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ON THE CENTRAL LIMIT QUESTION UNDER
ABSOLUTE REGULARITY!

BY RicHARD C. BRADLEY

Indiana University

Davydov showed that in a classic central limit theorem of Ibragimov
under the strong mixing condition, the combinations of mixing rate and
moment assumption were practically as weak as permissible. Here some
constructions will be given to show that Davydov’s observation still holds
under the additional assumption that the growth of var(X, + --- + X,,) be
asymptotically linear. Qur constructions will be similar to a recent one of
Herrndorf.

1. Introduction. Suppose X := (X,, k € Z) is a strictly stationary sequence
of random variables on a probability space (2, ¥, P). For —o0 <J < L < 0 let
F ) denote the o-field of events generated by (X, J < k < L). For any two
o-fields .« and 4, define

a( A, #B)= sup |P(ANB)—P(A)P(B)|.
Acw, Bed
For each n = 1,2,... define a(n) = a(F",_, # ). The sequence X is said to be

“strongly mixing” [Rosenblatt (1956)] if a(n) - 0 as n — o. For each n =
1,2,... define the partial sum S,:= X, + --- +X,. The following statement
combines two classic theorems of Ibragimov (1962) [see Theorems 18.5.3 and
18.5.4 of Ibragimov and Linnik (1971)]:

THEOREM 0 (IBRAGIMOV). Suppose X := (X)) is strictly stationary, EX, = 0,
and at least one of the following two conditions holds:

(i) for some 8§ > 0, E|X,|?"? < o0 and ¥*_,a(n)*/?*" < o0; or

(ii) for some C < o0, |X,| < C a.s. and L7_,a(n) < oo.
Then 0% = EX? + 2X7_,E(X,X,) exists, the sum being absolutely convergent.
If in addition ¢* > 0, then S, /(n'/%0) — N(0,1) in distribution as n — .

Davydov (1969, 1973) constructed some (nontrivial) counterexamples to the
central limit theorem under strong mixing. He made the observation that in
Theorem 0 the assumptions are very nearly as weak as they can be permitted to
be. [See Examples 1 and 2 of Davydov (1973).]

Davydov (1969, 1973) also showed that even under conditions not much
weaker than in Theorem 0, n~'varS, does not need to approach a finite limit or
even be “slowly varying.” In his examples the rate of growth of varS, was at
least n“ for some d, 1 < d < 2. In a counterexample to the clt constructed in
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CENTRAL LIMIT QUESTION 1315
Bradley (1983) which had no (finite) moments of higher than second order, the
mixing rate was arbitrarily fast and the growth of varS, almost quadratic, in the
sense that n~2varS, — 0 arbitrarily slowly.

Herrndorf (1983) also constructed a counterexample to the clt which has an
arbitrarily fast mixing rate; his example satisfies the condition

2

(1.1) lim n"'varS, = 6> forsome 0?,0 < 02 < 0.

n—oo
The main purpose of the present note is to use a modified version of Herrndorf’s
construction in order to show, for 0 < 8 < o0, that even under the additional
assumption of (1.1) Davydov’s observation still holds: The assumptions in Theo-
rem 0 are very nearly as weak as permissible. This will be done in Theorems 1
and 2.

The following proposition was alluded to by Gordin (1969), stated in
Ibragimov and Linnik [(1971), p. 420], and given again in Hall and Heyde [(1980),
p. 139, Corollary 5.3(ii)]: Suppose 0 < 8 < o0, X = (X,,) is strictly stationary,
EX, =0, E|X,|*"® < 00, L%_,a(n)1¥9/2%9 < o5 and (1.1) holds; then
S,/(n'/%6) - N(0,1) in distribution as n — co. This proposition is false, for each
8, 0 < § < oo; Herrndorf’s (1983) construction is a counterexample for the case
6 = 0, and Theorem 1 below describes a similar counterexample for the case
0 < & < oo. This proposition was derived in Hall and Heyde (1980) as a corollary
of Theorem 5.4 (on p. 136 there); but Herrndorf (1983) pointed out a fatal error in
that derivation. Corollary 5.3(i) of Hall and Heyde (1980) is correct and is an easy
consequence of Ibragimov [(1975), Theorem 2.2] and Ibragimov and Linnik
[(1971), Theorem 17.2.3]. Also Theorem 5.4 of Hall and Heyde (1980), which was
announced by Gordin (1973) and is a clt for some stationary ergodic sequences
without the assumption of finite second moments, is correct. An error in its proof
in Hall and Heyde (1980) was pointed out by Herrndorf (1983); however, Esseen
and Janson [(1985), Theorem 1], corrected that error.

