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STRONG LIMIT THEOREMS FOR WEIGHTED QUANTILE
PROCESSES

BY JonN H. J. EINMAHL AND DAviD M. Mason!

University of Limburg and University of Delaware

A thorough description of the almost sure behavior of weighted uniform
quantile processes is given. This includes analogues of nearly all known
results for weighted uniform empirical processes, such as the James func-
tional law of the iterated logarithm and the Csaki results on the supremum of
the standardized empirical process. Subject to the usual regularity condi-
tions, our results extend to the nonuniform quantile process. Also, in the
process of obtaining our results, we derive an extension of a theorem of
Kiefer, which is likely to be of independent interest.

1. Introduction and statements of results. Let U, U,,..., be a sequence
of independent uniform (0, 1) random variables. For each integer n > 1, let

G(s)=n"1'Y1(U-<s), 0<s<l1,
i-1

where 1(x < y) denotes the indicator function, be the empirical distribution
function based on the first n of these random variables, and let

U(s)=U,,, (k-1)/n<s<k/n, k=1,...,n,

with U,(0) = U, ,, where U, , < < U, , are the order statistics based on
U,...,U, be the sample quantlle functlon We write the uniform empirical
process as

a,(s) = n'?(G, (s)—s} 0<s<l,
and the uniform quantile process as
B.(s) =n"U,(s) —s}, O0<s<l.

We shall use the notation /fn(s) to denote the truncated uniform quantile
process, which is equal to 8,(s) for 1/(n + 1) < s < n/(n + 1) and defined to be
0 elsewhere.

The purpose of this paper is to provide a complete description of the almost
sure behavior of weighted versions of the uniform quantile process. The results
that we shall present will be the complete analogues of known results for
weighted uniform empirical processes. We begin by stating our results. At the
end of this section, we shall discuss related literature on the uniform quantile
process and results for the uniform empirical process, which correspond to our
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theorems. Also, some remarks will be made about extensions of our results to the

nonuniform quantile process. The proofs will be detailed in the next section.
Our first result is a functional law of the iterated logarithm for the weighted

uniform quantile process. Let

Q* = {q:[0,1] - [0, c0): g is nondecreasing and is strictly positive on (0,1]}.

Also, let B[0,1] denote the space of bounded real-valued functions defined on
[0, 1] with the supremum norm and F'[0, 1] denote the set of absolutely continu-
ous functions f € B[0,1] such that

f(0) =f(1) =0 and fol(f'(s))“’dssl.

For any g € Q*, set F [0,1] = {f/q: f € F[0,1]}.
Throughout this paper, 1, = loglog(n Vv 3) forn > 1.

THEOREM 1. Let ¢ € Q* and assume
(1.1) lim (sloglog(1/5))"*/q(s) = o & [0, 0].
Then with probability 1 [wp 1],
limsup sup |4,(s)|/(q(s)(2L,)""?)
1

n—oo 0<s<

(1.2)
- @) v( s (s(1-9)"/a(s))

0<s<1/2
Moreover, when p = 0, then wp 1 the sequence

(1.3) (B/(1,)"%q)} .,

is relatively compact in B[0, 1] with set of limit points equal to F,[0,1]. Whereas,
if p > 0, wp 1 the sequence in (1.3) fails to be relatively compact in B[0,1].

Our next theorem describes the almost sure behavior of the weighted uniform
quantile process for a certain subclass of the functions ¢ € @* for which the
limit in (1.1) is equal to co. Here the norming constants depend on the particular
weight function and the interval on which the supremum is taken at each
stage n.

For any 0 < ¢ < oo, let 0 < a7 < 1 < a be the two solutions of A — log A —
=c L

THEOREM 2. Let0<»<1/2and 0<a, <1/2 witha,lO.
@ If na,/l, — 0 and a, > a/n, eventually, for some a > 0, then wp 1,
(1.4) limsup sup n'%al7?|B,(s)|/(s'7",) = 1.

n—ow a,<s<1/2
an) If na,/l, - c € (0, ), then wp 1,
(1.5) limsup sup a/*7"|B,(s)|/(s" /%) = (e, v),

n—-o a,<s<1/2

where ¥(e,1/2) =2V {M¥(af— 1)} and y(c,v) = ¥ (aj— 1) if 0 <v <1/2.
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a1 If na,/l, 1w and loglog(1/a,)/l, — c, then wp 1,
limsup sup ay*7"|B,(s)|/(s'"0/?)

n—>o a,<s<1/2

(16) — @+ ) i r=1/2,
= /2 fo<wv<1/2.

Let 0<k,<n, k,T and k,/n 0. Define two versions of the tail quantile
process based on the sequence {&,}?_, to be

0,(s) = (n/k,) *By(sko/n), 0<s<1,
and
8.(s) = (n/k,)*B,(sk,/n), 0<s<]l.

Also, let K[0,1] denote the set of absolutely continuous functions f € B[0,1]
such that

f(0) =0 and fol(f’(S))zdssl,

and for any 0 < » < 1/2 set
K,[0,1] = {fI"'**": f e K[0,1]},

where I denotes the identity function.
The following theorem provides a description of how weighted and un-
weighted versions of these processes behave almost surely as n — 0.

