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UNIFORM LOWER BOUNDS FOR RANDOMLY STOPPED
BANACH SPACE VALUED RANDOM SUMS!

By MicHAEL J. KLASS

University of California, Berkeley

Let {X,} be a sequence of independent Banach space valued random
elements with partial sums S, = X; + --- +X,. Then let T be any possi-
bly randomized stopping time based on {X,}. Fix any « > 0 and let ®(-) be
any nondecreasing continuous function on [0, ©) with ®(0) = 0 such that
®(cx) < c*®(x) for all x > 0, ¢ > 2. Put S* = max, _, _,[IS,|| and a* =
E®(8}). It is proved that there exists a universal constant ¢X¥ < o depend-
ing only on « [and otherwise independent of (B, || - |), {X,}, T and ®(-)]
such that Ea% < c*E®(S#). As a consequence, E®(S§) = o whenever
P(T, < ©) = 1 and ¢ > c*, where

T - {ﬁrst n:c®(S¥) < a¥,
c . .
o, if no such n exists.

In fact, Ea%, = =, too. An upper bound for ¢} is constructed.

1. Summary. Let X, X,,... be independent random elements taking
values in a Banach space (B, | -|). Let T be any (possibly randomized)
stopping time with respect to {X,} and then let ®(-) be any nondecreasing
continuous function on [0, ) with ®(0) = 0 such that for some fixed a > 0,

(1.1) ®(cx) <c*®(x) forallx >0, ¢ > 2.
Denote the family of such ® by %,. Put S, = X; + -+ +X, and
(12) at = B max ©(|S,).

We prove that there exists a universal constant ¢} depending only on & > 0
[and otherwise independent of (B, || - |), {X,}, T and ®(-)] such that

(1.3) Ea} < c;"Elmade)(”SnH).

Equivalently, if 7' has the same marginal distribution as T' but is independent
of {X,}, then

(1.4) E max ®(||S,|) <c¥E max ®(||S,]).
l<n<T l<n<T

An upper bound for ¢} is constructed. Clearly, c* > 1. The complementary
reverse inequality bound is proved in Klass (1988). Hence, despite how T is
constructed, the order of magnitude of E max, _, _, ®(||S,,|) is the same as it
would be if T were independent of {X,}!
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Let
3 . %k
(1.5) T — {mln{n > 1: cl?]?fn(b(”‘sk”) < an},
o, if no such n exists.
As a consequence of (1.3), for each ¢ > ¢, either
(1.6) P(T,=») >0
or else
(1.7) E max ®(|S,) = =.
1<n<T,
Letting
] . *
(1.8) T — {mm{n >1: 1121?§n®(llskn) > can},
o, if no such n exists,

the related analog of (1.6) and (1.7) also holds (due in part to de la Pefia) and
may be found in Klass (1988). Of course, whenever (1.7) (or its related analog)
holds and P(T, < ») = 1 [P(T,* < ») = 1] then Ea%} =  as well.

Specializing to the case in which the X, ’s are i.i.d. standard normal random
variables and noting that a* = ®(Y/n), inequality (1.3) combined with the
reverse bound mentioned above together yield the fact that

E max ®(S,])/E®(/T)

is uniformly bounded away from 0 and = by finite positive constants depending
only on a > 0. The continuous-time Brownian motion analog was proved by
Burkholder and Gundy (1970). Their result in turn extends or relates to a long
line of time-honored results dating back to Khintchine (1923), Paley (1932),
Marcinkiewicz and Zygmund (1937, 1938), Burkholder (1966), Millar (1968)
and others.

The bounds given for E max,_, . ®(|S,|) depend on approximation of
a* = E max, _, _, P(S,)). In the real-valued case, order-of-magnitude results
are obtained in Klass (1981). For the Banach space case, consult Klass (1985).

2. Sketch of the derivation of the main theorem. Our derivation of
(1.3) makes repeated use of the following lemma, a special case of a very
important one due to Burkholder and Gundy (1970). Its key role is predicated
on the effective manner in which it exploits dependence among random
variables.

LeEmMA 2.1 [Burkholder and Gundy (1970) and Burkholder (1973)]. Let U
and V be nonnegative random variables. Suppose there exist positive reals
B, 8,y such that B~ —y > 0 and

(2.1) P(U =By, V<8y)<yP(Ux=y) forally>0.
Then
(2.2) EU< (B~ '—y) 's'EV.
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As pointed out in the Appendix, this lemma can be strictly improved.

