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THE TIGHT CONSTANT IN THE
DVORETZKY-KIEFER-WOLFOWITZ INEQUALITY

By P. MASSART

Université de Paris-Sud

Let F‘n denote the empirical distribution function for a sample of n i.i.d.
random variables with distribution function F. In 1956 Dvoretzky, Kiefer
and Wolfowitz proved that

P(\/rT sup (F,(x) — F(x)) > A) < Cexp(—2212),

where C is some unspecified constant. We show that C can be taken as 1
(as conjectured by Birnbaum and McCarty in 1958), provided that
exp(—242) < 1. In particular, the two-sided inequality

P(\/; sup|F (x) — F(x)| > A) < 2exp(—22?)

x

holds without any restriction on A. In the one-sided as well as in the
two-sided case, the constants cannot be further improved.

1. Introduction. Let x,,...,x, be independent, identically distributeg
real valued random variables with continuous distribution function F. Let F,
be the empirical distribution function which is defined by

A 1z
Fn(x) = Z ]]'(xlsx)‘

n

CNextz\ we denote by Z, the centered and normalized empirical process
Vn(F, — F). To test goodness of fit, the following statistics are commonly
used:

D)= supZ,(x), D;=sup —Z,(x) and D, = sup|Z,(x)|.

n
x€R xR xR

Smirnov (1944) and Kolmogorov (1933) introduced and studied these statis-
tics for the first time and showed that their distributions do not depend on F.
Moreover the one-sided statistics D, and D, have the same law and the
following asymptotic results hold:

(1.1) lim P(D;> A) = exp(—2A%),
(1.2) lim P(D,>A) =2 Y (—1)*""exp(—2k22%).
noe k=1

Thege results were elucidated later on by Donsker’s functional central limit
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1270 P. MASSART

theorem, which implies the weak convergence of D, and D, to sup, 0,1 2(x)
and sup, ¢ (o, 1)IZ(x)|, respectively, where Z is a Brownian bridge.

In connection with (1.1), Dvoretzky, Kiefer and Wolfowitz (1956) proved a
bound of the form

P(D;> A) < Cexp(—22%),
where C is some unspecified constant.
Birnbaum and McCarty (1958) conjectured that C can be taken as 1. The

conjecture is substantiated on the one hand by the asymptotic expansion
[which is due to Smirnov (1944)],

2A
(1.3) P(D;>A) =exp(—2)) (1 - — + O(n~1Y)|, with A = O(n'/9),
n

3vVn

and by numerical computations on the other hand [see Birnbaum and McCarty
(1958)]. Several attempts were then made in order to calculate the best
constant C. Devroye and Wise (1979) showed that C < 306. Shorack and
Wellner (1986) gave C < 29. Finally, the best result known to the author is
that of Hu (1985), who proved that C < 2/2.

What we show below is that the conjecture of Birnbaum and McCarty is
true when subject to a mild constraint on A. (This condition is needed to make
our proof work; however, it does not seem to be too restrictive for statistical
applications.)

THEOREM 1. For any integer n and any A not less than /[log(2)]/2 A
yn~1Y8, where y = 1.0841, we have
(1.4) P(D;> 1) < exp(—2A%).

ComMmENT 1. In particular, theorem 1 implies that inequality (1.4) holds
whenever exp(—2A%) < 1.

Since
P(D,>\) <2P(D;> 1),

a bound for the two-sided Kolmogorov—Smirnov statistic follows easily from
Theorem 1 and Comment 1.

COROLLARY 1. For all integer n and any positive A, we have

(1.5) P(D, > 1) < 2exp(—24%).

CoMmMENT 2. (i) It follows from Comment 1 and from (1.1) that the true
lgvel of significance of the one-sided Kolmogorov—Smirnov test for goodness of
fit is not greater than the level of the asymptotic test (at least if this level does
not exceed 50%, which is of course the case in practice!), whatever the sample
size can be.
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(ii) The numerical constants 1 and 2 appearing, respectively, in bounds (1.4)
and (1.5) cannot be further improved because of the asymptotic formulae (1.1)
and (1.2).

(iii) It is well known that the Kolmogorov—Smirnov statistics are stochasti-
cally smaller for all laws having atoms [this is an easy consequence of Shorack
and Wellner (1986), Theorem 3, page 5, for instance]. So inequalities (1.4) and
(1.5) remain valid when F is not continuous. ‘

As a by-product of the proof of Theorem 1, we get an interesting exponential
bound for binomial tails which does not seem to be known, implying the
classical inequalities of Hoeffding and Bernstein [these inequalities are recorded
in Shorack and Wellner (1986), page 440].

THEOREM 2. Let S be a random variable with binomial distribution
#(n, p). Setting q = 1 — p, the following inequality holds for any positive &,
with € < q:

ne?