THEOREM 3. LetO0<v<1/2,1<k,<n, k,? andk,/n|O0.
@) If k7 /1, - O, then up 1,
1.7) limsup sup k%|%,(s)|/(sV%71,) = 1.

n—-ow 0<s<l

an If k¥ /1, > c € (0, 0], then wp 1,
(1.8) limsup sup |6,(s)|/(sV27"1Y?) = 7(c, »),
1

n—oo 0<s<

where
t(c,v) =c?(a}f-1), »=1/2,¢c€(0,0),
=22 v=1/2,¢c= o0,
=c 12 0<v<1/2,ce(0,1/2),
= 2172, 0<v<1/2,ce[1/2, o].
1) If k% /1, > oo, then wp 1 the sequence
(1.9) (8,/(12@1L)"))

is relatively compact in B[0,1] with set of limit points equal to K [0,1].
Moreover, (1)-(111) remain true when ¥, is replaced by v, in the case v = 1/2.
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REMARK 1. In parts (I) and (II), when ¢ < oo, statement (1.9) fails to be
true.

Our final result dealing with weighted uniform quantile processes concerns
strong approximations.

THEOREM 4. (I) On a rich enough probability space, there exists a sequence
of independent Brownian bridges B,, B,,..., and a sequence of independent
uniform (0,1) random variables U,, U, ..., such that whenever q € Q* satisfies
(1.1) with p = 0, then wp 1,

(1.10) sup

0<sx<1

Bi(s) —n=1/2 éB,-(S) /Q(S) = o(L/?).

(II) Let 0 <v<1/2,1<k,<n, k,t and k,/n 0. If k2’ /1, — oo, then on
a rich enough probability space there exist a sequence of standard Wiener

processes W, W,,..., and a sequence of independent uniform (0,1) random
variables U}, U,, ..., such that wp 1,

(1.11) sup

0<s<1

g 1/2+v — O(lrlz/2)'

5.(s) — k32 Y Wi(sk,/n)
i=1

REMARK 2. Of course, instead of using weight functions in the class @*, we
could have formulated Theorems 1, 2 and 4 in terms of weight functions that
agree with members of @* on [0,1/2] and are symmetric about 1/2. The
corresponding statements and proofs of the results for this class of weight
functions are, because of symmetry considerations, obvious from our present
theorems and therefore left to the reader.

Our last result is both a tool to prove Theorem 3 and an extension of a
theorem by Kiefer (1970) concerning the almost sure behavior of the supremum
of the Bahadur (1966) process as n — co. We use the following notation in the
statement ‘of our theorem.

Given a sequence 0 < k, < n, set a* = (k,l,)"/? b,=1logk,, d,=2l,+ b,
and r, = (aX*d,)"’n"'/2 Also, let

R, (k,) = sup |a,(s) + B,(s)].

0<s<k,/n

THEOREM 5. Assume that {k,}7_, satisfies
(1.12) k,? andk,/nly, 0<y<l,
and

(1.13) k,/l, > 0, asn—> .
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(@M If y =0, then wp 1,
(1.14) limsupr; 'R, (k,) < 2'/*

n—oo

and if, in addition,

(1.15) (logk,)/l, > ©, asn— o,
then wp 1,
(1.16) limsupr, 'R, (k,) = 24

D) If 0 <y <1, thenup1,

limsupr; 'R, (k,) = 241 - y)"*, 0<y<1/2,
(1.17) nee
-9 Ay 1<y <l

REMARK 3. Subject to regularity conditions, our results can be extended to
the nonuniform quantile process as defined in equation (9) on page 640 of
Shorack and Wellner (SW) (1986). For instance, if the underlying distribution
function F satisfies properties (1)—(3) with M < 1 on page 645 of SW (1986),
then Theorem 1 with p = 0, Theorem 2, part (III), Theorem 3, part (II) with
¢ = oo and part (III), and Theorems 4 and 5 remain true for the nonuniform
quantile process. For the sake of brevity, we do not go through the routine
details of showing this here.

REMARK 4. Theorem 1 is the analogue for ,Efn of the James (1975) functional
law of the iterated logarithm for the weighted uniform empirical process and was
first announced in Shorack (1982a). [See also Open Question 1 on page 526 of SW
(1986).] The versions for «, of the various parts of Theorem 2 are to be found in
Csaki (1975, 1977), Shorack and Wellner (1978), Mason (1981), Wellner (1978)
and Einmahl (1987a). A weaker form of Theorem 2 for the case » = 1/2 was
obtained by Cs6rgd and Révész (1978). Theorem 2 for the case » = 1/2 answers
Open Question 1 on page 616 of SW (1986). The case when v = 0 was first given
by Wellner (1978). Einmahl and Mason (1988) describe the behavior of the tail
empirical process that corresponds to parts (I) and (II) of Theorem 3. Part (III)
of this theorem gives the analogues for the tail quantile process of results in
Mason (1988). A special case of Theorem 6.1 of Alexander (1982) contains the
strong approximation result for the weighted uniform empirical process corre-
sponding to part (I) of Theorem 4. Mason (1988) obtained the strong approxima-
tion for the tail empirical process for which Theorem 4, part (II), is the analogue.
When £, is chosen to be n, Theorem 5 gives the well-known result by Kiefer
(1970) on the Bahadur process. (See Fact 3 in the following discussion.) It also
yields an improvement of some results on intermediate order statistics in Watts
(1980), specialized to the uniform distribution.
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2. Proofs of the theorems. For convenient reference later on, we begin by
recording a number of facts.

