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ON THE EXTINCTION OF MEASURE-VALUED CRITICAL
BRANCHING BROWNIAN MOTION

By L1 Liu AND CARL MUELLER

Tunghai University and University of Rochester

We show that the diameter of the support of a measure-valued critical
branching Brownian motion tends to zero almost surely at the time of
extinction.

1. Introduction. The following type of measure-valued process (X,),. o,
which is the limit of certain critical branching Brownian motions, has been
studied by several authors since 1968 [2]. It is an M (R?)-valued Markov
process whose transition measures are characterized through their Laplace trans-
forms as

(11) E*[exp(—(9, X,))] = exp(—(u(¢,-), Xo)), ¢ € Cy(RY),.
Here, M(R%) denotes the space of finite Borel measures endowed with the weak
topology, E *¢ is the expectation with respect to the probability P*e, the law of
(X,); s o which has a deterministic initial measure X,, Cy(R?), denotes the set of
bounded continuous nonnegative real-valued functions on RY (¢,u) is an
abbreviation of [z«¢ dpu and u is the solution of

u(t, x) = Au(t, x) — u?(t, x),

u(0, x) = ¢(x),
where A is the Laplacian Y% ,02/dx? and # is an abbreviation of (3/dt)wu.

In this paper we will show that the diameter of the support of (X)), o, with a
suitable initial measure X,,, tends to zero almost surely at the time of extinction.
The following notation will be used: B(xq r) = {x € R%:|x — x,| <1},
0B(xg;r)={x €R¥|x — x5 =r) and [B(xyr)]°= {x € R%:|x — x| > 1}
for fixed r >0 and x, < R% supp(¥) and diam(supp ») are the respective
abbreviations of the support and the diameter of the support of a measure »;
p, = diam(supp X,) and £ = inf{¢ > 0: X, is extinct}.

2. Main result.
THEOREM 2.1. Let p be a finite Borel measure with compact support and let
X, = p. Then

2.1 li =0, PX~kqgs,
(2.1) tf%ﬁk—t a.s

Proor. We divide the proof into six steps as follows:
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SteP 1. PXo=Ksup,_,...p, < ©) = 1. Let us quote a result by Iscoe [1],
which concerns the range of (X,),., globally in space and time when the finite
initial measure X, has compact support: If X, = » with supp(») C B(x,; r) and
if r > r,, then

PX0="(X, ever charges [E(x(ﬁ ")] c)
=1 - exp(=rXo(r'[- - %,]), ),

where v is the unique positive (radial) solution of the singular elliptic boundary
value problem

(2.2)

Av(x) = v*(x), x < B(0;1),
v(x) > ©, asx — dB(0;1).

Since the right-hand side of (2.2) tends to 0 as r — oo, it is easy to see that
SUDPg < 4 < oPy < 00, P¥o=kas,

(2.3)

STEP 2. For each 8 > 0, there exists a constant K = K(d) such that if
v € My(R%) and supp(v) C B(x,; 8/4), then

(24) PX°="( lim sup p, > 8) < Kv(R%)872.
t1é

This follows from the continuity of » on B(0; 1) [see (2.3)] and

P”(lim sup p, > 8) < P"(X, ever charges [ B(x,; 8/2)] c)
tr§

=1 — exp(—48"%0(287'[ — x,]), v}) [by (2.2)]
< 48 K v(287[ - — x0]), #)
[since 1 — exp(—a) < a for a > 0]

4 max v(x) v(R%)872.

lx] <1/

STEP 3. P*0=H({ < o0) = 1. Insert ¢ = 6 in (1.1), note that the correspond-
ing u(t,x) = /[1 + 6t] (independent of x) and let § — co:

PH(¢ < t) = P X,(RY) =0) = Jim E*[exp(—(8, X,))]
= Jim exp(—(6/[1 + 6t],n)) = exp(—p(R)/2).

Since the last term above tends to 1 as ¢ — oo, we have ¢ < oo, PXo~fags,

STEP 4. For each ¢ € (0, p(R?)), 7, = inf{t > 0: X, (R?) = ¢} is (by a routine
argument) a stopping time. Thus, due to the strong Markov property of (X,),. o
we’have PXo=K(limsup,,, p, > §) = E*(P*-(limsup,,.p, > 8)).

SteP 5. PX-(“Xlimsup,,p, > 8) < Ked 2 for P*o~F-as. w, where K is the
constant defined in Step 2.
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From Step 1, we have that for PXo=k.as. w, there is a positive real number,
say, N(w) such that supp(X, («)) C B(0; N(w)). Let us chop up the ball
B(0; N(w)) into small and nonoverlapping pieces, say, I, i=1,...,k.
Each piece has diameter less than §/4; let J be the set {j € {1,...,k}:
X, (o)I)) > 0}.

Denote (X{”),., for the process (X,);»0 with X, = D,, where D; is the
measure X, (w) restricted to I, j€J. By (1.1), (X,);»0 is a multiplicative
process. This implies that the dlstributions of (X,);0 and (X, ,X{),5, are
identical in law, where (X ), , are independent My(R%).

To apply (2.4), let 7; be the time of death for (X; R ))ys0, J E oJ. Since
J is a finite set and smce the 7’s above are 1ndependent continuous random
variables (see Step 3), it follows that P(at least two 7;’s have the same value)
=0 and so P(max he J'rk is attained for only one j) = 1. This implies that
E; = {max, ,f, =1}, j€J, can be considered as mutually disjoint events
with X, ;P(E;) = 1.

Note that P(E ) > 0 for each ] € J. After defining 'rO =max,c 7, &=
D{(R%), p)) = diam(supp X{?) and §, = diam(supp L ;X{”), we have

PX*e("’)( lim sup p, > 8) = P( limsup 5, > 8)
t1¢ t1T 7

y P(limsup b, > 8|f, = @) : P(Ej)]

jEeJ t1 7

<) PD(hmsup o) > 8)
jed tT-r

< Y Ke872 [by Step 2]
JjeJ

= Keb 2.

STEP 6. (2.1) then can be easily verified through Steps 4 and 5. O

Edwin Perkins has informed us that he has independently proved Theorem
2.1.
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