Ideally, to establish (1.3), one would like to use Lemma 2.1 with U = a%
and V = max,_, _p ©(||S,|). However, being dependent only on T, a% is not
sufficiently responsive to the constraint {max;_, _, ®(||S,|) < dy}. There-
fore a% must be replaced by somethlng more closely correlated with
max, _, . ®(|S,|). Wald’s identity EXT_,EY, = EL”_,Y; suggests a means
of creating such correlated variates, substltutlng random quantities Y; for
constants EY;. To adopt this approach, we must construct Y;’s for which a% is
approx1mated by Z

Define
(2.3) S, = max ||S,],
1<k<n
(2.4) S(j:n,n) = S(j:n,n—l] = m‘gj‘fnnsj =S,

Then let my=0 and m, = first m > m,: P(S} > 0) > 0. We assume that
m, < » exists. Having defined mg, m,,..., m;, let

first n > m;: E<I>(S(’}‘nj,n]) > YaEq’(S(m _1m 1)

(2.5) AL o, if no such j exists,

where

(2.6) Yo=1+ 16721

In this way we construct a sequence of constants m, m,... . Technically, one
might observe that m ; = « for all j > L, where

(2.7 L = sup{j: m;_; < o}.

(Note that L is a nonrandom constant.) Put

(2.8) by =E®(Sg . m,y)-

We might want to let Y; = ®(S7, mJ]). For this to be reasonable, it must
be shown that a% and £%_,b6,I(T = m ) are comparable. [Since

8

j=

Jj=1

MS

bI(m <T<mj+1),

~.
II

it suffices to verify that a% and b, are comparable whenever m, < T <m, ;.
This is done in Theorem 4.2.]

On more careful examination, however, it is seen that Y, and I(T > m ) are
not independent, so that Wald’s identity does not ‘apply. Moreover, if we
attempt to look at X%_,b,I(T > m,_,) instead, we recover use of Wald’s
identity but may now lose control over the magnitude of X5_,0,I1(T > m;_,)
as eompared with that of a%. This will occur whenever m,_, 1< m, and
b,, > b, . Hence it is quite possible that EX5_,b.I(T > m;_,) could be

mp

+ even though Ea% < . The problem that arises is due to the potential
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hugeness of E®(||X,,,|) when m,_; <T <m,. Put

(2.9) D, = D(Sk . my)-
By construction of {m j},

(2.10) ED, <v,b;_; (<b,).

Since

O(llx +y1) < @(llxll + Iyl
(2.11) < O(2|x]l) + D(2lxl)

< 29(@(Jlx[) + @(lylD),
we also have

(2.12) b; < 2%(E®; + E®(| X, |).
Furthermore, since [|Xm | < ZS(m _Lm,p

(2.13) E®(|X,, ) < 2°b;.
Hence

bI(T>m) and

(2.14)
(Ecp V(T >m;_y) + z E®(| X, I)I(T = m;)

TMs 1M8

have comparable orders of magnitude. (Note that ®, = 0.) Moreover, Wald’s
identity does apply to each of the two sums in the second part of (2.14). It
therefore suffices to produce constants c,; and c,, such that

(2.15) EY ®(IIX,, )I(T = m;) < c, E®(S5)
j=1
and
(2.16) EY, ®I(T>m;_ ;) <c,,E®(Sf).
j=2

Try as one might, it seems impossible to establish either (2.15) or (2.16) by
means of the Burkholder-Gundy lemma. From computations that would
follow its use, the difficulty appears to stem from the fact that {®(S}) < 8y}
does not effectively restrict the size of T'. What is to be done?

Notice that if the random quantities <I>(||Xm I or ®; were growing at the
rate of their expected sum b; (or more), then’ the constralnt {®(S}) < oy}
would prevent there being too many such terms prior to T and in particular it
would effectively inhibit T' from exceeding some my, for some b,, roughly
équal to 8y (or some multiple thereof). b

By altering <I>(||Xm ) and ®; somewhat, we can virtually ensure that this
guaranteed growth rate occurs (unless the altered quantities are 0!), without
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changing the order of magnitude of the resulting total expectation. The
feasibility of this derives from the fact that for any W > 0,

(2.17) EWI(W > {EW) > 1EW,

whence W and WI(W > ;EW) have comparable expectations. As an amusing
consequence, it becomes important to truncate away small values of the
random variables while retaining the large ones—something totally contrary
to traditional practice.