Facr 1 [Kiefer (1972)].
@) Let(n+1)"'<a,<1andna,/l, > 0. Then up 1,
limsupnU,(a,)/L, = 1.

n—o
(i) Let 0 < a, <1, na,/l,tw and a,|. Then wp 1,
limsup + B,(a,)/(a.(1 - a,)i,)""* = 22,
n— oo
(iii) Let 0 <a, <1, na,1, na,/l, > « and a, | 0. Then wp 1,
limsup + an(an)/(an(l - an)ln)l/2 = 21/2’
n—o

If ¢ € (0, 0), then wp 1,

(iv) limsupnU,(cl,/n)/l, = ca}
and
(v) liminfnU,(cl,/n)/l, = ca;.

Fact 2 [Wellner (1978)].
If ¢ € (0,1), then wp 1,

(i) limsup sup U,(s)/s=a}

n—ow c,/n<s<l1

and
(ii) limsup sup s/Uy(s) = (o) "

n—->o cl,/n<s<1
Facr 3 [Kiefer (1970)]. We have wp 1,

limsup sup n'/*|a,(s) + B,(s)|/(1¥%log n)l/2 =27 1/4,

n—-oo 0O<s<l1

Facr 4 [Csaki (1977)].
(i) Let 0 <a, <1, na,/l, > o,loglogl/a,)/l, > canda, |. Then wp 1,
limsup sup |a,(s)|/(sl,)""? = (2(1 + ¢))"2.
/2

n—->ow a,<s<l

(ii) For ¢ € (0, ), wp 1,
limsup sup |a,(s)|/(sl,)"* =2V {/%(B} - 1)},

n—-o c,/n<s<l

where B is the root greater than 1 of A(logA — 1) + 1 = ¢~ L.
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All these facts can be found in SW (1986).

We shall first prove Theorem 2, then Theorem 1, the upper bound part of
Theorem 5, Theorem 3, Theorem 4, and finally the lower bound part of
Theorem 5.

ProoF oF THEOREM 2. We shall require a number of lemmas.

LEMMA 1. Forall0<c<d<oo,uwpl,

(2.1) limsup  sup  |Bu(s)|/(s,)""* = /% (af - 1).

n—o c,/n<s<dl,/n
Proor. Choose any integer £ > 1 and set
ey = (d/c)* -1, ¢ r=c(l+e) and & ,=c;l./n,
for j = 0,1,..., k. Notice that for any j = 0,..., k2 — 1, we have
sup  Bi(s)/(sl,)"”

C; h<S=<Ci,11

< sup {:Bn(éj+l,k) + n1/2(5j+1,k - 5j,k)}/(31n)1/2,

Ej,hSSSEj-#I,k
which when B,(¢;,, ;) = 0is

_ - 2
<1+ ek)l/zﬁn(cj+1,k)/(cj+1, kln)l/ + g, d'/2

Applying Fact 1(iv), we obtain for each fixed 0 <j<k—1land k> 1,wp 1,

limsupﬁn(éj+l,k)/(6j+1, kln)1/2 = }421,k(“+ - 1)-

no oo Ci+1,k
Thus, since
N2(afy—1)]1, asAtoo,
we see that for each % > 1, the lim sup in (2.1) is less than or equal to wp 1,

(1 + &,)"%c2(a}— 1) + g, d"2.
Observing that ¢, = 0 as £ = oo, we have wp 1,

(2.2) limsup sup  B,(s)/(sl,)"? < ?(af - 1).

n—-o cl,/n<s<dl,/n
Similarly, we can show using Fact 1(v) that wp 1,
(2.3) limsup  sup — B.(s)/(s1,)"? < d*?(1 — ag).

n—o cl,/n<s<dl,/n

Since c¢'/%(a}— 1) > dV4(1 — ag), (2.1) follows from (2.2), (2.3) and Fact 1(iv). O
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LeEMMA 2. Let 0 <a, <1/2 be such that a, |0, loglog(l/a,)/l, - c and
a,(nl,)/?/logn > o as n - . Then up 1,

(2.4) limsup  sup /2|Bn(s)|/(sln)” = (201 + <))~

n—o a,<s<l

PrRoOF. Notice that
sup |a,(s) + B.(s)|/(s1,)"* < sup |a,(s) + B.(s)|/(a,l,)"%
0<s<1

a,<s<1/2
Assertion (2.4) is now an easy consequence of Facts 3 and 4(i). O

LEMMA 3. For every &> 0 there exists a d, € (0, ) such that for all
6€(0,1/2) andd > d,, up 1,

(2.5) limsup  sup  |B,(s)|/(sl,)* < 2(1 + ¢).

n—o dl /n<s<n”?

Proor. First note that wp 1,
(2.6) sup |B.(s) + a,(U,(s))| = O(n™"/?).

