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COALESCING RANDOM WALKS AND VOTER MODEL
CONSENSUS TIMES ON THE TORUS IN z¢

By J. T. Cox!
Syracuse University

Let 7, be the basic voter model on Z¢ and let 7{"¥) be the voter model on
A(N), the torus of side N in Z%. Unlike 7,, n{™ (for fixed N) gets trapped
with probability 1 as ¢ — oo at all 0’s or all 1’s. We examine the asymptotic
growth of these trapping or consensus times ) ags N > o0. To do this we
obtain limit theorems for coalescing random walk systems on the torus A(N),
including a new hitting time limit theorem for (noncoalescing) random walk
on the torus.

1. Introduction. Infinite particle systems are stochastic processes which
model the behavior of large systems of stochastically interacting components.
Typically the components are located at the points (sites) of a set A € Z¢ and
can be in several different states, the simplest case being that of two states, say 0
and 1. The state of the system at time ¢ is 7,, an element of {0,1}"; n,(x) is the
state of the component at site x at time ¢.

From the applied point of view, one is interested in the behavior of such
processes when A is finite but very large. The usual approach is to replace A
with Z< and then study the infinite system. This leads to a rich and beautiful
theory. Moreover, it is generally believed that infinite systems provide good
approximations for large finite systems [see Dobrushin (1971) for a discussion of
this point]. We are interested here in trying to better understand what this
notion of approximation means.

To fix the 1deas a little more clearly, let 1, be an interacting particle system
on Z¢ and let 7% be some suitable version of 7, restricted to a finite set A c Z°.
If ¢ is fixed and A 1Z¢, then it is usually the case that n? converges weakly to
7,- On the other hand, if we fix A and let £ > o, then things are different. For
instance, the contact process of Harris (1974) has a single trap, the element
which is identically zero. The finite contact process 72 will almost surely hit this
trap, no matter what the initial configuration. This is not true for 7, if the
infection parameter is sufficiently large, n, has a nondegenerate equilibrium.
Thus the ergodic behavior of 7, differs from that of 7} in a fundamental way.
The problem is that simply letting ¢ — oo is too crude. One still expects that if A
is large and ¢ is large but not too large, then locally the finite and infinite
systems should look the same. Consequently it is of interest to study 72 as both
t— oo and A1Z%

Another point of view is that the infinite systems are the pnmary objects of
study and that finite systems are approximations to them. This is especially
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1334 J. T. COX

relevant if one hopes to understand the behavior of infinite systems through
computer simulations. [Durrett (1987) is a good source of simulations of many
interacting particle systems.] Of course what is simulated is a finite system, so
we are back to the basic difficulty: How long can you watch a finite system
before it knows it is a finite system? _

A natural first step in looking at this problem is to study the asymptotics of
trapping times which clearly distinguish the finite and infinite systems. This has
been done for the contact process. The first work along these lines appears in
Griffeath (1981), while more recent work is in Cassandro, Galves, Olivieri and
Vares (1984), Schonmann (1985), Durrett and Liu (1988) and Durrett and
Schonmann (1988).

In this paper we will focus on trapping times of the voter model (and its dual,
coalescing random walk) of Clifford and Sudbury (1973) and Holley and Liggett
(1975). Voter model trapping times on various finite graphs have been studied by
Donnelly and Welsh (1983), but they dealt only briefly with the torus in Z¢
which is our main interest here. We start by defining our process and giving a
little background information about it.

If A c Z¢ and p’(x, y) is a stochastic matrix on A, then the corresponding
voter model is 5, the Markov process with state space {0,1}* which makes
transitions

ni(x) > 1—nf(x) atrate Y p(x, »)1({nf(x) = 1}(»)})-
yEA
[1, = 1(A) is the indicator function of A.] That is, each voter waits a random
time which is exponential with parameter 1, selects another voter according to
p™ and adopts the opinion of that voter. Observe that there are two traps, all 0’s
and all 1’s. For A = Z¢ we drop the superscript A.

The infinite system. Let A = Z¢ and let p(x, y) be the transition function of
simple symmetric random walk on Z¢, p(x, y) = (2d)”1{|x — y| = 1}. Write
n¥ if the initial distribution is p and let #£(n}) be the law of n}. To describe the
basic ergodic theory of 7,, due to Clifford and Sudbury (1973) and Holley and
Liggett (1975), let # be the set of invariant probability measures for 1, and let
#, denote the set of extreme points of #. For 0 <6 <1 let pu, be product
measure with density 6, i.e., po{n(x) =1} = 0 forall x € Z¢, and let = denote
weak convergence of probability measures.

THEOREM 0. If d < 2, then 4, = {po, by} and L(n¥¢) = (1 — O)uy + Op, as
t > 0. If d = 3, then there are probability measures vy, 0 < § < 1, such that
L={r,0<0 <1} and L(q}*) = pyyast— 0.

This is only a special case of Theorem V.1.8 in Liggett (1985), and much more
is known. For instance, the domain of attraction of each », can be described.
In particular, if p is a translation invariant, shift ergodic measure with
[n(x)dp(n) = 6, then L(n}) = v,. [See Liggett (1985), Theorem V.1.9 for a
complete discussion and details.]

Theorem 0 indicates that clustering occurs for d < 2, stability for d > 3. The
clustering is studied in Bramson and Griffeath (1980a) and Arratia (1979) (d = 1)
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and Cox and Griffeath (1988) (d = 2). The macroscopic structure of the invariant
measures v, (d > 3) is considered in Bramson and Griffeath (1979). In all
dimensions it is the case that, with probability 1, if 0 < 8 < 1, then n#¢(0)
changes state infinitely often as ¢ - o0, so even in one and two dimensions the
infinite voter model avoids being trapped.

The finite systems. We will consider a sequence of finite systems by taking
A(N)=29Nn[-N/2,N/2)?% N=2,4,.... We will regard A(N) as a torus
and write p™)(x, y) for the transition function of simple symmetric random
walk on A(N). That is, if x, y are in A(N), then

p™M(x, y) = Lp(x,2)1(y = 2mod(N)).

We will write (™) for 2™, Since 1{"¥ is a continuous time Markov chain on a
finite state space, it is easy to see that no matter what the initial state or
dimension, 7{™ gets trapped at all 0’s or all 1’s with probability 1. This contrasts
sharply with the behavior of Theorem 0.

AssuMPTION. From now on, unless otherwise indicated, n, will have initial
distribution p, and 7{™) will have initial distribution p, restricted to A(N).

We are interested in determining the asymptotic growth of the “consensus
times”

™ = inf{¢ > 0: n{™ =0orlon A(N)}.

To describe our results we require a little more notation. Let p{")(x, y) be the
nth iterate of p¥)(x, y), and define

N2, d=1,
(1.1) sy=1(NZ%logN, d=2,

N¢, d >3,

5 d=1,

2 d=2
a2 - a={*" ’

Y px,y), d=3,

n=0

(-1 @i -G+ k-2)(]) ;

(EREOED> esp (7).

i=k kiR = 1)1(j - k)’(n +§_ 1‘)

@ (-1 - )i+ k- 2)! :
J

14 t) = B —t ’

( ) Qw,k( ) Jgk k!(k— 1)!(]—k)! exp( ( ))

for t>0,1 <k <n< . The g, ; have a simple probabilistic representation

that greatly facilitates the derivation of elementary properties of the g, .
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Namely,. if we let D, = D(¢) be a Markov chain on {1,2,...} with transition
mechanism

n—-n-—1 atrate('zl),

then P,[D,= k] = q, ,(t). See Tavaré (1984) or Cox and Griffeath (1988) for
more on this.

THEOREM 1. There are random variables v depending on the dimension d
such that as N — oo,

(1.5) Wysy=1 and E[r™N/sy] - E[7].
If d > 2, then

(16)  Plr<sl=Y [6*+(1-0)*]q. x(25/G), 520,
k=1
and E[7] = —G[0log 8 + (1 — 0)log(1 — 9)].