As mentioned, our constructions will be modified versions of Herrndorf’s
(1983). A key feature of Herrndorf’s construction is the use of moving averages of
ii.d. r.v.s in which the coefficients add up to zero. We shall replace the i.i.d. r.v.s
there by dependent ones, the dependence being such that in any of those moving
averages there can be at most one nonzero term. This change (which is somewhat
hidden in our constructions but will become clear in the proof of Lemma 2.4(v)
below) will make it easy to get adequate bounds on the ., norms, and especially
the £ norms, of r.v.s when necessary. The only other major change will be the
obvious one of choosing different parameters to achieve different moment proper-
ties and mixing rates.

Here are some properties of Herrndorf’s (1983) construction:

(1.2) 6 <varX, <o and corr(X,,X,)=0, Vnx>1,
(1.3) inf P(S, = 0) > 0,

nzl
(1.4) lim |sup P(|S,|> C)| = 0.

C-»00 n>1
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Equation (1.4) simply says that the family of distributions of S,, n = 1,2,... is
tight. Equation (1.3) shows that S, cannot be asymptotically normal under any
kind of normalization. Equation (1.2) implies (1.1). In our examples, properties
(1.3) and (1.4) [and sometimes (1.2)] will occur in the same way as in Herrndorf’s
example.

A stronger mixing condition known as “absolute regularity” [Volkonskii and
Rozanov (1959)] has recently been used frequently in limit theory; see, e.g.,
Yoshihara (1978), Berbee (1979), or Dehling and Philipp (1982). Thus in our
examples it seems worthwhile to discuss absolute regularity, for as it turns out
that will be just as easy as to discuss strong mixing. Herrndorf’s (1983) construc-
tion also satisfies absolute regularity, with essentially the same (arbitrarily fast)
mixing rate as for strong mixing. In Examples 1 and 2 of Davydov (1973) (his
very sharp counterexamples) the mixing rate for absolute regularity is essentially
the same as for strong mixing (see p. 328 there).

For any two o-fields &/ and % define the measure of dependence

b

I J
B, %) =supy ¥ X |P(4,0 B) - P(4,)P(B)

i=1/=1

where this sup is taken over all pairs of partitions {A,,..., A,} and {B,,..., B,}
of Q such that A, €/ V i and B, € # V ;. For a given strictly stationary
sequence X define for each n=1,2,... B(n)= BF°,, %>). X is said to

satisfy “absolute regularity” if 8(n) - 0 as n = 0. Clearly a(m) < B(m) V m.
In what follows, < means O(-).

THEOREM 1. Suppose & > 0. Then there exists a strictly stationary sequence
X = (X,) such that EX, =0, E|X,|>"® < o0, B(m) < ((logm)?/m)2*+®/% gs
m — oo, (1.2) holds, and (1.3) and (1.4) also hold.

THEOREM 2. There exists a strictly stationary sequence X = (X,)) such that
EX,=0, |X,| < C a.s. for some C < 0, B(m) < (logm)?>/m as m - o0, (1.2)
holds, and (1.3) and (1.4) also hold.

It will become clear from the proofs of these two theorems that in the mixing
rate for 8(m) in both theorems the factor (log m)?* can be replaced by (log m)?**
where ¢ > 0 is fixed arbitrarily small. But this still leaves a slight gap, essentially
a certain power of (logm), between the mixing rates in Theorems 1 and 2 and
those in Theorem 0. There is no obvious way of narrowing this gap with just the
strong mixing coefficients a(m). Similarly there remains a tiny gap between
Davydov’s (1973) constructions and Theorem 0.