0<s<1

Therefore, to establish (2.5), it suffices to prove that wp 1,
(2.7) limsup  sup  |a,(U,(s))|/(sL,)"? < 2(1 + ¢),

n—->ow gl /n<s<n®
for some large enough d. The left side of (2.7) is less than or equal to
(2'8) limsup sup |an(Un(s)) |/(Un(s)ln)l/2 sup (Un(s)/s)l/z'
n—=o0 gl /n<s<n”® dl,/n<s<1

Now by Fact 2(i), wp 1,
limsup sup U,(s)/s =a],

n—oo dl,/n<s<1
and by Fact 1(v), wp 1,
liminfnUy(dl,/n)/I, = dag:= f(d),

n—oo

where f(d)1 o as d | co. Hence, we see that expression (2.8) is less than or equal
to

(af)*limsup  sup  |a,(s)|/(sL,)",
n—-oo d'l,/n<s<1/2

where d’ = 27'f(d), which by Fact 4(ii) is wp 1 equal to

(a)*{2 v ((d)"*(B5- 1)}
Since a7 |1 and (d’)/*(B; — 1)1 22 as d’1 oo, we have proved (2.5). O
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PROOF OF THEOREM 2 FOR v = 1/2. We begin with part (II). This part
follows immediately from Lemma 1, Lemma 2 with a, = n~'/* and Lemma 3
with § = 1/4.

Next, consider part (I). We must show that wp 1,

(2.9) limsup sup (na,)"?|B,(s)|/(s"?L,) = 1.
2

n—-o a,<s<l/

First, we establish the lower bound. The left side of (2.9) is wp 1 greater than or
equal to

limsupn'*| B,(a,)|/1, = limsupnUy(a,)/l, =1,

n—o n—oo

cf. Fact 1(i). Now we consider the upper bound. Since
(na,)"*/1, = o(1;'7%),

it follows from part (II) that it suffices to show that for every ¢ > 0 there exists a
¢ € (0, ) such that wp 1,

limsup sup (na,)?|B.(s)|/(s¥%,) <1 +e.

n—o a,<s<cl,/n

Since

lim  sup (na,)*(ns)"*/l,=0,

n=® g <s<cl,/n
we must only verify that there exists a ¢ € (0, o0) such that wp 1,
(2.10) limsupnU,(cl,/n)/l, <1+ e.

n— oo
But, by Fact 1(iv), for arbitrary ¢ € (0, «0) the left side of (2.10) is equal wp 1 to
ca}. Noticing that ca} |1 as ¢ |0 completes the proof of part (I).

Finally, we turn to part (III). When 0 < ¢ < 1, this part is immediate from
Lemma 2. It remains to consider ¢ = 1. From Lemma 2, with a, = n~'/* and
Lemma 3 with § = 1/4, the upper bound follows. The lower bound when ¢ = 1 is
easily inferred from the already established lower bounds for the case 0 < ¢ < 1.
This completes the proof of Theorem 2 when » = 1/2. O

Before we can complete the proof of Theorem 2, we must establish two more
lemmas.

LEMMA 4. Under the conditions of part (1II) of Theorem 2, we have for any
M e (1,0), upl,

(2.11) limsup sup |a,(s)|/(sl,)"? < 22

n—->o a,<ss<Ma,

The proof is a routine application of Inequalities 2.8 and 2.10 in Einmahl
(1987b) and will be omitted; cf. also the proof of Theorem 4.3 there.
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LEMMA 5. Under the conditions of part (III) of Theorem 2, we have for any
M e (1,0), up1,

(2.12) limsup sup |B,(s)|/(sl,)"? < 22

n—-o© a,<s<Ma,

ProoF. The proof is based on (2.6) and is along the same lines as the proof of
Lemma 3. The application of Fact 4(ii) is replaced by an application of Lemma 4.
0O

PROOF OF THEOREM 2 FOR 0 < » < 1/2. We first consider the lower bounds.
These follow immediately from Fact 1 and

sup |B.(s)|s7'* = B,(a,)a, M.
a,<s<1/2

Next, we establish the upper bounds. We begin with part (I). Observe that
limsup sup n'%al™|B.(s)|/(1.s*")

n—»ow a,<s<1/2

< limsup sup (na,)"’|B.(s)]/(L:5"?).
n—>o© a,<s<1/2
Applying the theorem for » = 1/2, see (2.9), finishes the proof of the upper
bound for this part. Now, we turn to part (II). Let c, be the uniquely determined
root of the equation

A2(af- 1) = 2.

First, suppose that the ¢ in Theorem 2, part II, is less than or equal to c,. For
such ¢, ¢/%(af— 1) > 2. We have, using the theorem for » = 1/2 that wp 1,

limsup sup a%/27*|B,(s)|/(1/%'")
n—>o a,<s<1/2
(2.13) ) 12
<limsup sup [B.(s)|/(sl,)"" = ¢/*(af - 1).
n—o a,<s<1/2
The case ¢ > ¢, requires more care. Observe that for any M € (1, o) the left
side of (2.13) is less than or equal to

limsup sup al/27*|B.(s)|/(1/%' ")

n—>o a,<s<Ma,

Vimsup sup al/27’|B,(s)|/(1Y/%' ")

n—-o Ma,<s<1/2

< limsup sup |ﬁn(s)|/(l,,s)1/2

n—-o a,<s<Ma,

Vlimsup sup M~V2*|B.(s)|/(1,8)"

n—»>oo Ma,<s<1/2
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Using Lemma 1 and the theorem for » = 1/2, we see that this last expression is
for large enough M less than or equal to wp 1,

' (af—1) v (M~ V%) < ¢/ af - 1).