In contrast to Theorem 0, Theorem 1 singles out d = 1 and lumps d = 2 with
d > 3. Furthermore, it shows that s, determines an important time scale for
7{™). For further evidence of this consider the “density” process

MV =N T ()
x€A(N)
and let Y, be the one-dimensional diffusion on [0,1] with initial point 6 and
generator
1 d?
—_— 1 — —_—

(both 0 and 1 are accessible traps). We will refer to Y, as the Wright—Fisher
diffusion. The following result shows that the particle density on A(N) fluctu-
ates like the Wright—Fisher diffusion with time scale sy.

THEOREM 2. Ifd > 2, then as N - oo,
(1.7) A(tlsv,z = Y2t/G

as processes.

The appearance of the Wright—Fisher diffusion transition function controlling
the density of 7{"’ is suggestive; consider the following argument. At time tsy,
since 7{) has density A,, = Y, /g the distribution of () should be approxi-
mately »,, with 8’ = th/a This is in fact correct: If d > 3 and ty/sy > t €
[0, 0] as N — oo, then

(1.8) y(ng)’y)) f[o,l]P[YZt 6 € d8] ..

The precise result is
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THEOREM 3. Assume d > 3, A C Z¢ is finite and ¢ is fixed. If ty > o and
ty/N? - t €[0,00] as N - oo, then

P[nM(x) = {(x), x € A] - f{o 1]P[YM, € db'] vy [n(x) = ¢(x), x € A].

This topic is carried further in Cox and Greven (1988).

The proofs of Theorems 1-3 are based on some new theorems for coalescing
random walk on the torus, which we feel are of interest in their own right. The
coalescing random walk system &, is easily defined. Its state space is the set of all
subsets of Z¢ and §,(A) is the set of occupied sites at time ¢ when the initial
state is A C Z% we write §,(x) for {£,({x}). Each particle independently executes
simple symmetric rate 1 continuous time random walk on Z ¢, except that when a
particle lands on a site already occupied by a particle the two particles coalesce
into one. In the obvious way we can define £{V), coalescing random walk on the
torus A(N). Unless otherwise noted we assume that £, is constructed using the
graphical representation of Harris (1978) [see also Griffeath (1979)]. This means,
in particular, that all ¢M)(B), B c Z9 are defined on a common probability
space with

ggN)(Bl v Bz) = ggN)(Bl) v ggN)(Bl)'

There is a duality relation (see Section 4) between 7, and £, (7"’ and £&™)
that transforms certain questions about the voter model into questions concern-
ing the cardinality of the coalescing random walk system. As might be expected,
the behavior of the finite system £V differs from that of infinite system ¢,. For
example, suppose we start £V with two particles in A(N). Then in any
dimension the two walks are eventually bound to meet, i.e., eventually £N) has
cardinality 1; of course this is not the case for the infinite system if d > 3.

“Analysis of the voter model on the torus leads us naturally to the question of
how long it takes random walks on the torus to collide.

Random walk on the torus, and various related models, have been studied for
some time. Montroll (1969) and den Hollander and Kasteleyn (1982) are good
sources for references to this literature. As far as we know Theorem 4 below is
new. To state it let X™), ¢ > 0, be simple symmetric rate 1 continuous time
random walk on the torus A(N) and let H™) be the hitting time of the origin,
HW) = inf(t > 0: X{™ = 0}. Our result is

THEOREM 4. Assumed > 2, ay » 0 anday = 0o(N)as N - oo. Ford =2
assume in addition that ay/log N /N — co. Then, uniformly in t>0 and
x € A(N) with |x| = ay,

P,[H™M /sy > t| > exp[ -t/G].
Note that if X" is uniformly distributed over A(N), then Theorem 4 implies

that
P[HM™M /sy > t]| > exp[ -t/G],
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a result of Flatto, Odlyzko and Wales (1985) (see Theorems 6.1 and 6.2). The case
d =1 is different; it is easy to guess (and prove) what happens in this case
[again, see Flatto, Odlyzko and Wales (1985)].

We can view Theorem 4 as a result concerning coalescing random walk on the
torus. For x,, x, € A(N) let x, + x, denote addition on A(N). Then we may
regard £M)(x,) — £M)(x,) as a rate 2 random walk on A(N) up until the time
that the random walks meet. With |A| = cardinality of A, Theorem 4 implies
P[[00({x, x:))| = 1] = B, [H™/sy, > 2¢]

tSN

(1.9)
-1- e—2t/G
as N — oo, provided that |x, — x,| > ay.
The keys to proving Theorems 1 and 2 are extensions of (1.9) which handle
coalescing random walk systems starting with more than two walks.

THEOREM 5. Assumed > 2, T > 0 and n > 2, and ay, satisfies the assump-
tions of Theorem 4. Then, uniformlyin 0 < t < T and AN = (x,, x5,...,x,} C
A(N) with |x; — x| = ay fori#j,

(1.10) P[[¢M(AM)| = k] > qu(2t/G), 1<k<n.
With this result and a “patch” similar to the proposition in Bramson, Cox

and Griffeath (1986), page 615 we can “fill up” the torus with walks and obtain
asymptotics for the time it takes ¢V (A(N)) to coalesce to j walks.

THEOREM 6. Let £§") = A(N) and let of) = inf{t > 0: |£™)| = j}. There
are random variables o; such that forj = 1,2,... as N - o,

(1.11) ofN)/sy =0, and E[oj(N)/sN] - E[q].
If d = 1, then
_ Vo
(1.12) E[e ] = m, a>0.
If d = 2, then
J
(1.13) Plo;<s] = kZ 4. #(25/G), s>0.
=1

In all dimensions E[0,] = G.

One of the themes of this work is that the spatial dependence in our models
“washes out” in an appropriate limit. We point out that Kingman’s coalescent
[Kingman (1982)], a process without spatial dependence, is lurking in the
background [see Cox and Griffeath (1988) where this matter is more fully
explored].

Having described the main results we now state how the rest of the paper is
organized. In Section 2 we derive the main probability estimates for random
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walk on the torus and prove Theorem 4. In Section 3 we prove some probability
limit theorems for coalescing random walk on the torus, including Theorem 5.
We follow the methods of Cox and Griffeath (1988) very closely in this section.
In Section 4 we estimate the expected number of random walks left in £{Y)(A(N)),
using techniques of Bramson and Griffeath (1980b) and Bramson, "Cox and
Griffeath (1986). In Section 5 we prove Theorem 6 and then exploit the duality
relationship between the voter model and coalescing random walk to prove
Theorems 1-3 (for d > 2). Section 7 contains d = 1 proofs, using the work of
D. Aldous (personal communication) and Arratia (1979). Section 8 concludes the
paper by stating some extensions of our results to the multitype voter model.

A word about notation. We will use C to denote a finite positive constant
whose value is unimportant; the value of C may change from line to line. We will
also write ey = ey(v,, vy,...) for quantities which depend on the variables
vy, Uy,..., but which tend to zero uniformly in these variables as N — oo; the
value of &5 may change from line to line.

2. Simple random walk on the torus. The goal of this section is to prove
Theorem 4. As in the introduction, let X{™), ¢ > 0, be rate 1 continuous time
simple symmetric random walk on the torus A(N), let H®™) be the hitting time
of the origin and let p{¥)(x, y) = P[X{") = y]. Quantities without the super-
script or subscript N will refer to random walk on Z¢. Let Fy and Gy be the
Laplace transforms

Fy(x,\) = [ e MR[H™ e dt],
(2.1) 0
o0
Gy(x,\) = ["eMpM(x,0) dt,
defined for A > 0 and x € A(N). From the decomposition
Gy(x,\) = f - f P[H™ € du]p™)0,0) dt,

it is easy to derive the fundamental relation
GN (x ’ }‘ )
Gy(0, A’

Now let ¢ be the characteristic function of discrete time random walk on Z¢,

(2.2) Fy(x, ) = A>0,x € A(N).