2(p +¢/3)(q —¢/3) |

P(S — np > ne) <exp|—

2. Proof of the main result. . Since the distribution of D, is the same
for all continuous distributions, we take F to be the uniform distribution on
[0,1]. We also assume that A < Vn [otherwise, P(D;>A)=0 and (1.4) is
immediate].

To give the idea of the proof, we need first to introduce some notation. Let
Z be a Brownian bridge; define 7, (resp., 7) to be the first time that —Z,
(resp., Z) crosses the level A.

Setting ¢ = A/ Vn and f,(s) = dP(r < s)/ds, we shall show that the follow-
ing (rather mysterious) local comparison between the laws of 7, and 7 is
nearly true for all ¢ of the form ¢ +j/n, where j is an integer satisfying
0<j<n-—A/n:

P(r,=1t) <1/nf(t —¢/3).

If this inequality were really available, (1.3) would easily follow from a
summation extended to all j with 0 <j < n — AVn . The difficulty arises from
the fact that a corrective factor is needed to make such an inequality valid.
This factor will cause us some trouble, especially ‘“on the tail,” that is, when ¢
is close to e.

Now, let us give the exact distributions of 7, and 7. The result at (2.1) is
due to Smirnov (1944), and at (2.2) to Csaki (1974) [see also Bretagnolle and
Massart (1989) for a short and direct proof of the second result]:

P(Tn =€ +J/n) =p)\,.n(j)

2.1 i—1 n—j _
2.1) =A\/E(j+)u/;)r(n—j—)u/;) n”(?)
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for all integers j with 0 <j < Avn,

(2.2) fi(s) = ‘/2_#3-3/2(1 —s) 2 exp(— 2_3(1L—s)) s €]o,1[.
Of course, summing these formulae, we also have
(2.3) P(D;>2) = X paa(l),
0<j<n-Ay"
(2.4) exp(—2A2) = f()lfA(s)ds.

The key result is the following comparison between Py, and f).

PROPOSITION 1. Let j be an integer with 0 <j <n — A\Vn . Let s = 2¢/3 +
Jj/nands'=1—s. Ifne > 2, then

) 1 L E &2
DPaa(J) < - 35 T 6e%
(2.5)

82

0.4
XeXp(n—s - %(Un(s) + Un(sl))) fi(s),

where v,(s) = (s(s® — 1/(4n?))~ 1.

To prove Proposition 1, we need several technical lemmas. The first one is
interesting in itself.

LEmMMA 1 (A lower bound for the Cramér transform of the Bernoulli law).
Let 0 <& < q =1 - p < 1. Consider the functions

p”)+<q—e>log(q;e),

h(p,e) =(p + s)log(

2

t)=t— ————— —log(l +t), ¢>0.
e(?) (1 +2ty3) o1+
Then
() ¢ is a positive increasing convex function with ¢(t)/t — % as t goes to
infinity,

() h(p,e) > &?/[2(p + e/3Xq — e/3)] + ep(t)/t, with t = ¢/(q — ).
_Proor. To prove (i), just note that ¢(0) = 0 and that

@'(¢) = (£3/9)(1 + 2¢/3) " 2(1 +¢t) ' > 0,

for all positive ¢.



THE TIGHT CONSTANT IN THE DKW INEQUALITY 1273

To prove (i), we set = =p + ¢, then 0 < ¢ < » and

&2 ~ (1)
2(p +¢/3)(q —¢/3) t

h(pye) -

82

T 2(x-26/3)

=z10g(»¢)—p10g(z—8) g,

the derivative of the right-hand side of this identity w.r.t. ¢ is equal to
(62/9) (= —€) (2 — 2¢/3) 2> 0.
Thus, being increasing w.r.t. ¢ and equal to zero when ¢ = 0, the right-hand

side of the above identity is a nonnegative function of ¢ for any fixed ». Hence
(ii) holds. O

CoMMENT 3. Using the usual Cramér-Chernoff computation, if S has the
binomial distribution %(n, p), we have [see, for instance, Shorack and Wellner
(1986), page 440]

P(S — np > ne) <exp(—nh(p,e)),

where A(-,-) is defined as in Lemma 1. So Lemma 1 implies immediately
Theorem 2.

ProoF OF PrOPOSITION 1 (where j > 1). Using Stirling’s formula with
upper and lower bounds [as given in Feller (1968), page 54], we get

(’?)5 1 s ni(n - ) e,
J) 7 V2w Y j(n =) !

where C; = exp(—1/(12j + 1)); then

n—j

n—j J

) < — n (j+m?)"(n—j—w
Pt S e Vi G |

Let A(-,-) be defined as in Lemma 1, recalling that s = 2¢/3 + j/n and
s' =1 — s, the above inequality becomes

. A 2¢\ /2 g\ 1 N 2¢\ /2
< — s - — + = 4 —
Prnld) = o (s 3 ) (s 3) (S 3 )

Xexp(—nh(s' - g,a))Cj.