[This trick is due to Alexander (1984).] Note that here and previously, we w.l.o.g.
replaced the condition na,/l, — ¢ by a, = cl,/n.

Finally, we turn to part (III). Proceeding as before, we obtain by applications
of Lemma 5 and the theorem for » = 1/2 that wp 1,

limsup sup @27 B.(s)|/ (1% ")
(2.14) n—-o a,<s<1/2

< V2 v M~V2(2(1 + ¢))V2.

Again, for large enough M, the right side of (2.14) is equal to 2'/2 This completes
the proof of Theorem 2. O

ProoF oF THEOREM 1. From Theorem 2, part (I) with » =1/2 and a, =
(n + 1)7!, and Fact 1(j), it is easily seen that wp 1,

(2.15) lim sup sup |B.(s) |/(q(s)(2ln)1/2) =212,

now  (n+1)'ss<n”l?
Also, from Theorem 2, part (IIT) with » = 1/2 and a, = n~'/%, we see, assuming
p < oo, that for every & > 0 there exists an n > 0 such that wp 1,

(2.16) limsup sup |Bn(s)|/(q(s)(2ln)1/2) <e.
noow p2gs<ny
The results in (2.15) and (2.16) are enough to prove (1.3), cf. James (1975).
On account of (2.15) and (2.16) to establish (1.2), it suffices to prove that for
every 0 <n <1/2, wpl,

(2.17) lim sup suplIBn(S)I/(Q(S)(2ln)1/2) = supm(S(l - 5))""/q(s).
n—oow 7n<s< n<s<

However, this follows immediately from the Finkelstein theorem for the uniform
quantile process; see (3) on page 513 of SW (1986).
The statement in (2.15) is sufficient to prove the last line of Theorem 1. O

PROOF OF THE UPPER BOUNDS IN THEOREM 5. Fora,b>Owitha + b <1,
write
w(a; b) = sup |a,(s+h) — a,(s)].

0<s<b
0 <h<a

Let
Y(A) =221 + A)log(1 + A) — A}, 0 <A<oo.
The function ¢ has the property that y(A)11 as A |O0.
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We shall require the following two inequalities.

INEQUALITY 1. Let0<e<1/2,0<a <1/4 anda + b < 1. Then we have
forall A = 0,

P(wn(a; b) > }\) < Kba_lexp(_ (1 ;:)A ¢(n1};2a))’

where K = K(¢) € (0, o).

INEQUALITY 2. Let e €(0,1), a € (0,1] and write n;=[(1 +¢/2)’] for
J = 1. Then we have for allj > 1 and \ > 2(a/e)"/?,

P( max w,(a; b) > )\) < 2P( @, (a3 0) = (1 - e)}\)

ni<ns<n;,

The proofs of these inequalities are very much like those of Inequalities 3.1
and 3.2 in Einmahl and Ruymgaart (1987) and will thus be omitted.
The reader is advised to recall the notation of Theorem 5.

LEMMA 6. Whenever {k,)7_, satisfies (1.12) and (1.13), for all 0 < ¢ < oo,
wp 1,
(2.18) limsupr, 'w,(ca’/n; k,/n) < /2.

n—oo

PROOF. Choose any 0 < & < 1 small to be specified in the following discus-
sion. It suffices to show that Y P(A;) < co, where

A= { max w, (ca*/nj, k,,/n ) > }\j},

nj<n<n;.,
A =n; {221+ 28)(a*)1/2(2l + log &, )1/2

and n;=[(1 + ¢/2)’]. Now by Inequality 2 for all large j, P(A;) < 2P(B)),
where

B = {wnj“(ca,’:‘j/nj; k,/n;) = (1 - e))\j}.

Observe that by (1.13)
(1 — e)\,/(n¥caxn;?)
(219)  _ (n,/n,,)(1 - )1+ 2e)c2((2L,, + log,, ) /az)” ~ 0,
as j — oo,
(2.20) 1 - &)°R/(2cazn;?) ~ d, (1 - &)*(1 + 2¢)°/(21 + £/2)),
as j — oo,
and

(2.21) k, /(cay) = (knj/loglog nj)1/2c‘1.
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Applying Inequality 1, we have

P(B)) < Kc;knjexp(— n,(1 - e) Xitp( n;(1- e)A.))’

. 2cay n/haX

which by using the fact that y(x)11 as x | 0 combined with (2.19)—(2.21) is for
all large enough j less than

Kc‘l(k,,j/lnj)l/zexp(—2‘1(1 + 8)dnj),

for some 8 > 0 depending on & > 0 as long as ¢ is chosen small enough. This last
term is for all sufficiently large j less than Kc~'(log ;)= *?. Since

Y (log nj)_(Hs) < o0,
we see that (2.18) follows from the Borel-Cantelli lemma. O

LEMMA 7. Whenever {k,}<_, satisfies (1.12) and (1.13), wp 1,
limsup sup (n/k,)"*|B,(s) i,

n—oo 0<s<k,/n
=22(1-y)"?, 0<y<1/2,
=27 1/2y"1/2, 1/2<y<1.