Let
(2.18) D = D I(D; =272,
and
(2.19) X, =X, I(®(1X,, ) = 27" %, b)),

for some 0 < ¢, < 1, to be specified later [see (4.13)]. In Lemma 3.1 (to follow)
it is proved that

L boP(T>m;) <2 'EY, ®I(T>m;_;)
Jj=1 Jj=2
(2.20) "
+2°E Y () X, INI(T = m;).
=1

j=

e}

The Burkholder-Gundy lemma does indeed apply to the second quantity on
the right-hand side above, i.e., we can show by direct application of it that (see
Lemma 3.2) there exists ¢/; < » such that

el

(2.21) EY, ®(| X, INI(T = m;) < clyED(SF).

Jj=1

Similarly, it is a fairly straightforward matter (see Lemma 3.3) to show that
there exists ¢/, < ® such that

(2.22) EY) ®I(T=m;) <cl,E®(S¥).
j=2

Therefore the quantity EX5_,®/I(m;_; <T <m ;) remains to be upper-
bounded. Since

* %k %
S mp < max{4ST,2S(T,,,h)}

whenever m;_; < T < m,, it follows that

EQI(m;_, <T <m;) <4EQ(SF)I(m;_; <T <m;)

2.23
(2.23) + 2°ED(Sfk, ) ) I(m,;_; < T <m;).
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Noting that
ED(Sh pmy)I(m;_y <T<m;)= ¥  E®(SE,.,)P(T=n)

m,_<n<m;

< Y E®(2S3

(m;_1,m;)
m;_;<n<m,

)P(T =n)

IA

Y  2°E®,P(T=n)

m;_<n<m,

we may conclude that

EY) ®I(m;_; <T <m,)

j=2

(2.24) .

<4"ED(S}) +4*) E®,P(m; , <T <m;).
j=2

j=

Now if only 2%_,E®;P(m;_; <T < m;) could be upper-bounded in terms of

E®(S}), our theorem would be complete.
By Lemma 4.4, there exists a finite constant c, ; depending only on & > 0
such that

J
(2.25) E®;,; <273 2(b; + --- +b;) + 273 %, 3} E®(|| X}, |)).
i=1
The above inequality holds subject to the further assumption that
(2.26) P(cx) <c*®P(x) forall x >0andall ¢ > 1.
With this additional proviso,
2)Y. b;P(T>2m;) <2°*E Y, d>(||X,'nj||)I(T >m;)

Jj=1 Jj=1

+2°*2E Y &/I(T>m,_;) [by(2.20)]

j=2

< 2%*2(cly + cly + 4°)ED(SE)

+2%*2 Y E®,P(m;_; <T <m;)
=2

j=

[by (2.21), (2.22) and (2.24)].
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Invoking (2.25),

2542 ¥ E®.P(m,;_, <T <m,)
j=2

< ©+b;)P(m; < T <mj,,)

klf'l"lg
-
VS

o j
+eis X X EO(IX, )P(m; < T <mj,,)
Jj=1li=1
b;P(T = m;) +c; 32 E®(|X;, [)P(T = m;)
1 J=1

Il
™s

J
(summing by parts)

z:f P(T>m;)+c, Ef‘, (|| X, INI(T = m))

j=1
(by Wald’s identity)

b;P(T = m;) +cl ¢, sE®(SF) [by (2.21)].
1

IA
Tl\’ls

Hence

2Y b;P(T=2m;) < (2%, + 2°" %, , + 2572 + ¢/, 1c, 3 ) ED(SF)
j=1

+ ) b,P(T >m;).
=1

Solving,

(2.27) Z b,P(T=m;) < (2% %, +2°% %, o + 25" 2 + ¢/ ic, 5) ED(SF).
J=

Finally, since

(2.28) afl(m; <T<m;,;) <c,bI(m; <T<mj,,)

by Theorem 4.2, a summation and trivial upper bound of the right-hand side
reveals that