(0)—Ee”“’(0x)—d12cos(0) 0 € R

Jj=1

Then it is well known [see Montroll (1969) for instance] that

2nx-y/N

23) Gy(x,\) =N ¥ ¢ A >0, x € A(N).

yenny LHA— ¢(27y/N)’
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Actually, Montroll (1969) treats discrete time random walk, but only minor
modifications are needed to handle the continuous time case. For a recent
treatment of (2.3), with applications and extensions, see den Hollander and
Kasteleyn (1982) [see also Flatto, Odlyzko and Wales (1985)].

As a warm up for what follows we present an unpublished result of F. Spitzer
(personal communication) and give his proof. Let e, = (1,0,...,0), let y, =
P[H < ], let §, be the unit point mass at zero and let &(a) denote the
exponential distribution with parameter a.

THEOREM 7 (Spitzer). Suppose d > 3 and X{N) = e,. Then as N — oo,
L(HM/N?) = v,8, + (1 = v))6(G™).
ProoF. A simple calculation shows that Gy(e;, A) = (A + 1)Gx(0, A) — 1,
and so by (2.2),
B (AN"?+ 1)Gn(0,AN"9) — 1
Gn(0,AN9)

—AH®™ /N4
E, [e#/V]

By (2.3) we have

Gn(0,AN"?) = LN ¥ !
N A yenny L+ AN~ ¢(27y/N)
y#+0
(24) - dé
A1+ _
[-1/2,1/211 — ¢(270)
=\A"1+ @,

and the result follows, since v, = (G — 1)/G. O

We begin now our preparations for the proof of Theorem 4. It is natural to
start with

GN(xs A/sn)
GN(O, }\/sN)

and to make use of (2.3). For d > 3 the behavior of G (0, A/sy) is given in (2.4).
For d = 2, sy = N%log N and

(2.5) E[eH /] =

Gy(0,A/N?logN) | N 1 > 1
log N - N2log N , %y, 1+ A/N?log N — ¢(27y/N)
y#0
1 1
~A o ——— —_—
N?log N yegzN) 1 - ¢(27y/N)
@ y+0

where we have used f(N)~ g(N) to mean f(N)/g(N)—>1 as N - co.
The evaluation of the last sum is fairly standard [see Montroll (1969) or
den Hollander and Kasteleyn (1982), for example]; it converges to 2/7. Thus we
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have
Gn(0,A\/N2%1log N 2
N( / g ) —)A—l‘l' =, d=2.
log N T

Unfortunately, it does not seem possible to deal with Gy(x, }\/sN) in a
comparable fashion. So instead we write

(2.7) Gy, Msy) = [exp(=A/sn)p{™(x,0) dt

and estimate this quantity by obtaining good estimates on p{")(x,0). The first
step in doing so is the following:

(2.6)

ProPosITION. Ford > 2, if ty — oo, then
(2.8) lim sup sup NYp{M(x,0) - N"¢ =0

N> 45ty N2 € AN)
Ford=2,ifay > w0 anday = o(N) as N — oo, then there is a finite constant
K such that
(2.9) lim sup sup sup a%pM(x,0) < K.

N-ooo uxl |x|=ay, x€A(N)

Since p{")(x, y) is doubly stochastic, p{M(x,0) > N~ as t - oo for fixed N
and x, but (2.8) provides some uniformity we will need later. The key to the
proposition is a very precise expansion of p/(x, y). By Corollary 2.2.3 of
Bhattacharya and Rao (1976), applied to p,(x, y), we have for t = 1,2,...,

(210) p,(0,x) = (i)w exp(— d';t'z){l iy t"”B,(—j%)} T e(x,8),

27t r—1

where each B, is a polynomial (depending on d) of degree at most r and
(2.11) t2 Y le(x,t)| >0 ast— oo.

xez?

PRrOOF OF (2.8). We first note that we may assume that ¢, is a sequence of
integers and that it suffices to prove that

(2.12) lim sup N p{R(x,0)~ N~¢|=0
N-o xe A(N)

For if u > ¢tyN? and x € A(N),

N p{™(x,0) — N~¢| = N¢ Zp.i”i,,zvz(x ) p§Re(,0) — N9

supN"Ip Ne(,0) — N~|

- 0
by (2.12).
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Since p{™(x,0) = T, . zap,(x, Nz) it follows from (2.10) that

d \¥? djx — Nz|?
B0(,0) = N zexp( - '——')

27u 2u
d/2 dlx — Nz|?\ @ x — Nz
(213) + N¢ _d_) z : _ L 2 : -r/2p .
N 27u . P 2u r=1u " Vu

+ N%Y e(x — Nz, u).

We let u = tyN? and analyze this expansion in three parts.
(i) For the “main” term, fix R > 0, let I =[— 1,11¢ and write x’ for x/N.

Then
d \? djx — Nz|?
d = 7t
N(2qru) Zz:exp( 2u )
d \¥? N%4x' — 2|2
{2 gl

27u l2|=R

J d d/2
+N(%) Ef exp

|2|>R I+z

Then for some finite constant C, the first sum in the right-hand side above is
majorized by

( N2d|x —2|? )
— | d

CN°R? CR?
I i

as N — oo for fixed R. For the second sum, observe that x’ € I and we can
choose kp such that 0 < k5 <1, k, > 1as R - o and

Y1
|x" — 2 = kg
R

Kp < » |2|>2Rand yeI+ 2.

Using this inequality we obtain

d \¥? dN?|x’ — 2|
L S A P
(2"”‘) |z|§R/1+2exp( 2u ) Y

d \¥? dN2%k%|y|?
d LA I/
<N ( ) 2 f“zexp( 2% ) y

27u lzZ|=R-1
d \"2[ e dN%3r) \?
dl v
<N (%u) (f_wexp( » )dr

1

K%
-1
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as R — oo0. On the other hand,

d \¥? dN?|x’ — 2|
Nd(__) exp| - 2L ) g
27u |z|§RL+z p( 2u ) Y

d \¥? dN2?|y|?
ZNd(E——) exp(— 2lyl dy

TU |71>R+1 2K 5U

= k3@m) " [ exp(—Iy*/2) dy,
|71>cn

R+1 aN? R+1 d 0
cN_( ) x%u _( ) K%tN

as N — oo for fixed R. This proves that

where

d \¥? dN?|x’ — 2|
lim inf N¥¢| — -
S Pl I B e P P
> kd(27) " Y? - E d.
=2 KR T /Rdexp 2 y
= kg.
Since Kk — 1 as R — oo, we have established
d \? d|x — Nz|?
14 N¢ _— 1
(214) (2thN2) Lesp ( 2tyN? |

(ii) Since each B, is a polynomial, the argument leading to (2.12) shows that

- N d "”E dlx—Nzlsz—Nz .
N | \2mtyN® | SO\ T TN )\ N [ T

which implies
d \¥* dlx — Nz|?
. d el ad
m {N ( 2thN2) §e"p( 2ty N?

X [(tNN2)_'/2B,

(2.15)

(iii) It follows from (2.11) that"
(2.16) N?Y e(x — Nz, tyN?) - 0.

By combining (2.13)—(2.16) we obtain (2.12). O
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Proor oF (2.9). It suffices to prove that
(2.17) limsupsup sup aZpi¥(x,0) < oo,

N—ooo k=1 |x|zay
x€A(N)

where % denotes a positive integer. To see this, note that if 2 < ¢ < £ + 1, then
piPi(x,0) = p{M(x,0)pY_4(0,0)
> pi™(x,0)p,.1-0,0)
> ¢,p{M(%,0),

where ¢, = inf{ p,(0,0): 0 < s < 1} > 0. The inequality p{™)(x,0) < c; 'p{¥(x,0)
and (2.17) imply (2.9).