(2.22)

Proor. First, consider the case y = 0. From equation (2) on page 584 of SW
(1986), we have

sup |B(s)|< sup [a(U(s))| +n 2

(2.23) 0<s<k,/n 0<s<k,/n
< sup  |a,(t)]|+ n 2
0<t<U,(k,/n)
Using (2.23) in combination with the fact that for all A > 1, wp 1,
(2.24) limsup sup (n/k,)"?|a,(s)|l; /2 = 22,

n—oo 0<s<MAk,/n

cf. Einmahl and Mason (1988), and Fact 1(ii), yields (2.22) for the case y = 0.
When 0 < y < 1, it can be inferred from Finkelstein (1971) that wp 1,

lim limsup sup |a,(s)|l; 2
M1 psw 0<s<Ak,/n
= @2v@-v)"% 0<vy<1/2,
=912 1/2<y<l1.
Also, by Fact 1(ii), wp 1,

(2.26) limsup B,(k,/n A 271)1;%/2 = (2y(1 - Y% 0<y<1/2,
2.26 n— o

(2.25)

=272 12<y<l.
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Thus (2.22) follows from Fact 1(ii), (2.25) and (2.26) in this case. O

Set for 0 < k, < n,
R;:(kn) = sup Ian(s) - an(Un(s))I'

0<s<k,/n

LEMMA 8. Whenever {k,)7_, satisfies (1.12) and (1.13), wp 1,
limsupr; 'R*(k,) < 241 - y)"*, 0<y<1/2,
(2.27) n—co
< 27 VAy-/4, 1/2<y<1,

ProOOF. Choose any ¢ > 0. By Lemma 7, for almost every w there exists an
N, such that for all n > N,

sup |Uy(s) — s| < ca¥/n,
O0<s<k,/n

where
c=(1+2"21-y)%, O0<y<1/2,
=(1+¢)2 V2y~1/2, 1/2<y<1.

Assertion (2.27) is now an immediate consequence of Lemma 6. O

Since by (2.6), R, (k,) = R*(k,) + O(n~'/?), this last lemma completes the
proof of the upper bounds in Theorem 5.

ProOF OF THEOREM 3. First, we assume » = 1/2. Consider part (I). In this
case, by Fact 1(i), wp 1,
limsup sup kY?6,(s)|/l, = limsupnU,(k,/n)/l, = 1.
n—oow 0<s<l1 n— oo
Next, we prove part (II) when » = 1/2. The appropriate lower bound results for
the lim sup follow from Fact 1(ii) and (iv). Now we turn to the upper bound part

of the proof of (II), and first assume that ¢ < co. Choose any 0 < § < 1. Note
that

limsup sup |8,(s)|l;Y/2 < limsup (nU,(8k,/n) + 8k,)/(k,l,)"",
n—ooo 0<s<§ n— oo
which by Fact 1(iv) is wp 1 less than or equal to §c¢'/%(1 + aj.). Since Aay |1
as A0 and A%(ay—1)> A"/2 we see that for all 6 >0 small enough
8¢2(1 + af,) < ¢c™V% < ¢/*(af— 1). Hence, to finish the proof of the upper
bound result when ¢ < oo, it suffices to prove that for all0 <8 <1, wp 1,
(2.28) limsup sup |8,(s)|l,"% < ¢/*(af—1).

n—oo O8<s<l

We follow the steps of the proof of Lemma 1. Write e, =8 /% — 1 and
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c; = 8c(1 + g,)”. It is clear that for any j = 0,1,...,k -1, k > 1,

sup  B,(8), 2 < By(cjin, 1)l P+ eV 2 e

Cj RS8SCiy1 g

Applying Fact 1(iv), we have wp 1,

limsup sup  6,(s),; Y2

R0 G pS<SSCiiy )
(2.29) < (Cj+1, k/c)1/2c}421’k(acj+1’k _ 1) + g2
< MY af— 1) + g

It can be shown along similar lines that wp 1,
(2.30) limsup sup  — §,(s); 2 <1+ gt/

n—oo Cj,hSSSCj+l’k

Combining (2.29) and (2.30) with the fact that ¢, — 0 as 2 > oo completes the
proof of part (II) when ¢ < o0 and » = 1/2. The case when ¢ = o is already
proven in Lemma 7. This completes the proof of part (II) when ».=1/2.

The proof of part (IIT) when » = 1/2 is a direct consequence of Lemma 7 and
Corollary 2 of Mason (1988). (Obviously, the arguments just given work with &,
replaced by v, when » = 1/2.)

For the case when 0 < » < 1/2, we need a number of lemmas.