Theorems 1 and 2 will be proved from a construction given in Section 3, after
some preliminary work in Section 2. Other information about the central limit
question, under different combinations of mixing rates and moment assumptions,
can be gained without much extra work from the same construction by varying
certain parameters. Here we shall give five additional results of this nature; their
proofs will also be given in Section 3.
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In some limit theorems under mixing conditions, it is assumed that m~'varS,,
is slowly varying as m — o; see, e.g., Theorem 18.4.1 in Ibragimov and Linnik
(1971), the main result of Herrndorf (1984), or Theorem 2.3 of Peligrad (1984). In
the context of Theorem 0, one might hope that in the case where 62 = 0, if
m~'varS,, is slowly varying (while approaching 0) as m — oo, the clt might hold.
But Theorems 3 and 4 show that this is not always the case. Here we shall use

the notation a, ~ b, to mean lim, , _a,/b, = 1.

THEOREM 3. Suppose 8 > 0. Then there exists a strictly stationary sequence
X = (X)) such that EX; =0, E|X)|**® < 00, £2_,B(m)*?*® < o, var§, ~
(logm) *m as m - oo, and (1.3) and (1.4) both hold. :

THEOREM 4. There exists a strictly stationary sequence X = (X,) such that
EX,=0, |X)| < C a.s. for some C < o0, £%_,B(m) < oo, varS, ~ (logm) *m
as m — oo, and (1.3) and (1.4) both hold.

The next theorem was motivated by some questions raised by M. Peligrad
concerning possible very slow rates of growth of varS, under strong mixing.

THEOREM 5. Suppose L, L,, L,,... is a sequence of positive integers such
that for eachn > 2, L, > nL, . Then there exists a strictly stationary sequence
X = (X,) such that EX, = 0, | X,| < C a.s. for some C < w0, B(m) < (logm)?* -
m %asm — oo, varS,, is nondecreasing as m increases, varS,; ,, ~ nasn — oo,
and also (1.3) and (1.4) hold.

Here L(n) means L, for typographical convenience.

REMARK 1. Suppose X = (X)) is strictly stationary, EX, =0, | X,| < C a.s.
for same C <, and L0 _ym- e(my< . Then T2 sB(X X, < x by
Theorem 17.2.1 of Ibragimov and Linnik (1971). It follows from simple calcula-
tions that either sup,varS, < o or (1.1) holds, and in the latter case S,/(n' %)
— N(0,1) in distribution as n - o by Theorem 0.

Problem 4 of Ibragimov and Linnik [(1971), p. 393] in essence reads as follows:
Suppose § > 0, X := (X)) is strictly stationary, EX, =0, E|X,|?>"® < 0, and
varS, — o0 as n — oo; what is the “slowest” mixing rate for a(n) that will
insure that S, is asymptotically normally distributed as n — «? (Compare this
question with Theorem 0 and Theorem 3.) In the case where X, is bounded,
Theorem 5 and Remark 1 together show that the rate 2_,m - a(m) < w0 is
essentially just fast enough to imply asymptotic normality. In the case E|X,|?"°
< oo where 0 < § < oo, Theorem 6 below and an exact analog of Remark 1
[using Theorem 17.2.2 of Ibragimov and Linnik (1971)] show that the rate
T2_m-a(m)®?*% < oo is essentially just fast enough to imply asymptotic
normality. The answer to the above question seems to be pinpointed to within
certain powers of log m; a small gap remains.
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THEOREM 6. Suppose 0 < 8 < oo. Then there exists a strictly stationary
sequence X := (X,) such that EX, =0, E|X,|*"? < o0, varS, > o0 as n > oo,
B(m) < ((logm)? - m~2)@+®/% g5 m — o, and (1.3) and (1.4) both hold.

Now let us return to the context of Theorems 1 and 2. Herrndorf [(1985),
Theorem 1] gave a broad generalization of Theorem 0 under the additional
assumption of (1.1). A natural question is whether the assumptions there (i.e.,
“moment” conditions and mixing rates) are essentially as weak as permissible.
Herrndorf (private communication) suggested that if this were so, then one might
be able to verify this by using the constructions in the present paper with careful
choices of parameters. To avoid extra complications, we shall pursue this sugges-
tion in only the special case treated in the corollary to Theorem 2 in Herrndorf
(1985). There the clt (and weak invariance principle) were given under the
“moment” condition EXZ(log*|X,)* < o for some a > 1 and the mixing rate
a(m) < r~™ for some r > 1. Here log*x := max{0,log x}. The theorems in that
paper did not assume stationarity, and in a nonstationary construction in
Example 1 of that paper Herrndorf showed that that particular clt (without the
assumption of stationarity) does not extend to the case a = 1. The following
stationary example is almost as sharp:

THEOREM 7. There exists a strictly stationary sequence X := (X,,) such that
EX, =0, EX?(log'|X,)* < 0o Vae(0,1),B(m)<e ™asm — o, (1.2) holds,
and (1.3) and (1.4) also hold.