(2.29) Eaf <c, Y b,P(T > m,).

j=1
~ Cémbining (2.27) and (2.29), it is clear that (1.3) holds modulo proviso (2.26)
and the establishment of (2.20), (2.21), (2.22), (2.25) and (2.28). In fact, (2.26)
is not restrictive; for suppose (1.3) holds whenever (2.26) holds and take any
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®(-) € &, [so that (1.1) holds]. Putting

1 .«
2.30 = —
(2.30) (%) = < [ ®(5) dy,
we claim that ®,(-) € %, and satisfies (2.26) with a, = 2°**' — 1 and that
(2.31) d,(x) < P(x) <2°*'® (x) forall x > 0.

(The validity of these facts is proved in the Appendix.)
Armed with these results, let

(2.32) a¥; = E max @,(||S,|)
1<k<n

and notice that
a* <2°T1g* and E®,(S}) < EP(S§).
Applying (1.3), it follows that
Eaj < 2°*'Ea}, < 2912 ED,(SF) < 22" 1 ED(S7).

Therefore (1.3) holds modulo (1.1) if it holds modulo (2.26). Consequently, for
the remainder of the paper we will assume that ®(-) satisfies (2.26). It remains
to establish inequalities (2.20), (2.21), (2.22), (2.25) and (2.28). We will prove
each of the first three of these in the next section. The last two are somewhat
more involved. They will be proved in Section 4, together with two supplemen-
tary lemmas. For convenience, the main theorem and principal corollary are
restated in Section 5.

3. Proof of inequalities (2.20) to (2.22). Inequality (2.20) permits us to
upper-bound a sum of constants in terms of an expectation of a sum of random
quantities. In order to achieve this bound, certain events ({T' > m ;}) must be
slightly enlarged (to {T > m ,}). The loss thereby incurred is remedied by the
analysis presented at the end of Section 2 from inequality (2.23) onward.

LEMMA 3.1 [also inequality (2.20)].

b;P(T>m;) <2*"'EY, ®/I(T>m,_,)
j=1 j=2
(3.1) .
+ 2¢*1g Y <I>(||X,'nj||)I(T >m;).
j=1

[Actually the sum on the left-hand side of (3.1) extends only up to L — 1,
where L is defined in (2.7), and hence each of the sums on the right could also
be restricted to this range. In particular, this follows because for j > L we
have P(T > m;) = P(T > ») = 0]

“ ProoF. Observe first that '
(3.2) b, < 221 (E®; + Eo(|| X, |I)).
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To see this, note that
b < B{®(28%, . m)) + <I)(2||ij||)> < 2°E®; + 2°ED(||X,,, |I) [see (2.12)]
< 20BQ;I(®; < 27°7%) + 2°E®] + 2°E®(|| X, INI(®(1| X,5, II) < 277 %))
+ 2°E®(|| X, )
< 272, + 2°E®; + 27%b; + 2°E (|| X, |I)-
Solving for b;, (3.2) follows. Therefore

© L-1
Y b,P(T>m;)=EY bI(T=m,)
Jj=1 Jj=1
L-1
<2*EY (E®) + EQ(I1 X5, 1)) (T = m;)
Jj=1
L-1
<2"EY (E®)I(T > m,_;)
Jj=2

L—-1
+ 2B Y (E®(1X;,))I(T = m;) (since @, = 0)
=1

iz
L-1 L-1

=2¢"E Y O(T >m, ;) + 227 E Y, ®(|X;, [)I(T = m;)
Jj=2 Jj=1

(by linearity and independence; or alternatively, by Wald’s identity) .

If desired, one can then extend these sums to +. O

Each of the summands on the right-hand side of (3.1) needs to be upper-
bounded in terms of E®(SF).

LeEMMA 3.2 [also, inequality (2.21)]. TakeanyB > land0 <8 <27*(B — 1)
so small that
-1

cp = 71871 = 02572 (e) (1= (v) ) (B -1-0297Y)  >o.
Then

<]

(3.3) EY o(IIX,, ) I(T = m;) < c;, E®(SF),
j=1

where

(3.4) cly = inf{such cgs} .

