotic relations:

gn) ~n'*, g'(n) ~ n°

a a + 1\
G(n) ~ n(a+l)/a, G—l(n) ~ ( ) na/(a+1)

a+1
g(n)~a+1 o
G(n) a
8@) . _a+1 1 e+l _,
sup{G(i).g(z)2k+1} e Gkt . k

1/(a+1)
a+ 1) pVa+1)

g(G(n)) ~ (

G(G(n)) ~ n.
Using these relations, one obtains the assertion from Lemma 3.1.

EXAMPLE 2. There exists a process (X, )., such that (1.1), (1.2), (1.3) are
fulfilled, and

a(k) = 0(e™*), m, = O(log n)
I Xalls = O(n"""2/(log n)*™%) for all B € (2, ], yv=2/8
but (X,,) does not satisfy the c.l.t.
PROOF. Define g(n) = 1 + [log n]. Then (i), (ii), (iii) of Lemma 3.1 hold, and
one has the following asymptotic relations:
g(n) ~logn, g7'(n) ~e"*
G(n) ~nlogn, G'(n) ~n/logn
g(n)/G(n) ~ n7!
sup{g(i)/G(i@):g()) =k + 1} ~ 1/g7(k + 1) ~e7*
8(G7(n)) ~ log n, G(G™'(n)) ~ n.

The assertion now follows from 3.1.
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EXAMPLE 3. Let a(k) >0, k € N, and m, € N with m, — © for n — o, be
given. Then there exists a process (X, ).e such that (1.1), (1.2), (1.3) are fulfilled,
and

ak) < a(k) forall REN, m,=<m, foral n€EN
| X lls = o(n®?2) forall B€E (2], v=2/8
but (X,,) does not satisfy the c.l.t.

PrOOF. W.lLg. we assume &(k + 1) < a(k) and m, < My, for all k, n € N.
Define g(1) = 1 and inductively: g(n + 1) = g(n) + 1, if

gn) +1=2g(n+1)/2)

and g(n) + 1 < m,.; + 1 and g(n) + 1 < a(g(n))n, and g(n + 1) = g(n) otherwise.
Then g(n) is non-decreasing and g(n) — «. It is easy to prove by induction: g(n)
< 2 g([n/2]), g(n) < m, + 1 for all n € N, and g(n) < a(k)n for all n € N and &
< g(n). Let (X,)nen be the process of Lemma 3.1. Then (1.1), (1.2), (1.3) are
fulfilled, and :

a(k) < sup{g(i)/i:gi) = k+ 1} < a(k) for REN
m,<gG'n)—1=<gn)—1=<m, for nEN
1 X, 15 = (GG (n) — 1) + &G~ ()" 2/(g(G™}(n)))' ™"
< (n + o(n))"""2/(g(G™}(n))' " = o(n“"7")
for BE (2, ®©], v =2/B.

In the last line we have used the relation g(G™'(n)) = o(n), which has been
established in the proof of (3.3). Finally we obtain from Lemma 3.1 that (X,)
does not satisfy the c.l.t.
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