REMARK 2. For the p-mixing (maximal correlation) condition (whose formal
definition need not be mentioned here), the basic clts are due to Ibragimov
[(1975), Theorems 2.1 and 2.2]. In those results the assumptions (“‘moment”
condition, mixing rate) are essentially as weak as permissible for the clt, as is
shown by stationary p-mixing counterexamples (satisfying barely weaker condi-
tions) in Bradley (1984). It is an open question whether stationary p-mixing
counterexamples to the clt exist that also satisfy (1.1), and, if so, whether any
such examples are sharp.

2. Preliminaries. We shall first mention two elementary lemmas that will
be needed later on.

LEMMA 2.1. Suppose «Z,, n = 1,2,... and #,, n = 1,2,... are o-fields, and
the o-fields o7, v %,, n = 1,2,... are independent. Then B(V 7.\, V3_,%,) <
Zf=lﬁ(‘%n)'%n)'

To prove Lemma 2.1, first show that B(&/, V &, %, V %,) < B(H,, #,) +
B(Z,, #,), which is easy; then use induction and an approximation argument.

REMARK. Under the same conditions one can obtain B(%/, V &,, 4, V %,)
< B(,, B,) + B(HAy, B,) — B(H,, B,) - B(H,, B,) by an elementary but slightly
longer calculation analogous, e.g., to the proof of Lemma 2.2 of Bradley (1980);
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and this leads to the inequality B(V®_,#,,V<_%8,) <1 —T17_\[1 - B(,, %,)].
But Lemma 2.1 is sufficient for our purposes.

LEMMA 2.2. Suppose «/ is a o-field and F is an atom of sZ. Then B(<Z, /) <
2-[1 - P(F)].

Herrndorf (1983) used an analogous lemma involving a(.%/, /). A related
property of entropy (for finite o-fields) played a similar role in Theorem 2 of
Bradley (1983).

PROOF OF LEMMA 2.2. Suppose {4,, A,, ..., A,} is a partition of  such that
each A, € &« and A, = F. It suffices to show that ’

1 1
(2.1) gj ) |P(A;nA;) — P(A)P(A))| < 4[1 - P(F)].

j=

By a simple argument,

- (Lhs.of (2.1)) =2 le P(A))[1 - P(A,)]

1=

<2[P(A;)(1 - P(A))] + 212l P(A,) < 4P(F°).

=1

This completes the proof. O

Now let us turn our attention to some random sequences that will be used as
“puilding blocks” for the random sequences X to be constructed later on for
Theorems 1-7. '

DEFINITION 2.3. Suppose L is a positive integer and 0 < p < 1. A ran:lom
sequence is said to have the ¥ (L, p) distribution if it has the same distribution
as the random sequence W defined as follows:

Let U = (U,, k € Z) be i.id. with P(U,=1) =1~ P, = 0) = p. Let V=
(V,, k € Z) be i.id. and independent of the sequence U, such that P(V, =1) =
P(V, = —1) = |. Define the random sequence W = (W), k & Z) as follows: For
each k,

k

W, = Z Vj'I(Uj'_"lande+l=Uj+2:"': j+2L—1=O)
J=k L+1
(2.2) v L
- Y Vi IU=1andU,, =U,,= - =U,y =0).
J=k-2L40

Here I(-) denotes the indicator function. This definition is more complicated
than it needs to be, but only in order to make it easier to verify some tedious,
elementary technical properties. Of the 2L terms on the r.h.s. of (2.2), at most
one can be nonzero for any given sample point v € .
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In what follows, the absolute regularity coefficients S(m) for a given sta-
tionary sequence X will henceforth be denoted B,(X), in order to avoid confu-
sion when other stationary sequences are present.

Also, the o-field of events generated by a family (Y,, s € S) of r.v.s will
henceforth be denoted by %#(Y,, s € S).