Proor. For each y > 0, let

k
_ [ first k: ), <I)(||X,'nj||) >y, ifsuch m, < T exists,
¥y j=1

0, otherwise.
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Let k, = last & < L: 27 %,b, < 2°8y. Observe that 27~ % b, represents
the lower bound on ®(||X;, |) when it is positive. Whenever ®(S#) < 8y we
have <I>(||XmJ||) < 2%y for m; < T and so we must have <I>(||X,’,,J||) =0 for
my <m;< T. Curiously, we have here a rare instance in which the small
values of a variate need to be truncated away while large values are retained.
The grip this affords us on certain expectations will presently become appar-
ent. Note that

k}' ky
EY o(I1X, ) <EY ®(25%, ,n,))
j=1 Jj=1
ky ky .
(3.5) < 2a Elb‘l < 2abky ZI(Ya)J_ky
Jj= Jj=

1

<291 = (va)7") by,

<272(e,) (1= ()Y oy
Hence, using our old tool (Burkholder and Gundy’s),

P( f ¢(IIX,;1,|I)I(T zm;) = By, P(SF) < 8y)

Jj=1
'ry—l
=P| ¥ o(1X; 1) + @(1 X I
j=1
+ X ®(IIX,, ) = By, 7, < ©, ®(SF) < ay)
(Jiry<isky, m,<T}
< P( )) o(|1 X, ) = (B -1~ 82“)y)
(j:m, <m,<m, AT}
ky
<(B-1-0829"y 'EY o(I1X, INI(j >, T =m))
Jj=2
(Markov’s inequality)
ky
=(B-1-829""y ' ¥ E®(IX,, INP(j >, T 2 m))
j=2
ky
<(B-1-829""y' ¥ E®(|X;, I)P(m, <T)
j=2

< 23a+2(6a)‘1(ﬂ -1~ 82“)_1(1 - ('Ya)_l)_la

xP| T ®(1X; )T >m)>y| [by(35)].

j=1
Now (3.3) results from application of Lemma 2.1. O
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We treat part of the other series next.

LemMA 3.3 [also, inequality (2.22)]. Takeany B > 1land 0 <86 <27%B — 1)
so small that g =8""(B7' —84°"HB —1-629"11 - (y)"H™H'>0.
Let ¢}, = inf{such ¢ég5}. Then

(3.6) EY, ®I(T = m,) <\ E®(SF).
j=2

J

(The summation on j actually extends only up to L — 1.)
Proor. This time let (for y > 0)

k
_ | first k: Yy ®/ >y, ifsuchm, <T exists,
Ty = ji=2
o otherwise.

Let k, = last k < L: 27°72b, < 2°3y. Noting that E®; < b; < b, (y,)/ "

for j <k,
-1

(3.7) Y E® <64 ly(1 - (v,)7")
2<j<k,
Next, we claim that whenever 7, < © and ®(S#) < 8y we have
(3.8) d>j’I(T > mj) =0 forj >k,
and
(3.9) CI),’y < 2%3y.
To see this, first observe that whenever m; < T, we have
S, _1mp < 287,

and so for such j,
Q< D(255F) < 2°0(SF).
Second, if ®/ > 0, m; < T, and ®(S#) < 8y, then
2772, < P < O, < 2%8y,
whence j < &, and both (3.8) and (3.9) hold.
Continuing to assume that 7, < © and ®(S#) < 8y,

U

Z:ld)j’I(T >m;)
iz

Y QT =m,)
j=2

'ry—l
re+@+ Y YI(T>m,) [by(3.8)]
j=2

{: 'ry<jsky)

“IA

<y+2%y+ Y <I>J~’I(T > mTy) [by the definition of 7, and by (3.9)].

{ry<j<k,}
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We may now conclude that

P(Uzﬁy,<1>(s;<)say)sp( Y CDJ-’I(T>mTy)z(B—1—82"‘)y)

T, <j<k,

<(B-1-6829)""y'E ¥ @I(T> m. )

T,<Jj<k,
<(B-1-629) "y !
ky,—1
X Y P(r,=n,T>m,) ), E®
n=1 n<j<k,

-1

<d4 (B —-1-829) 7 (1- (7))
k,—1

X Y P(r,=n,T>m,) [by(3.7)]
n=1

<547 (B —1- 829" (1 - (v,) ") P(U=y)
[since P(r,<x) =P(U zy)].