Let x’ = x/N again. Then the main contribution to a3 p${"(x,0) [from an
expansion like (2.13)] is

- 2 2 2 20 _ 12
a?vZexp(—'fM) = -a—N[exp(—lﬁlJ—) + 2 exp(——N ka i ”

7k 7k 220

The first term above is bounded, since for some finite constant C,

a_I2Vex _l._xE <(_12£ex _E_ZIY. <C
ak P\ T | = P =

for all £ and N. For the second term, with I = [— %, 1]¢ we have

a? N2x' — 2|? a% N2|x’ — 2|
g o M)y W

z2#0 z+1

a2 N2IC2 2
aN f exp(— iy )dy

wk z#0"2+1 k

2 2,212
an NZ5ly|
ﬁ/';zexp(——k )dy

ayk

N2
- 0.

IA

IA

=C

This proves that

e—|x—Nz|2/k

limsupsup sup a%) ————— < 0.
N—-oo k21 |x|zay z 7k
xe€A(N)

We omit the analysis of the error terms which completes the proof of (2.17). O
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ProoF oF THEOREM 4. It suffices to show that for any fixed A > 0, uni-

formly in |x| > ay,
AHM 1
exp(— ) —’1+)\G as N - 0.

SN

(2.18) E,

Since for each N the left side of (2.18) is a monotone function of A and the right
side is continuous in A, it follows that (2.18) must hold uniformly in A > 0. This
implies that for any bounded continuous function f on [0, c0), uniformly in
x| > ay,

219)  E[f(H™/sy)] > G [“f(0)e/Cdo as N - co.
0
It now follows by approximation from (2.19) that for any fixed ¢ > 0, uniformly
in |x| > ay,
(2.20) P[HM/sy>t] > e % as N - .

Monotonicity implies (2.20) must hold uniformly in ¢ > 0.
Turning to the proof of (2.18), recall that

E [e_}‘H(N)/sN] _ Gy(x,N/sy)
* GN(O’ A/sN)
and that by (2.4) and (2.6),
Gy(0,\/N?log N)
log N -

AT+ G, d=2,

0,A
GN(W) - A1+ G, d > 3.

Thus it remains only to show [recall (2.7)] that uniformly in |x| > ay,

1
(2.21) log N ‘/'OOe_At/IV2 lOSNpgN)(x’O) dt - A—l, d = 2
0
and
0
(2.22) [ e N pM(x,0)dt >N, d 23,

0

We begin with d =2, assuming ay=o0(N) and ayylog N/N - oo as
N — oo. Let ty < ayy/log N/N such that ¢ty — oo and ¢y = o(log N), and
break the integral in (2.21) into two parts. The first is

1 2 2 K
tnN* _At/N2log N, (N) ftNN —At/N%log N
—_— e x,0)dt < 1+ —e dt

“ logN ay

1 [ KN?logN
< 1+ >
(2.23) log N | Aa

1 KNZtN)

(1 _ e—)\tN/log N):I

< 1+
log N a%

-0
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as N — oo, where we have used (2.9). The second part is

logle;wN e~ M/N* s Np(N)(5 0) dt < Zlvz;l::;-%fmme—u/m log N gy
1+ 0(1) Aty
= Texp( logN)
N

as N — oo, where we have used (2.8). This finishes the proof of (2.21).
An additional estimate we need for proving (2.22) is

P[|X) > t2logt] < C/t?, t=>0.

This is easily proved using exponential type estimates. Now for any finite set
I' c Z¢ we have

piM(x,0) = ¥ p(x, Nz)

zez?

<|T'n(x + N29)|p,(0,0) + Y. p,(0,x + Nz).
z¢l

Since p,(0,0) < C/t%/?, the choice T' = [—t/%log ¢, t'/2 log t]¢ above yields

C [t2logt\”

< 7|~ ) + P[|1X, > £/?]

c logt\? 1

<C{|—]| + 3}

( N ) t*

Now break the integral in (2.22) into two parts. The first is

/N"’ log N e~ M/N? (N)(x 0) dt
0

S/NZIOnggN)(x,O) dt
0

2
<T sup sup p{M(x,0) + CfN log ¥

x|=ay 0<u<T

(log N)*
( e e
C

—_ —

T
as N — oo for fixed T. Now let T — oo to obtain

fN log N —)\t/Np(N)(x 0) dt =

N—»oo
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Using (2.8) the second integral is

[ e N0, x) dt = (1 + o(1)) N~ [5 0 eNar
NZ%log N NZ2log N

o0

> 2!

as N — oo. This completes the proof of (2.22). O

3. Coalescing random walk on the torus—probability estimates. We
assume throughout this section that d > 2. The n = 2 case of Theorem 5 is
covered by (1.9), so we turn to the analysis for n > 3. The major step in the
argument is establishing that

(3.1) P[ £§£”v)(A(N))| = n] - exp[—2t(g)/G]

uniformly in A™ and ¢ as N — 0. To obtain (3.1) we will follow the approach
of Cox and Griffeath (1986), keeping as close as possible to the notation used
there. Define

0t ) = {20 ) ).

# = minr™(, j),
%]

H™(, j) = {t™(i, J) < tsn},
FM(i, j) = (7™ = 1™, j) < tsy},
g™(t) = P[7™ < tsy].

Using this notation (3.1) is equivalent to

(3.2) qg™M(t) »1- exp[—2t(g)/G]
and (1.9) is equivalent to
(3.3) P(H™(i, j)) = 1 —e 26,

By examining which pair of particles hits first, we have, for i # J,
P(H{™(i, j)) = P(F™M(i, 7))

(3.4) XL [Pl = ™k, 1) € du, £0(x) = 3,

(B, 1) # (i J} Yur 30
£M(x,) = 3] P
It will follow from (3.7) and (3.8) that

gg\,{,)—u({yw yB})I = 1]'

35) fTsNP['F(N) =1tM(k,1) € du, Igle)(xi) — &N)(xj)l < aN]
. 0

=8N‘_’O,



1348 J.T.COX
so we may assume in (3.4) that |y, — y5| > ay. In this case

P[IEM ({50 %})| = 1] = B[H™ < 2(tsy - u)]

e ol

by Theorem 4, where y = y, — y;. Consequently

> fasNP[ FN = 1Mk, 1) € du, EV(x;) = 3, £0(x;) = yﬂ]

Yar I

xP|

gtsN u {yon yﬂ})l = 1]

f P[7™ = :M)(k, 1) € du](l - exp[ 2(t - ;)/G}) + ey

N

= ftP(Fu(N)(k, 1))e%t=0/C gy + ¢,
0

the last equality from integration by parts and a change of variables.
Combining this last result with (3.3) and (3.4) we see that

1-e 6= P(ENG )+ T P(FN(k, 1))e~%t=9/G gy + ¢
(k1) # (i, j) 7O
. Summation over i, j leads to
n _
(2)(1 — e~2/G)

(3.6) 9 n ,
=q®M(¢t) + Ee_”/G[(z) - l]foq(N)(u)ez"/G du + ey.

It now follows [see the proof of Lemma 2 of Cox and Griffeath (1986)] that as
N - o0, ¢N)(t) > the solution of

(5)a—e29) =q(t) + Ee—%/G[( ) - 1]fq(u)e2“/0du
that is,
qg™M(t) - q(t) =1- exp(—Zt(g)/G)

uniformly in A and ¢ This completes the proof of (3.2) except for the
justification of (3.5), which we will now carry out.