LEMMA 2.4. Suppose L is a positive integer and 0 <p < 1. If W= (W,,
k € Z) is a random sequence with the (L, p) distribution, then the following
statements hold:

(1) W is strictly stationary;
(i) P(W, = 1) = POWy = ~1) = Lp(1 - p)*"",
P(W,=0)=1-2Lp1 - p)**,
EW, =0, and EWg =2Lp1 — p)*' Y
(i) Vm=>1, P(W, + - +W, #0) < 4Lp(l — p)2L;
(iv) B(W) < 8Lp and By, (W)=0;

(2L - 3m)p(1 — p)*" !, ifl<m<L,
) EW W = (m - 2L)p(1 — p)*" ", ifL<m<2L,
0, ifm=>2L;

Vi)Vm=12,... L,
EW, + - +W, )%= (—=m?+ 2Lm* + m)p(1 — p)*+;
(i) Vm=LL+1,...,2L

E(W, I VY S L.
+ ot = ——t — - +———
W, ) T T T
p(L = p)*tY
(viii) ¥ m = 2L,
. _ 4L 2L .
BV Ao+ W) = 5 T pa -p)*t
(ix) B(W, + --- +W,,)* is nondecreasing as m increases.

Proor. Without loss of generality, we shall assume that W is accompanied
by random sequences U and V as in Definition 2.3, and that V w € Q, U w) e
(0,1} V £ and V(w) € {-1,1} V k. ,

Property (i) is obvious, and (ii) is a simple consequence of Definition 2.3.

To verify (iii), first note that for each w € , the sequence (W (w), k € Z)
consists of Os interrupted occasionally by strings of +1,...,+1,—1,...,—1
(with L +1sand L —1s)or —1,..., -1, +1,..., + 1. (Two such strings can be
contiguous, without zeros between them.) Hence V. m > 1, (W, + --- + W, = 0}
c (W, # 0} U (W, # 0}, and (iii) now follows from (ii).
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To prove (iv), first note that (2.2) remains unchanged if each U, is replaced by
|UV,| and each V; by U,V,. Hence for each fixed k, W, is really a function of only
the rv.s (UV, E—2L+1<j<k+2L—-1). Now BW,, k<0 c VvV F
and #(W,, k>1)C % VY, where o =RBUYV,, k< -2L+1), % =
AUV, k>2L),and 9= BU,V,, —2L + 2 < k < 2L — 1). Hence by Lemma
2.1, B(W) < B(9,9). Now ¢ has an atom (U,V, =0V k, 2L +2<k<2L
— 1} which has probability (1 — p)**~? = 1 — 4Lp. Hence by Lemma 2.2, B(W)
< 8Lp. The equation 8,, (W) = 0 follows from the fact that Z(W,, k < 0) and
B(W,,, k > 4L — 1) are sub-o-fields of the independent o-fields Z(U,V,, k < 2L
— 1) and B(U,V,, k > 2L), respectively.

Next, to prove (v), first define the random sequence (T}, k € Z) by T}, ==V, -
I{U, =1} N Uy = Upso= -+ = Upipp 1 = 0}). Then ET,=0, ET; =
p(1 —p)?L~' and ET,T,=0 for k+ 1 (If k+# 1! and |k — | <2L —1 then
T,T,=0)

If1 <m<L—1then WyW,, =%_,, 1\ T7 — ZF b0 T + Xl ar TR
+ Y where Y is a linear combination of finitely many r.v.s of the form T,T),
k + I, and hence EW,W,, = (2L — 3m)p(1 — p)**~".

If L<m<?2L—1, then WW, = -%2%_, ., .\ T#+ Y where Y has the
same form as above, and EW,W,, = (m — 2L)p(1 — p)**~ .

If m > 2L, then obviously EW,W,, = 0. Thus (v) holds.

Substituting the equations in (v) into the formula E(W, + --- + W)=
mEWZ + 257p-(m — k)EW,W,, and carrying out some simple, tedious arith-
metic, we obtain (vi), (vii), and (viii). .