Now invoke Lemma 2.1 to deduce (3.6). O

4. Proofs of (2.28) and (2.25). With verification of inequalities (2.28)
and (2.25), the proof of the principal result of this paper, (1.3), will be
complete. These inequalities in turn depend on two additional lemmas. Since
(2.28) utilizes only one of them, we address it and the requisite lemma first.

LEMMA 4.1. Fix any a > 0. Suppose ®: [0,%) — [0, ) is a nondecreasing
continuous function such that ®(cx) < c*®(x) forall x > 0, ¢ > 1. Let U and

V be random elements taking values in a Banach space (B, || - ||). Suppose that
for somey > 0 and A > 0,

(4.1) E(|UID) <y

and

(4.2) EQ(|V]) < Ay.

Then X

(4.3) E max{®(||U])), ®(|U + V|D} < g,(A)y,

where ’

(4.4) g.(x) = (1 + Vx )(1 +x/%)",
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Proor. Let ¢ = /2%, Then
E max{®(|U|)), (I|U + VI)} < EQ(|(L + )U NIVl < cl|U]])
+ EQ(|(1+ )V ) IV > elT1)
< (1+e) EQ(IU) + (1 + ™) EQ(IVI)
< (M +e)" + (1 + c'l)a)y
=(1+c)%(1+c%)y
= 8.(1)y. O
ReMaRk. The preceding lemma is needed to establish (4.10). However, its

full strength is not required. All that is needed is that the lemma hold for
nonnegative real-valued U and V.

THEOREM 4.2 [also known as inequality (2.28)]. Take any m; <m <m,, .
Then there exists a constant c, < © depending only on « [and otherwise
independent of (B, || - |D, ®, {X,}, m; and m] such that

(4.5) 279, < ED(S) < cob;.

Proor. S < 283 <28, whence b; < ED2S}) < 2°E®(S}).

(m,_y,m;] =

Theright-hand side is more complicated. Let j* = first i: E®(S}) >
2‘1E<I>(S,’,,"J). Now if

—a-—1
(4.6) E®(S}. ) <27 'E®(Sy ),

m;x_1

then we must have a large increment b;. comparable to E®( S,’n"ﬂ) and hence
also to E®( S,;,"J). To see this, note that since

E®(S;:) < E(®(25%. ) + ®(25¢,. , m.))
< 2°E®(Sj . ) + 2,
we must have b, > 2'“‘1E<I>(S,’,‘:J*). Therefore
E®(S}) < E(®(2S%) + ®(25¢%, )
<2°E®(S; ) + 2°E¢d;,,
< 2°VIED(S ) + 2%,b;
< 2%%%p., + 2%,b;
< (222 4 2%y, )b, (since j >j*),
which was to be proved. We may— therefore suppose that
(4.7) E®(S). )>2°'EQ(S; ).
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There exists ¢¥ > 0 such that
(4.8) l‘Iga( Hr)7) =2

where g (y) = (1 + y/y )1 + y'/2%),
To obtain a contradiction, suppose also that the b; increment is so small
that

(4.9) b, < 2‘“‘282‘E¢(S,’;J).
Then for j* <k <,
by < (v,)" b,
< (7)) 727 %xE0(S: ) [by (4.9)]
< (v) " 727 e 2 ED(S ) (by definition of j*)
<(v)"VerER(SE.)  [by (4.7)]
<ex(v,)" VED(S%, ).

And so the b, increments are relatively even smaller. Using this fact, we
invoke Lemma 4.1 to obtain

(4.10) E®(8%,) < g.(e2(v)" 7 )ED(S), ).

Using (4.10) repeatedly,
J

o(S1,) < B(S7,.,) T gu(ex(v)"™)

=j
<2E®(S;.) [by(4.8)]
<E CD(S,ﬁj) (by construction of j*).
This yields the desired contradiction. Therefore
E®(S3) < 2°ED(S% ) + 27y,b; < 22072(e%) "'b; + 2%,b;
[since (4.9) fails], whence the right-hand side of (4.5) again holds. O

The next lemma is rather trivial. We state it for easy reference and ease of
exposition.