LEMMA 9. Let 0 < v <1/2. Then we have wp 1,
(2.31) lim sup sup n’|B(s)|/(s¥%7"1,) = 1.

n—o© (n+1)"'<s<li,/n

ProoF. The lower bound is immediate from Fact 1(i). For the upper bound,
since

lim sup n'n'/%s/(sV%7",) = 0,

2R (n+1)"lss<l,/n
it suffices to prove that wp 1,
(2.32) lim sup sup nV2tU(s)/(s¥27",) < 1.
n>o (pn+l)"l<s<l,/n
By Fact 1(i) again, wp 1,
lim sup sup 2y (s)/(s¥271,)
n—o0 (n+1) '<s<IlV%/n

< limsupnU,(1Y2/n) /1, =1,

n—oo

(2.33)

and by Fact 1(iv)
limsup  sup  nY2"U,(s)/(sY%71,)

noo [V2/n<s<l,/n

< limsupnU,(1,/n)l/?75* = 0.

n— oo

(2.34)
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Combining (2.33) and (2.34) yields (2.32). O

LEMMA 10. Let0<»<1/2,1<k,<n, k,1, k,/nl0 and k?/l, > c €
(0, ©). Then wp 1,

(2.35) limsup sup  (n/k,)’|a,(s)|/(s¥2771/2) = 2V/2.

n—ow l,/n<s<k,/n

Proor. The lower bound is a consequence of Fact 1(iii). Next, set m, =
k,/log k,. Observe that

limsup  sup  (n/k,)"|a,(s)|/(s27"1)%)

n—so [l,/n<s<m,/n

(2.36) <limsup sup  (m,/k,)"|a,(s)|/((s2,)"?)

n—-ow Il,/n<s<m,/n

< (logk,) “limsup sup |a,(s)|/(sl,)">
n-oow l,/n<s<1/2
From Fact 4(ii), we see that this last term is equal to 0 wp 1.
Similarly, we have

limsup  sup  (n/k,)’]a,(s)|/(s"*"0?)
n—-ow m,/n<s<k,/n
(2.37) L
< limsup sup la,(s)|/(sL,)">.

n—>o m,/n<s<k,/n

A straightforward application of Inequalities 2.8 and 2.10 in Einmahl (1987b)
shows that the right side of inequality (2.37) is less than or equal to 272, wp 1.0

LEMMA 11. Under the conditions of Lemma 10, wp 1,

(2.38) sup  (n/k,) a,(s) + Bu(s)|/(s2"11/%) = o(2).
l,/n<s<k,/n

Proor. For the proof, we will require the already proven upper bounds in
Theorem 5. First, assume 1/4 < » < 1/2. Theorem 5 and the last stated assump-
tion on %, in Lemma 10 yield

sup  (n/k,) |an(s) + Bu(s)|/(s"*70/%)
l,/n<s<k,/n

<2k VR, (Ry,)
= O(k;” V41=3/4+v(log( k log n))1/2) =o(1).

The proof for the case 0 < » < 1/4 is more intricate. Observe that it suffices
to show that (2.38) holds when the supremum is taken over [cl,/n, k¥ /n] or
[k3/n, k5" /n] for arbitrary a € [3v»,1 — »], since the interval [, /n, k,/n] can
be written as the finite union of intervals of this form.
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First, consider [1,/n, k¥ /n]. From Theorem 5, we have wp 1,
sup  (n/k,) |a,(s) + Bu(s)|/(s/2"0)/%)

l,/n<s<k¥/n
< n'%R 1 R (k) = O((log(k,log n)) 2k /417 %/4%%) = o(1).
For the interval [k5/n, k5**/n] for 3» < a <1 — », we get wp 1,
sup  (n/k,) |an(s) + Bu(s)|/(s*"0/%)

ky/n<s<ki**/n

< nl/2prmeA/2-M[-1/2R ((pat)
= O((log(knlog n))1/21;1/4k;7),

where vy =» + a(1/2 —») — 1/4(a + ») > (3/2)v(1 — 2v). Routine bounds
verify that this last term is o(1). This completes the proof of the lemma. O

We are now prepared to finish the proof of Theorem 3 for the case 0 < » < 1/2.
Consider part (I). The lower bound again follows from Fact 1(i). For the upper
bound define %k, =k, Vv [, and observe that h2"/l, — 0. By Lemma 9, it is
sufficient to prove that wp 1,

(2.39) lim  sup  n’|B,(s)|/(sV*L,) =
n—>® | /n<s<h,/n

The left side of (2.39) is less than or equal to

. ) 1/2
(2.40) lim (h3/1,)7"  sup  |B(s)/(sh)""
n— o l,/n<s<1/2
From Theorem 2, part (II), we conclude that the limit in (2.40) is 0, wp 1.
Part (II) follows from Lemmas 9-11.

Finally, consider part (IIT). From part (II), with ¢ = o, it is apparent that for
0<d8<1l,wpl,

limsup sup |5,(s)|/(s27"/%) = 2/%".
n—-o 0<s<$§

This, in combination with the already proven part (III) for the case » = 1/2,
completes the proof of part (III) for 0 <» <1/2. 0

PrOOF OF THEOREM 4. For the proof of part (I), we assume that we are on a
rich enough probability space such that statement (1.10) holds with ¢ = 1. [Such
probability spaces exist, cf. Cs6rg6 and Révész (1981).] Now choose any q € @*.
Clearly, to complete the proof, it suffices to show that wp 1,

(2.41) lim limsup sup |f,(s)|/(a(s)1y/*) = 0

n—oo 0<s<d
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and

(2.42) hm limsup sup

n—-»ow 0<s<§

/(a(s)l/?) = 0.