VOTER MODEL CONSENSUS TIMES 1349

PROOF OF (3.5). There are two cases to consider. Let X{™)(x), x € A(N), be
independent random walks, X§")(x) = x. We must show

(3.7) f TSNP[;-(N) = 7M)(1,2) € du, [EM(x5) — £M(x,)]| < ay] > 0,
0

(38) [ ""P[F™ = 1™)(1,2) € du, [§V(x;) — £M(x,)| < ay] > 0.
0

We will prove only (3.8) as the proof of (3.7) is similar (and slightly easier). If
tyN? < Tsy, then by using the independent random walks X{")(x) we can write

f TNP[FN) = 1N)(1,2) € du, [£M)(x,) — £(x,)| < ay]
0
< P[+™(1,2) < tyN?]

(3.9) +[tT:“2P[T<N)(1,2) € du, | XM (x5) — XM(x,)| < aN]
N

= P[#™(1,2) < tyN?] + £ [“VP[rV(1,2) € du, XM (x,) = 5]
3 YN

X P[| X{M(x5) - 3| < ay],

where we have also used 7(V)(1,2) to denote the first time X{V(x,) = X{M(x,).
Choose t, such that ¢y — oo, ¢5/log N — 0. Then the right-hand side of (3.9)
is majorized by

d
P, . [H™ <2tyN?| + C%P[T(M(lj) € [tyN?, Tsy]]

H®™ 2t N? a$,
<P_, < +C—;
! SN SN N
-0

using Theorem 4 and (2.8), since tyN2/s5 — 0. O

With (3.2) established we can finish the proof of Theorem 5 by induction. The
induction hypothesis is that for a, satisfying the assumptions of Theorem 4,
uniformly for ¢ € [0, T] and A™ = {x,,...,x,} € A(N) such that |x;, — x| >
ay for i # j,

P[|5§3«)(A("’)| = k] =q,4(t), 1<k<n.

The case n = 2 is covered by (1.9) and the n = & case.is covered by (3.2). The
induction step is to prove that uniformly for ¢ € [0, T] and B =
{J15-++5 Y41} © A(N) such that |y, — y| > ay for i #J,

1;“5&)(3(1\])” = k] - (n '2" 1)%Ltexp(—2u(n ;' 1)/G)qn,k(t— u) du

=qni1,8(t), 1<k<n.
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To prove this let ™) = inf{¢ > 0: |£§M(B™)| = n} and fix k£ < n. Then
Pllea(B™)| - 4]

= = [*"P[a™ & du, £M(B™) = ] p|

o 0

where C™™) = (z,,..., 2z,} € A(N). It is a consequence of (3.5) that
[P[a™ € du, EM(BY) = (2,,..., 2,) and
0

g0 ™) = &],

isy—u

|2; — 2| < ay for some i aéj] -0,
and so by using the induction hypothesis we obtain
Pllea (B )| = ]
u

= T [*P[™ e du, &M(B™) - c““l(qﬂ,k(“ ) 8”) "o
0

c N

u
ftsNP[E(N) € dulq, k(t - ——) + ey
0 ’ Sy

(73 el ot

2
- (n ; I)ELexp(—Zu(n ; 1)/G)qn,k(t— u)du
as required. This completes the proof of Theorem 5.

In preparation for the proof of Theorem 2 we will establish another coalescing
random walk result, this time for random walks that start moving at different
times. For ¢, < --- <t, and A; C A(N) let £&NY(A,, ¢;...; A,, t,) denote a
coalescing random walk system in which random walks start from each point of
A; at time t; (they are frozen until this time) and then execute coalescing
random walk motion. These systems were used in Cox and Griffeath (1983). For
t > t; and positive integers m, n; define

qnl;m(tl; t) = qnl,m(t - tl)’

qnl,nz ..... ng; m(tl’ t2’ R tk; t) = Z Z e Z qnl,ll(tZ - tl)qn2+ll,12(t3 - t2)
L b L

X @y vty g to (te = 1) s, m(E— t4).
It is straightforward to check that
qnl,nz ..... n,,;m(tl, t27"': tk; t)

(3.10) = anl, Rgrens n,,-l;z(tv Losevestpys tk)qn,,+l,m(t —t)
. 1
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THEOREM 8. Assume d>2, fix T>0, k>0, n,,...,n, let ay— oo,
ay=0(N) as N . Then for fixed 0 <t, < --- <, <t, uniformly for
A;={x}, j=1,...,n;} € A(N) such that |x — x| > ay for all i and all
a #* B,

Etox (A tisys -5 Ay, tksN)| = m]

(3.11) Plle

Proor. The k& =1 result follows from Theorem 5, so we assume now that
k > 2 and proceed by induction. The idea is to run the system until time £,s,
and look at £N)(A,, t;sy) = {%---, %} By constructing independent random
walks and applymg the proposition of Section 2 it is easy to see that

P[H Yor Vg € £ts~ (Ay, ti58), Yo # g and |y, — Yl < aN] < Ca%/N¢,
P[3y, € &N(A,, tisy) and x5 € A, with |y, — x| < ay| < Cad/N°.
Thus

P[Ifﬁﬁv)l = m] =&yt Z Z P[ﬁgv)(Ap tsy) = {yl,“-’ y{}]

£ Yireoes

xP|

EN) o (Ag U {31500, 32),0;5 Ay, tasy — s
s Ay, tySy — tzsN)| = m]
(where the sum on the y, is over |y, — y3| > ay and |y, — xg| > ay, all x5 € A,)
- Eqnl,((z(t2 - tl)/G)
Xyt t,ng,..., ny; m(0,2(85 = 8,)/G,...,2(t, — t,)/G; 2(t — t;) /G)
= G ng,.... ng m2t/ G- 28,/ G5 2t/ G)
by using Theorem 5, the induction hypothesis and (3.10). O

4. Coalescing random walk on the torus—expectation estimates. In
order to prove Theorem 6 we need some control over the number of particles left
in the coalescing random walk system &V) = &NY(A(N)) (we will use this
abbreviation throughout this section). The following result gives us this control.
It is similar to Theorem 1 of Bramson and Griffeath (1980b) and the proposition
in the introduction of Bramson, Cox and Griffeath (1986), although the proof
here is easier. First define gy (¢) by

N)Vt, d=1,
gn(t) = { N2log(1 + t)/t, d=2,
Nest, d>3
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PROPOSITION. There are finite constants c,; such that
(4.1) E[|EM)] < c,max(1, gy(t)), t>0, N=2,4,....

We will prove this proposition via a series of lemmas. The first is:

LeEmMMA. If BC A c A(N) and h(A) = min, ,c s ny B ,JH™ < 5], then
(4.2) E[|&™(B)|] < Bl - (1Bl - 1)k (A).

ProoF. We may assume that |B| > 1, so fix x, € B and define

z,= L U&V(x) = £V(x)),

x € B\{x,}
the number of walks which coalesce with the walk starting at x,. Observe that
|€(B)| < 18I - Z,.
To get (4.2) take expectations and use E[Z,] > (|B| — 1)h(A). O

For the next step, let | £| denote the greatest integer less than or equal to ¢.

LEMMA. Ift<r<r+s<2t JE[|EN)] >4 9E[|£M)] > 2 and A, is a
cube in A(N) of side |8N/E[|£MN[1V/9), then

(43)  E[iEN] < E[EM](1 - 38,(4,) < E[IEN1]exp( - 3h,(4))).
Proor. Let B, 1 <i < n(t), be disjoint cubes covering A(N), each B; no

larger than A,, with

[ e ¢
n(t) < M + 1}

8N

4

E[1EM]
—e 1

1
JE 35

r d
[t

IA

1
— (N)
‘If we ignore the coalescence of particles starting in different B;’s, then the
Markov property implies
49 ElEN]< X P[EVnB=C]LE[sM(C)]]
i

C,cB;,1<i<n(?)

IA
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Using the inequalities (4.2) and (4.3) and writing A, for h (A,) we have
LE[|&M(C)]] < Zlict - (Cl - 1&,]
1 12

= (1 - h’s)ZICll + hsn(t)
< (1= h,)XIC| + $h,E[IEM].