“LEMMA 4.3. Forany 1l <k éj,

(4.11) by < (74— V(v #* = 1) (b + -+ +b)).
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Proor. Since b, ; > (y,)'b, forall i > 0and n > 1,
JZ .
(b1+ e +bj)2bk+ ce +bJZka ('ya)l
i=0

R R C e § TCRE ) D

To proceed, note that if
(4.12) d,=1+][16*""]
then (since y, = 1 + 167~ 1)

(ya)d“ﬂ(yf +1 _ )_1(% —1)=(1- ,ya—l—da)_116—a—1
< (1 _ %)_116—01—1 < 2—3(a+1)‘

Since g,()) is strictly increasing to +o and g,(0) = 1, there exists a unique
0 < g, < o such that

(413) (1) (gulea/72) (v — D(() T = 1) =270,

where g,()) is as defined in (4.4).
It is a matter of trivial verification that

(4.14) £, <2 =Y,
The next result establishes inequality (2.25).

LEmMa 4.4. Let v,, d,, g,(A) and &, be as just described. Suppose (2.26)
holds. Then there exists c 3 < ® dependmg only on a [and not otherwise
depending on (B, | - |, @, {X } or j, etc.] such that

J
(4.15) E®;, ;<2737 %(b; + - +b;) + 273 %), 53 E<I>(||X,’nl_||).

i=1

Proor. We may assume ®(x) is not identically 0. Let x, = inf{x > 0:
®(x) > 0). By continuity, ®(x,) = 0. If x, > 0 then for any x > 2x,,

x x \“
o <o) =4 ) [ 2] 00en) 0
X4 X4
which gives a contradiction. Hence ®(x) > 0 for all x > 0 and so E®(|| X,,, [D >
0. Let

(4.16) k; =last k <j: E®(|| X, l) > eabi1,

where b, = 0. (Such a k; exists because the set of integers defining k;
includes £ = 1 and so is nonempty) The idea behind the definition of &; 1s
that b, is roughly constant for 2; < i <j. Hence if j —k;is sufﬁc1ently large
there w111 be so many b; comparable to b; that 27 3a- 2(b + -+ +b;) must
exceed v,b;, which is turn exceeds E®; Alternatlvely, if j —k; is relatlvely
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small, then E®(||X,,, |) will be sizable compared to ka which in turn will be
comparable to b; and hence to E®,, ;.
We assert that

(4.17) ECI)(||kaJ||) < 2Ed>(||X,'nhj||).

Proor oF (4.17). If b, < 2°*'b, _,, then by application of (4.16),
E®(||X,, [l) > 27 "e,by,

whence (4.17) holds [by (2.17)]. On the other hand, if b, > 2“+1bk1_1, then
since

by, < 2°E®, + 2°ED(|X,, ||
<2%y,by y + 2°ED(|IX,,, I
< 27ly,b, + 2°EO(|X,,, I,
we also have

E®(|X,,, ) > 27%(1 — 27y,)b,,

m |
> 27 1g by, [by (4.14)],

[+

whence (4.17) again holds by (2.17). O

Next note that for k; <k <j, E®(|X,, |) <e,b,_; and E®, < v,b,_;.
Hence, invoking Lemma 4.1,

(4.18) b, < ga(sa'y(fl)'yabkwl.
Repeated use of (4.18) gives
(4.19) b, < (va&alears?))'b,_; forallk, <j—i=<j.
When k; <j - d,,

E®;,, < 'yabj
< Yo VaBalewr))) b, _a, by (4.19)]
< Va(eBalers ) (v = V(v = 1) by + -+ +b))

— (by Lemma 4.3)

(by construction)

=278"2(p 4+ -+ +b;)  [by (4.13)].

J
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Finally, when £ i >J —dg,

Ed;, , <v,b; (by construction)

< Va(7a8a(2a/ 7)) by, [by (4.19)]

< Ya(yaga(ga/Ya))dﬂbkj;
and since

by, < 2°E®, + 2°E®(| X, ||
<2%%,by,-1 + 2"‘E<I>(||kaj||)
<2%(va/ea + DE®(IX,,, ) [by (4.16)]

<271+ 7o/2) EQ(IX,,, [ [by (4.17)]

J
<21 + v, /8,) X E®(1X,, ),
i=1

l

the lemma holds with

chs = 243y (1 + v,/60) (Va&al£a/7:)) " O

5. Main results. Sections 3 and 4 have shown that inequalities (2.20),
(2.21), (2.22), (2.25) and (2.28) [modulo (2.26)] hold. By virtue of the discussion
presented in Section 2, our main theorem is valid. We restate it now for easy
reference.