One can prove (ix) by direct calculations, but there is an easier way. For each
m>2 EW, + - +W, )2 =q, + EW, + -+ +W,,_)? where q,, = EW} +
2y ™= \EW,W,. By (viii), ¢,,= 0V m > 2L + 1. By (v), EW,W,, > 0if 1 <m <
2L /3, and EW,W,, < 0if m > 2L/3. Hence, if 2 < m < 2L/3 then g,, > 0, and
if instead m > 2and2L/3 <m < 2L thengq,,=q,, — Qz1,+1 = —2y2L EWW,
> 0. Thus g,, > 0V m > 2, and (ix) follows. This completes the proof of Lemma
24. 0

3. Proofs of Theorems 1-7. The random sequences X for Theorems 1-7
will be constructed as follows: '

PARAGRAPH A. (Construction of X): Let L, L,, Lg,... be a nondecreasing:
sequence of positive integers such that lim,_ L, = c. Let p,, p,, p3,... be
positive numbers satisfying

ad 1
(3'1) Z ann < g'
n=1

Let C,,C,,Cs, ... be positive numbers such that
o0

(3.2) Y LC?p, < .
n=1

For each n = 1,2,... let X" := (X{"™, k € Z) be a (strictly stationary) random
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sequence with the %#(L,, p,) distribution. Let these sequences X", X®, ... be
independent of each other. Define the sequence X = (X,,, k£ € Z) as follows: for
each k&,

(3.3) X,= Y CX\".
n=1
For each k this sum converges a.s. and in %, by Lemma 2.4(ii) and (3.2).

LEMMA 3.1. Suppose X = (X, k € Z) is defined as in (3.3), with all as-
sumptions in Paragraph A satisfied. For each m = 1,2,... define the partial
sum S, = X, + -+ +X,.. Then the following statements hold:

(i) X s stricily stationary;
(i) EX, =0 and 0 < EXj < oo;
(iii) || Xyl < X%-,C, and for each v > 1,

B ”)(()”vS Z Cn(2ann)]/”;

n=1

(iv) equations (1.3) and (1.4) both hold;
(V) Vm = 1! Bm(X) = Z"(n:4L(n)zm)gl’npn;

(viyV m =1,
varS,, = Yy (—m®+ 2L,m? + m)C2p,(1 - p, )2
{n: m<L(n)}
AL} 4L,
+ > (4L,2,m - +
{n: L(ny<m<2L(n)) 3 3

9 m’ m 9 2L(n) 1
- 2an + _5 - 3 Cnpn(l - pn)

+ X

{n:2L(n)<m)}

4L3 L ,

n + n C2 1 _ 2L(n)- l.

%52 + 52 Jeznaa -0

Here L(n) means L,, for typographical convenience. In both parts of (iii) of
course, the r.h.s. (and even the l.h.s.) can perhaps be .

Proor or LEMMA 3.1. The proofs of (i), (ii), and (iii) are elementary conse-
quences of the assumptions in Paragraph A [using Minkowski’s inequality for
@ii)].

Proof of (iv): Foreach n 2 1 and m> 1, P(X{" + --- + X"+ 0) < 4L,p,
by Lemma 2.4(iii). Hence Ym > 1, P(S,, # 0) < X7 4L,p, <, by (3.1). This
proves (1.3). This argument was like that in Herrndorf (1983), and the argument
for (1.4) is also like that in Herrndorf [(1983), starting with line —7 of p. 812
there].
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Part (v) is an easy consequence of Lemma 2.4(iv) and Lemma 2.1.
Part (vi) is an easy consequence of Lemma 2.4(vi), (vii), (viii), and the equality
varS, = X_,C2var(X{™ + --- +X\). This completes the proof.

PROOF OF THEOREM 1. For each n = 1,2,3,... define L, := 2" . Define the
sequence of numbers p,, p,,... by p,==¢-2""-(2": n?)?+9/% where the
constant g > 0 is fixed sufficiently small that (3.1) holds. For each n = 1,2,...
define C, = [(1 — p,)' 2Hm]/2.27/%. n~@3/22+8)/8 Then (3.2) holds. Define
the random sequence X = (X,,) as in (3.3).

First note that C(L, p,)"/®"® < n" %2 as n - oo, and hence E|X,|*"® < o0
by Lemma 3.1(iii).