Using this estimate in (4.4) we obtain
E[lg] < (1 - 34,)E[iE™1],
as required. O
LEMMA. If fy(t) = E[|E™)1/gn(t), then there exist finite constants M,
such that
(4.5) fn(t)<M,, O0<t<4, N=24,...,
(4.6) fn(2t) < max{M,, fy(¢)}, t=0,N=2,3,....
PrOOF. If ¢ < 4, then since [£{V)] < N¢, (4.5) holds with M, = 4. Now if we
cannot apply (4.3), then either
E[1gM]] <87
or
E[ig1] <2-47E[15M]],

and in either case, for all d it is easy to see that (4.6) holds with M, = 8% So we
may assume that (4.3) can be applied, in which case iteration of (4.3) gives

(4.7) E[igg1] < E[|£$”>|]exp( - % [2] hs(A,))-

To employ (4.7) effectively we recall from Lemma 5 of Bramson and Griffeath
(1980b) that if B is a square of side b > 8, then there are positive constants a,
such that

a, 1,
2,
3.

d
hy(B) > { @y/logb, d
ay/b%2, d

\%

We now let s depend on ¢ by setting s to be the square of the side of A,, i.e.,
s =s,= (8N/E[|£M[]/4)2. We may assume that s, < t/2, else it is easy to
check that fy(¢) < 1289/2, ¢ > 2. With this choice we have

H t gV
— 2_ —_—

(4.8) 25, = 128N?

St
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and

a, d=1,

8N
0[2/10g d = 2’

We now consider the cases d = 1, d = 2 and d > 3 separately.
d = 1: Utilizing (4.8), (4.9) and (4.10) we have

fn(2t) = ot [|§<N>|]

_ V2E [|s§N>|]
= N €x]

E[ig™M)* [

8N d-2
—_— 3.
E[IchN)l]l/Zd] ’ d>

(49) ho(A) =

A E
T2 128N

= in(t)exp|log/Z — o= fi (1)

and so (4.6) holds with M; = max{y128,/128log2/«, }.
d = 2: As with d = 1 we have
op) = 26E [1£51]
fn() = Nologar log 2t
20E [|¢™)]
N2log2t

_1E[EM] 2
2 128N 1og(sN/(E[ig™1]"))

g() o 2 2 ; logt
= fn(t) o (2t) eXP|08= ~ 956 i )log(8v/f/\/10_g?) — 3log fn(t)

< fn(D)exp|log2 = 2= 1u()],

unless
logt

<1
log(8vt /y/log t) — 3log fn(t)
Since the denominator is positive ( fy(¢) < t/logt) this can happen only if

: 8Vt
log fN(t) <4 log%—-——g—t — logt

< 4logs,
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i.e, fy(t) < 8% Putting all of the pieces together we have (4.7) with M, =
max{128,2561og2/a,}.

d > 3: As above,
2E[1E1]
fN(Zt) = Nd A
2/d d, 92
24 [|£M)] 1M (E[igM]
S @ ep(— 3 7%
N 2 128N 8N

Qg
fn(t)ewpiog2 = 731 (0)]
and so (4.7) holds with M, = max{1289/% 4 - 8%1log2/a,}. O

The proof of the Proposition is now almost immediate, and is exactly the same
as the last paragraph in the proof of Lemma 4 in Bramson, Cox and Griffeath
(1986).

5. Proof of Theorem 6, d > 2. We start with the proof of (1.11). Fix ¢ > 0,
j=1and ay as in Theorem 4. Now fix n > 2 and select AM) = {x,,...,x,} C
A(N), |x, — %g| > ay for a # B. Then since £N(AM) c EM(A(N)),

P[|&M(A(N)| <] < P[|&(A™)| <]

J
= X g, x(e76)
k=1

(5.1)

as N — o by Theorem 5. Letting n — co we obtain
J
EV(AN))| <7] £ L gp 4(e729).
k=1

For the reverse inequality fix M (large) and §,, 8, > 0 (small). By Chebyshev and
the proposition of Section 4,

P[|&0(A(N))| = M] < E[|&0(A(N)) || /M
< cy/8,M.

It follows from (2.8) and the usual construction with independent random walks
that, uniformly in £ < M and {y,,..., %} € A(N),

P[sglsN(A(N))—{yp )32 # 2, € 80 (A(N)), |2, — 25 < ay]
= _,0

Combining these remarks with Theorem 5 applied to &N ). (45X (A(N))) and
letting

Az, 2,) = {$§ﬁL(A(N)) ={2,-.-, 2.}, 12 — 25l 2 apy fora # .B},

limsupP[
N- oo
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we have
Pl 5] 2 £ Pl (oo 2] < e, 20)]

XP[A{(ZD z{)l |£§13N(A(N))| < M]
X P[|&W(A(N))| < M]

(- ) £ £t
XP{A(z1,..., 2| [EV(A(N))| < M]

)( Y g ale20" WG)) + ey,

2( 8. M

If we first let N — oo, then M — o and then §, and 8, — 0, we obtain

tsy

imint P[00 1] 2 £ g ale ).
e k=1

This inequality and (5.1) prove
Jim PIEN(AN))| =] = 4, ,(e7279),
which is enough to prove the weak convergence in (1.11).

The moment convergence in (1.11) follows from weak convergence provided
the sequence o{"/sy is uniformly integrable. We will prove more. Since

P[of™/sy < 1] = P[|EM(A(N))| <1]

J
- ¥ g, 4(e7%)
k=1

(a positive number) as N — oo, there exists 8; > 0 such that for all N = 2,4,...
we have

Plof™M/sy<1] 2 8.
Now for any A ¢ A(N), since £V)(A) c ¢&N)(A(N)), we must also have for all
N=24,...,
Plof™/sy < 1|6V = Al =8,
This inequality, the Markov prqperty and iteration lead to
(5.2) Plo™/sy=n] < (1-8)",

which certainly implies uniform integrability. This finishes the proof of Theorem
6,d>2.0
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6. Duality and the proofs of Theorems 1-3, d > 2. Duality is perhaps the
chief tool used in analyzing the voter model. It is well documented in the
literature, so we will only state the results we need and refer the reader to
Griffeath (1979) and Liggett (1985) for proofs. It is convenient to write A C 7 for
sets A C A and configurations € {0,1}* tomean A C {x: n(x) = 1}. The first
duality equation we need is ‘

(6~1) P,,[B c "h] = P[&t(B) c "7],

where P, indicates that the voter model 7, starts with 5, = . If we start 7, in
product measure with density 8, then summation in (6.1) leads to the second
duality equation

(6.2) P[Bcy,]=E[§%®I],

If0<t < -+ <t, then

P[B;Cm,,1 <i<k]=P[(Bs,0; By, ty—ty_i;+; Bty — t,) ),
where £ (A, s;; - -+ ; A, ;) is the coalescing random walk system defined in the

previous section, with particles starting at the points of A; at time s; (“frozen”
there until that time). Finally, if 7, starts in product measure with density 6,
then

(6.3) P[Bi cn,ls< i< k] = E[glf:,,(B/.,O; Bi-1s e -1 5 B =01

Before beginning the proofs of Theorems 1-3 we point out two related duality
equations, discussed in Tavaré (1984), Cox and Griffeath (1986) and Cox and
Griffeath (1988). These equations connect the Wright—Fisher diffusion Y, and the
death process D, defined in Section 1. The equations are

(6.4) E,[Y"] = E,[6%] = ¥ 07, (),
Jj=1
k .
(6'5) EOI:I—II Y;:'":I = Z 0an,,,nk_1 ..... nl;j(O’ tk - tk—l"“’ tk - tl; tk)‘
= Jj=1

With these equations in hand and the coalescing random walk results of the
previous sections we can now begin the voter model proofs.