THEOREM 5.1. Let X, X,,... be independent random elements taking
values in a Banach space (B, || - |)). Let T be any possibly randomized stopping
time with respect to {X,}. Fix a >0 and let ®(-) be any nondecreasing
function on [0, ©) with ®(0) = 0 such that

(5.1) P(ex) <c*®(x) forallx > 0,c > 2.
LetS, =X, + - +X, and
(5.2) a} =E max ®(||S,|).

l<k<n

Then there exists a finite universal constant c* depending only on o [and
otherwise independent of (B, |- |), {X,}, T and ®(-)] such that

(5.3) Ea% < c:Elmade>(||Sn||).
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As a consequence, we have the following corollary.

COROLLARY 5.2. Let

1 . *
(5.4) T - mm{n >1: clgllficnfb(nsk”) < an},
o, if no such n exists.

Suppose ¢ > c¥ and P(T, < ©) = 1. Then

(5.5) E max ©(|IS,[) = .

Proor. If Emax,_,_p ®(|S,|) < «then cE max,_,_p ®(|S,|) < Ea¥,
which by (5.3) is at most c}E max,_, _p ®(||S,|). Therefore ¢ < c*, which
contradicts our given assumptions. O

APPENDIX

The following lemma strengthens and extends the Burkholder-Gundy
Lemma 2.1. It seems significant that condition (2.1) can be weakened to (A.1)
below without affecting the conclusion that EU/EV is uniformly bounded
above. We anticipate that there are problems for which this improvement is
crucial. Nevertheless, we know of none at this time. We take the opportunity
to issue a clarion call for would-be instances.

LEmMA A.1.  Let U and V be nonnegative random variables. Suppose there
exist positive reals ¢, 8,8,y such thatc > 1,(1 —c DB —y > 0 and
(A1) P(By<U<cBy,V<by) <yP(U=y) (forally>D0).
Then
(A.2) EU<((1-cH)p~t—y) 's7EV.

Proor. First note that for any ¢ > 1,
[ P(By <U<cBy)dy= [ P(B7'Uzy)dy - [ P((cB)'Uzy)dy

= EB~'U - E(¢B)™'U

=(1-c¢cYH)BEU.
Since for all y > 0,
P(By <U<cBy) =P(By <U<cBy,V<dy)+P(By <U=<cBy,V>3y)

<yP(U=y) + P(V > dy), ‘
integrating with respect to y > 0,
(1-¢c"YHB EU <yEU + 6" 'EV.

Solving for EU gives (A.2). O
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The next lemma permits one to replace functions ® € %, [see (1.1) for a
definition of %] by functions ®,(-) of comparable order of magnitude which
satisfy (2.26) with a, = 22¢*! — 1 replacing a.

LEMMA A.2. Let ®(-) € %, and define

0, ifx =0,
(A.3) () = {x_l fxd)(y) dy, ifx>0.
0

Let a, = 22**! — 1. Then ®,(x) is a nondecreasing continuous function with
®,(0) = 0 such that

(A.4) @, (x) < P(x) <2*"'®,(x) forallx =0
and
(A.5) ®,(cx) < c*dP,(x) forallc >1andx > 0.

" ProoF. Clearly (for x > 0), ®,(x) <x~Y§®(x)dy = ®(x). Since P,0) =
0 = ®(0), the left-hand side of (A.4) holds. As for the right-hand side (using
x> 0),

®,(x) > x'lfx O(2 ) dy =271®(27 k) = 2717 *P(x).
271

To prove (A.5), it suffices to consider 1 < ¢ < 2 and x > 0. For each such ¢
and x,

&, (xc) =c a7t fochD(y) dy

=c o (x) +c 7! fcxd)(y) dy

<c ' (x) +c (e —1)P(2x)
<c '@ (x) +c e —1)2¢P(x)
<c Y1+ (c— 122" )P, (x) [by (A4)].

Using calculus, it is easily verified that (1 + (¢ — 1)y) <¢” for all y > 1.
Hence (A.5) holds. O

Acknowledgments. I would like to thank the referee and Associate
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