Next, by Lemma 3.1(v) and elementary calculations,

Bm(X) < Z 4q .(2fn . n:;)(2+8)/s
n=N(m)

< [QAN(M) . N(m)3](2+8)/a

< [(togm)’/m]*""",
where for each m = 1,2,..., N(m):= min{n: 2"*' > m}.
Except for (1.2), all properties in Theorem 1 either have been verified or follow
immediately from Lemma 3.1. To verify (1.2), let m > 1 be arbitrary but fixed.
Let N be the positive integer such that 2¥ ' < m < 2". Then by Lemma 2.4(v),

> CIEX{ XL

EX, X, =
n=1
oC
= CZEX{VXN + L CIEX(MXL
n=N+1
=(m—-2Ly)g-4 N+ Y (2L,-3m)g-4"
n=N+1
= 0. 7
This completes the proof of Theorem 1. 0

PrOOF OF THEOREM 2. In essence, carry out the proof of Theorem 1 with
8 = oo; ie, with L, :=2""", p,:==q-4""-n% and C, = [(1 - p,)' *""]"/*.
n 3/2' 0

PROOF OF THEOREM 3. For each n > 1 define L, == [exp(n®/%)] where [x]
denotes the greatest integer < x. Define the numbers p, p,,... by p, =
gn /99 Bexp(—((2 + 28)/8)n%/) where g > 0 is fixed sufficiently small that
(3.1) holds. For each n > 1 define C, :== n"/9" ®/%exp((1/8)n""%). Then (3.2)
holds. Define the sequence X = (X,,) as in (3.3).

In verifying the mixing rate on f(m) and the rate of growth of varsS,,, one can

use Lemma 3.1(v), (vi) and elementary calculus, including (i) im, _, .exp(s(n +
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1)?)/exp(sn¥) = 1 when s is real and 0 < y < 1, and also (ii) such formulas as
TN yinexp(sn) ~ (sy) '[N""!' Yexp(sNY) — M"*' Yexp(sM”)] as N> M
— o0, whenever the constants r, s, and y satisfy 0 <y <1 and s # 0. From
Lemma 3.1(v) one obtains B,(X) < (logm)/»(1-72+8)/8)y ~(248)/8 and hence
T2 _ (B X))/ 2% < 0. From Lemma 3.1(vi) and much arithmetic one obtains
varS, ~ C - (logm) *m as m — oo for some constant C > 0. Simply by rescaling
the process X one can make C = 1 without affecting the other properties of X
stated in Theorem 3. The remaining properties are easy to verify from Lemma
3.1. a

PROOF OF THEOREM 4. In essence, carry out the proof of Theorem 3 with
8 = co; i.e., with L, = [exp(n®®)], p, == qn~ "/%exp(—2n*/%),and C, :== n7/5. O

ProoOF OF THEOREM 5. Let L, L,,... be as in the statement of Theorem 5.
Define the numbers p,, p,,... by p, = (3/4)gn’L,,? with the constant q > 0
fixed sufficiently small that (3.1) holds. For each n = 1,2,... define C, :== [(1 —
p,)! 2™ . n=3q 112, Then (3.2) holds. Define the sequence X := (X,) as in
(3.3).

The properties in Theorem 5 can be verified from Lemma 3.1 pretty easily; we
shall just discuss the rate of growth of varS,. By Lemma 2.4(vi), (viii) and the
hypothesis of Theorem 1, for each n > 2 we have var(X;%* VC, X{") < 6/n?,
and for each n > 1 we have varC?.,C, X\")=1+ L,?/2V m > 2L,. Using
the formula varS, = X°_,var(Zy_,C,X ") V m > 1, and using Lemma 2.4(ix),
we obtain that varS, is nondecreasing and that varS,; y,~ N as N — co. Now
varS; n, ~ N follows. This completes our argument. a

PROOF OF THEOREM 6. Choose L, == 2""!, p = q -2 "2 2"n*)?*9/% and
C, = 22"/%n~3/22+8)/5 and simply apply Lemma 3.1 with elementary calcu-
lations. . a

PROOF OF THEOREM 7. Choose L,:=2""', p,=q -4 "exp(—2"""), and
C,=[(1 — p,)! 2LM]/%xp(2"). Now one can imitate the proof of Theorem 1.
For each a,0 < a < 1, one has EXZ(log*|X,))® < oo by a simple calculation after
one shows that (to put it loosely) for large N, for w € {X{M # 0, X{" =0V
n > N}, one has | X (w)| = Cy. 0O
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