PROOF OF THEOREM 1. Fix ¢ > 0. Then
P[t™ < tsy] = P[n(,s’:,) =1lor 0]
= E[g#naa] 4 E[(l - 0)I£$§‘,’,’(A(N))I]

0
- [0+ (1= 0)*] g, u(e729)
k=1
by using (6.2) and Theorem 6. To obtain moment convergence we note that 7™
is stochastically smaller than ¢(") and since o{")/sy is uniformly integrable
[recall (5.2)], so is 7®™)/s,. This is enough to guarantee convergence of expecta-
tions. To see why 7™ is stochastically smaller than ¢V’ we use duality and
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compute
P[rM™M>¢]=1- E[0|£$"’<A(N»|] + E[(l - 0)|£$”’(A(N»|]

= 5 [0+ (- 0]l a0y | =4

< P[|&M(A(N))| = 2]
- P[e™ > ¢].
Here is the computation for E[7] = —G[0log 8 + (1 — 8)log(1 — 8)]:

fo°°P[¢ > t]dt = é[ak +(1- 0)”][0°°P°°[1)2t/a = k] dt

* G
=Y [0’“’ +(1- H)k] EE[holding time in state % ]

k=2
S [k kG (k)T
Elor w005 ()
= —G[0log6 + (1 - 6)log(1 — 0)]. O

ProOOF oF THEOREM 2. We will prove Theorem 2 in three steps, starting
with:

Weak convergence of marginals. Fix ¢t > 0 and m > 1. We will obtain
A = th/G

tsy

by showing that
(66) E[(a)"] - Eo[%2s6].
To do this we choose a, as in Theorem 4 and compute

E[(am)"] =N ¥ Pl(x)=11<i<m]|
Xiyeons X, €A(N)
=N—md Y P[n(,iv)(xi) =1,1<i< m] + ey

N
Xiyeors x, €EA(N)
X, —xglzay, a*B

= N-md Y E 0N xnDl]| 4 gy
Xiyeoos x, €A(N)
|xe—xg|=ay, a*B

m
- N-md y Y 607, (e /%) + ey (by Theorem 5)
Xyyeens X, €A(N) j=1
|xe—xgl=ay, a*B

- E oj‘(lm, j(e—zt/G)
Jj=1
= E, [Yz';l/c;]
by (6.4), proving (6.6).
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Weak convergence of finite-dimensional distributions. Fix k > 2, m; > 1 and
0<t < .-+ <t,. Wewill prove

(6.7) E[(400)™ - (80)™] = B[ Y6 - Ywal,

t18N Y
which is enough to prove
N N
(A ooy A ) = (Yo s> Vg )

We compute as before,

E[(ag2)™ - (a2)™]
= N-dlm+ - my) Z [n(t{;’,g( )—1 1<l<k 1<]$m]

x ..., xR

xi=(at,..., xk), xi€ A(N)
=3 + 32,
where 3' contains all the x',..., x* such that |x} — x| > ay, a # B, and 32
contains all the other terms. By countmg it is easy to see that 3% = ¢ EN and by
the duality equation (6.3), with B' = {x};, 1 <j < m,}, a typical term in 3" is
Pla(xi) =L,1<i<k1<j<m]

tisN

= E[01B" 0 B* L ti—tiss 5 B =]

- Zoman,nk_l,...,nl;m(O’z(tk - tk—l)/G""’2(tk - tl)/G; tk)

= B[ Yopye -+ Yipyal

by (3.11) and (6.5).

Tightness. It is possible to obtain tightness on path space using Corollary 8.7
of Ethier and Kurtz (1986), Chapter 4 by showing that if f: [0,1] > R is
continuous, then for each ¢ > 0,

(6.8) Aim sup |E,[1(80)] = Epyywe 1(Yars)] | = 0,
n

where 7 € {0,1}*™), |y| = L n(x) and the subscripts indicate that we are
startmg the voter model with n§¥) = n and the Wright-Fisher diffusion with
= |n|/N?. Since each continuous f is the uniform limit of a sequence of
polynormals it suffices to show that for each n > 1, (6.8) holds with f(x) =x"
But D. Aldous (personal communication) has pointed out that this is not
necessary. Since M™(t) = A% is a martingale for each N, M™(¢) is bounded in
N for each ¢ and Y, is continuous, tightness and (1.7) follow from convergence of
the finite-dimensional distributions (already proved) and Proposition 1.2 of
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Aldous (1989). It is easy to see that M™(¢) is a martingale for fixed N, since the
dynamics imply that if n{™ = and

r(n)= X  a(x)1-1(y)p™N(x, y),

x, yYEA(N)

then [n{M] > [7{¥)] + 1 at rate r(n) and 7] > n{™| — 1 at rate r(n). O
ProoF oF THEOREM 3. By inclusion—exclusion it suffices to show that

(6.9) P[nM(x)=1,x€A] - f P|Yy,, € d0']|v.[n(x) = 1, x € A].
[0,1]
We will assume that ¢,/N? > ¢t € (0, c0); the two remaining cases are easy to
handle. In order to prove (6.9) we need a characterization of the », of Theorem 0.
Let £, (A) = lim,_,  |£(A)| and let p,(A) = P[{,(A) = n]. By Theorem 0
and the duality equation (6.2),

v[n(x) =1, x € A] = lim E[0%)]
t— o0
14|
= X p(A)0".
n=1
The duality equation (6.4) now implies that the right-hand side of (6.11) equals
4|
Y p,(A)E,[6PC/9],
n=1

This and an application of duality to the left-hand side of (6.9) show that it
suffices to prove

14|
(6.10) E[gliﬂ,ﬁ”(A)I] - Y p(A)E,[§P2/9].
n=1

To do this we introduce a collection of independent random walks on Z9,
{X,(x), x € 2%}, where X (x) = x. Standard random walk calculations can be
used to show that we can find Ty — o, Ty = o(N%) and ay — o, ay = o(N)
as N — oo such that for all x € A,

(6.11) P[|X,(x)| < W/logN,O <t< TN] -1,
(6.12) P[| Xz (x)| < ay] 0.
Now define random walks X{V)(x) on A(N) by

. XM(x) = (X,(x)mod N) — N/2.

Using the X,(x) and X{™)(x) it is clear that we can construct the processes
£,(A) and £M(A) such that £,(A) =£M(A) for all ¢ < yy, where yy =
inf(t > 0: |£,(x)| = VN /log N for some x € A}.
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Letting a tilde () indicate a summation over B = {xy,..., x,} such that
|x; — x;| > ay for i # j, we have

E[gev@n] = Z Y P[&(A) = B] E[6¥N (B)]  (Markov property)

n=1|B|=n

='EA' ¥ Pltr(A) = B|E[¢¥n®)] + ¢y [by (6.9)]
n=1 |B|=n

= le' > Pltr,(A) = B|E[6¥9 ] + ¢ [by (6.12)]
n=1|B|=n

|A}
- X P[IgTN(A)l = n]En[aD(Qtzv/GN"—QTN/GNd)] ey

n=1

(by Theorem 5)

14
- X pn(A)E,[67°79]

n=1

as required. O

7. d =1. The techniques we have used in the previous sections to analyze
the voter model and coalescing random walk for d > 2 are not appropriate for
d = 1. It is not a technical failure, but rather the behavior of our processes which
differs substantially in these two regimes. Fortunately there are methods devel-
oped for the d = 1 case by others [Bramson and Griffeath (1980a) and Arratia
(1979)] which we can adapt to the problems considered here. In addition, there is
a beautiful observation of D. Aldous (personal communication) that leads to the
explicit formulas for ¢, in Theorem 6.