n~12 E Bi(s)
i=1

Statement (2.41) is immediate from (1.3) of Theorem 1. To prove (2.42), we use
the fact that for any 0 < 8 < o0, wp 1,

i Bi(s)|/(4snloglog(n/s))"* < 1

i=1

cf. Corollary 1.15.2 on page 81 of Csorgé and Révész (1981). Hence to establish
(2.42), it is enough to verify that

(2.43) limsup sup

n—->o 0<s<$§

(2.44) hm limsup sup (loglog(n/s))"?/(loglog(1/5)1,)"” = 0.

n—oo 0<s<é
Observe that since n/s < s72 for 0 <s < 1/n,

sup (loglog(n/s))"?/(loglog(1/s)1,)""*

0<s<l/n

< sup (log(2log(1/s)))"/(loglog(1/5)L,)"?,

0<s<1l/n

which converges to 0 as n — c0. Also, for1/n <s < 8§ <1/3,

limsup sup (loglog(n/s))"?/(loglog(1/s)l,)"

n—o 1/n<s<é
lim (log(2log ))"/*/(loglog(1/8)L,)""* = (loglog(1/8)) /.

Since the right side of this inequality goes to 0 as & |0, we see that we have
proven (2.44). This finishes the proof of part (I).

The proof of part (II) proceeds very much like that of part (I). Briefly, it
follows directly from Theorem 1 of Mason (1988), Theorem 5, Lemma 7 of Mason
(1988) and Theorem 3, part (III). O

IA

PROOF OF THE LOWER BOUNDS IN THEOREM 5. In order to finish the proof
of Theorem 5, we need one more lemma. For a,b > 0 w1th a+b<1 and
0<e<l,set

G(a,b,e)= sup |a,(s+a)— a,(s)].
(1—e)b<s<bd

LEMMA 12. Whenever {k, )7, satisfies (1.15), forall 0 <e <land 0 < ¢ <
oo, wp 1,

(2.45) s;%6,(ca*/n, k,/n,€) = c’/

where s,, = (a,’:bn/n)lﬂ.
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ProoF. Since w,(ca}/n; k,/n) = &,(cak/n,k,/n, ¢), by Lemma 6 to prove
(2.45), it is sufficient to show that wp 1,

(2.46) liminfs;&,(ca*/n, k,/n, ) > c/2.

n
n— oo

Choose any 0 < § < 1 and set m, = ca}.
P(&,(car/n, ky/n,€) < ((1 —8)c)s,)

|, (7 + Dm,/n) — a,(jm,/n)|

-
(1 —e)k,/m,<j<k,/m,

<(1- 8)0)1/2sn),

which by Mallows (1968) is less than or equal to

Mll

(P(an(mn/m) < ((1 - 8)e)%s,)) ",

where M, = ¢k, /(2m,). By an application of an inequality due to Kolmogorov,
cf. Einmahl (1987b), page 70, this last term is for large n less than or equal to

(1= exp(= (1 + 8)(1 = 8)b,/(2(1 — caz/n)))) ™
< exp(—ekf,2/3/(2d,1/2)).

The Borel-Cantelli lemma and the arbitrary choice of 0 < § < 1 complete the
proof of (2.46). O

We are now prepared to prove statements (1.16) and (1.17). It is enough to
show that they hold with R, (%,) replaced by R*(k,). First, consider the case
v = 0. We shall adapt the methods of Shorack (1982b). Choose any 0 < ¢ <1
and set

h(s)=1—-¢, 1-e<s<l,
=S8, 0<s<l1-—e.
Notice that 4, € K[0,1]. Lemma 12 gives that wp 1,
lim sup s;1|an(sk,,/n) - an(sk,,/n + (2lnkn)1/2he(s)/n)|
(2_47) n> ] _eg<s<1
=241 — ¢)/2.
Let g, be any sequence of functions such that sup, _, .,|g,.(s)| > 0asn — .
Then, since s,/r, — 1, we obtain by Lemma 6 that wp 1,

lim sup s;llan(skn/n + (2,k,) (R (s) + gn(s))/n)

=0 1-g<s<1

—a,,(sk,,/n + (2l,,kn)1/2h£(s)/n)| =0,
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which by (2.47) gives that wp 1,
lim sup s;1|a,,(sk,,/n)

R 1-g<s<1
(2.48) —ap(sko/n + (2Lk,) () + £.(s))/n)|

= 2/4(1 - )2,

Now by Theorem 3, part III, with » = 1/2, for almost every w there exists a
subsequence m,, such that

8n(8) = M/, (skp/m)/(2knln)* = h(s), 0ss<1,
satisfies sup, _; .,|8€,(s)| = 0 as m — oo, along the subsequence m . Thus since

Un(s) = s + (2hky) *{h(s) + gn(s)} /m,
(2.48) implies by the arbitrary choice of 0 < ¢ < 1, that wp 1,
limsupr, 'R*(k,) = limsups, 'R*(k,) > 2'/*.

n—oo n— oo

Therefore, by Lemma 8, we have (1.16).

The case when 0 < y < 1, follows along the same lines; however, instead of
using Theorem 3, we apply Finkelstein’s theorem for the uniform quantile
process, cf. Shorack (1982b). This completes the proof of Theorem 5. O
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