Arratia (1979) constructs a system c, of coalescing Brownian motions on the
line R. Particles execute independent Brownian motions until they meet, at
which time they coalesce into a single Brownian motion. The remarkable feature
of this process is that the system starts at time 0 with a particle located at every
x € R, and by each positive time ¢ the system has only finitely many particles in
every bounded set. Furthermore, Arratia proves an invariance principle for c,
and m,, which is the point process determined by the particles in c,.

Appropriate modifications of Arratia’s work can be used to define a system
¢, = {c(x), x € (— 3, 3]} of coalescing Brownian motions on the interval (— 1, 1
viewed as a circle of circumference 1, where c,(x) is the position at time ¢ of the
Brownian motion started at x. The process can be visualized as a system of
cannibalistic ants crawling down a tin can. Letting =, = {c(x): x €[— },3))},
Arratia’s work implies that as N — oo,

(7.1) TEN(A(N)) = 7,

tN 2
as processes.
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PROOF OF THEOREM 1, d = 1. Using duality and (7.1) we compute
P[r™/N2<t] = P[y{M)=1o0r0]

= E[gliﬁﬁ&(A(N»l] + E[(l _ 0)|£§,’32(A(N»|]
- ¥ [6¥+ (1 - 0)*] Plic) = ],
=1

thus ") /N? = 7. As in Section 5, 7 is stochastically smaller than ¢{™) and
o{™) /N2 is uniformly integrable. Thus E[+(N)/N2?] - E[r]. O

Similar remarks prove the one-dimensional version of Theorem 6. The exis-
tence of the limit of 6{")/N?2 can be demonstrated without using Arratia’s work;
the key fact is Aldous’ observation that for each N,

(7.2) oM =, 15,
where ) is the time it takes (d = 1) simple random walk starting at 1 to reach
N conditioned on reaching N before 0. We will explore the consequences of (7.2)
now, leaving its proof for the next section.

It is a simple matter [follow Problem 6 of Itd and McKean (1974), page 29] to
compute the distribution of ¢V), at least in terms of Laplace transforms. One
obtains

- 1 ¢7Y(a) — ¢/(a)
7.3 Ele=*]| = — ,  a>0,
73 R e e
where ¢(a) =1 + a — V2a + a. Using (7.3) it is straightforward to check that
as N - oo,

V2a

—_—, > 0
sinhy2a = °

E [e_“E(N)/NZ] -

and
E[s™/N?] > 4,
finishing the proof of Theorem 6.

8. Multitype voter models. As in Cox and Griffeath (1988) one can con-
sider the multitype voter model or stepping stone model. Given A C Z<¢ and
Kk < oo the k-type voter model n, on A C Z¢ with transition matrix p® has state
space {0,1,..., k — 1}, and makes transitions

(8.1) n)(x) > i atrate T p(x, y)1({n}(») = i})

yEA
for &+ nM(x). As before, we use 7, to denote the process when A = Z¢ and
7™ when A = A(N), governed by the transition function of simple
symmetric random walk. For § = (6,,...,0,_,) let p, denote product measure
on {0,1,...,k — 1}, pe(n(x) = i) =6,
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We may also consider the case k = oo, in which case it is natural to take
(Z%)%" as the state space and let the initial state satisfy 5(x) = x, x € Z<. The
dynamics are as in (8.1), except i is now a point of Z¢. This model is sometimes
called the stepping stone model [see Cox and Griffeath (1987) for a brief
discussion of its history and a list of references].

What can one say about the behavior of large finite systems for these x-type
voter models? The answer is: essentially the same things (appropriately modi-
fied) as when k = 2. Extensions of this type are carried out in Cox and Griffeath
(1988) in studying the rate of clustering of the voter model in two dimensions.
We will not give detailed proofs, as the k < oc is fairly easy to handle, while the
Kk = oo case requires more details than is appropriate to include here. We will
discuss only the d > 2 case. One of our main reasons in stating these extensions
is to write down a few formulas that are useful for comparisons with computer
simulations.

k < c0. The analogous versions of Theorems 1 and 2 are true. Let frj(N ) be
the time it takes the process to reach exactly j types, i.e.,

1™ =inf{¢>0;3A c {0,1,...,k — 1}, |A| =,
7{N)(x) € Aforall x € A(N)}
and let AY) be the k-vector (AN(0), AM(),..., AN)(k — 1)), where
AV =N T 1(nV(x) = ).
x€A(N)
Let Y, be the k-type Wright-Fisher diffusion which has generator

1 k—1 82

- 18, — v,
5 iyéovl[ i~ 7,97,

and lives on the state space {y = (vp,.-+» Ve—1): v: = 0, Ly, = 1}.

By using techniques of this paper and of Cox and Griffeath (1988), one can
prove: If 7{™) has initial distribution p, then there are random variables 7; such
that :

(8.2) 1M /sy = 7 and E['rj(”)/sN] = E[7]
and
(8'3) A(tl.:,,,,) = YZt/G’ }’B = (00""1 0::—1)

as processes. The simplest way to approach (8.2) seems to be showing that for
any A C {0,1,...,k — 1},

x J

Plforall x € A(N), n)(x) ¢ A] > ¥ | ¥ 0;-] 9w, (25/G)
.»a J=1Li¢A

(which follows from Theorem 6) and using inclusion—exclusion to get an explicit

representation for the distribution of 7;. The proof of (8.3) involves an extension

of the duality equations (6.4) and (6.5).
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The case j = 1 in (8,2) is particularly simple:

P[r <s]= i (n_:oi’)qw,z(%/G)

=1\ i=

and consequently

k—1
i=0
Assuming further that § = (x~%,..., k" !) we have
K
(84) E[n]=G(x - 1)log'C 1

It is interesting to compare the k = 4 case of (8.2) and (8.4) with the D2VOTER4
simulation of Durrett (1987), which is a simulation of the two-dimensional voter
model with x = 4 on the torus of side N = 25. The simulation seems to produce
sample means of 7{V)/s, rather close to the value in (8.3).

k = oo. In this case (8.2) is also true, and the distribution of 7; is the same as
that of o; of Theorem 6, namely

J
P[TJ = S] = kglqoo,k(zs/G)-

The version of (8.3) that is true with k = oo takes a little explaining. For y € Z¢
let
AM(y) =N ¥ UnM(x) = ).
x€A(N)

Using the notation of Ethier and Kurtz (1981) let pAN) = (8, 8,,...) be the
AN)(y) arranged in decreasing order and viewed as an element of the infinite-
dimensional simplex V., = {y = (y;, ¥2,---): "1 2% > -+ 20, L5y, =1}
Ethier and Kurtz (1981) study a class of diffusions which live on v, including
the one with generator

1 io: 3?2
Z v:[8:; = v;
2 im0 [ J J] 3Yi 37,‘

defined on an appropriate domain. A remarkable fact is that the diffusion Y,
with this generator can be started at (0,0,...), in which case it jumps instanta-
neously into v. Using the techniques of this paper and of Cox and Griffeath
(1988) one can prove that as N — oo,

(8.5) pAN(y) = Yy 6.

Finally, here is the proof of (7.2): Consider the voter model 7{" on A(N) with
all types distinct, indexed by A(N) itself (the k = oo case). In this setting the
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duality equation (6.1) becomes
P[n{™(x) = y,all x € B] = P[¢(B) = {5}].
Using this duality we can write
Plo(™ < t] = P[|&™M(A(N))| = 1]
= P[n{™ has exactly one type left]

Y P[q™=zxon A(N)]
x€A(N)

NP[n{™ = 0on A(N)].

Now {x: 7¢{¥(x) = 0} is always an interval and |{x: n{¥)(x) = 0}| is a rate 2
random walk on {0,1,..., N} starting at 1 with absorption at 0 and N. So if
M) is the time it takes such a random walk to get absorbed, then

P[o{N) < t] = NP[6™ < t, absorption at N,
which is the same as (7.2), since the walk hits N before 0 with probability 1/N.
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