Let ¢ be the function defined on R* by

3 2t
(2.6) g(t) = —log(l +¢) + Elog(l + ?3_)
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Setting ¢t = ¢ /(s — 2¢/3), Lemma 1 implies

] 1 2¢ \ 12 s3/2 neo(t)
P, a(J) < ;(1 + @) Js—9/3(s +2/3) Cjexp(—T)f)‘(S),
which can also be written
27)  pua(i) < l(1 + —e)_l/zCexp(— neel®) tll(t))fA(s).
- n 3s’ 7 ¢

To control the error term —nee(¢)/t + ¢(¢), we shall use the following
lemma.

LEMMA 2. Let 6 = 0.4833. Let ¢ and  be the functions defined, respec-
tively, in Lemma 1 and by (2.6). For positive t and v, let
£2
T(v,t) = v2 — vt + — .
(1,) = V() = ty() + 5

Then the function T is positive on the set {(v,t)/0 < t < v}.

Proor. (a) In the boundary case where v = t: An elementary computation
gives

d (T(t,t) ) -20/3 —t/3 +t2/9
dt\ ¢ (1 + 2¢/3)*
so T(¢t)/¢? is minimum at the point ¢, = (3 + V9 + 246 )/2. Recalling that
6 = 0.4833, one may easily verify that T(¢,,¢,)/t2>5 X 1075, thus, T is
positive on the diagonal.

(b) In the general case: From (a), we know that T'(¢,¢) > 0. But, as a

function of v, T is polynomial with degree 2. Hence, T(v, t) is positive for all
v > t if and only if one of the two following conditions is satisfied:

A(t) = (1 + 2t/3)y>(¢) — 40¢(2) < 0;
2¢(t) — () > 0.
So, to get Lemma 2 it is enough to show that
(1) A(®) <0 forall 0 <t < 3.37,
(i) 2¢(¢) — ¢(¢) > 0 for all ¢ > 3.37.

ProoF oF (i). Consider the functions defined on R* by

)

2\ L
Ry(t) = 6p(t) - t2(1 ¥ 3) w(t)
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and
2

R,(t) = —6y(¢t) + 137

Note that the following relations between these functions are available:

d ¢ 2t\ 7! -1
%RO(t) = 5(1 + ?) (1 + t) Rl(t)’
d t 2t\ 2

-d—t—Rl(t) = g(l + ?) Ry(2)

and

d t? _2 2t\ !
ERZ(t) = —3—(1 + 2t)(1 +¢) (1 + 3) .

Since R,(0) = R,(0) = R,(0) = 0, it comes from the above relations that R, is
a positive and increasing function; thus, R; has the same property, which in
turn implies that the same is true for R,. Hence, setting R(¢) = (1 +
2t/3)R(¢), R is a fortiori increasing. So, for any ¢ € [0, 3.37], we have

R(t) < R(3.37) < 0.4723 < 0.4833;

thus (i) is satisfied. O

Proor oF (ii). Note that

¢ . 2t "2
2¢'(t) —y'(¢) = —9—(2t2 — 2t —3)(1+1) (1 + ?) :

hence, 2¢ — ¢ is an increasing function on the interval [(1 + V7)/2, +od[.
Then, since 3.37 > (1 + V7)/2, for any ¢ > 3.37, we have
20(t) — ¥(t) = 2¢(3.37) — ¢(8.37) = 7x107*> 0,

completing the proof of (ii) and, therefore, that of Lemma 2. O

In order to deduce Proposition 1 from inequality (2.7), we need some more
technical results.
CraiM 1. Let B = 0.826, then

3

(1+22) %< (1 —z+ ,—2—)exp(—Bp3), for any = € [0, 1].

Proor oF CLaM 1. Let a = 135/32. Note that p: » > 1 + ayp — exp(2B4)
is a concave function with p(0) =0 and p(1) > 1.3 X 1073 > 0. So p is
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nonnegative on the interval [0, 1]. Hence,

22(5 - 122)2
- 32

2,2

3 3 3 32
exp(2Bp)s1+ap <l+az + 1—z+—2— (1+2.v)

Elevating both sides of this inequality to the power 3, we easily get Claim 1. O

Cramv 2. Let v, be defined as in the statement of Proposition 1. Then, for
any positive ¢ and s’ such that ne > 2 and ns’ > 1, we have

08 - 2¢ \ V2 ) g2 & e%v,(s")
. — <|1-— -—].
(2.8) ( 33’) 35 | 652 )P 24n
Proor or CLamM 2. Applying Claim 1 with . = £/(3s"), (2.8) reduces to
Be® &%u,(s")
27s' = 24n ’

which is equivalent to

8
_gﬁ > (ne(l - (2ns’)_2))

Now, since ne > 2 and ns’ > 1, we have

-1

(ns(l - (2ns’)_2)) < ; < 8?[3,

hence, Claim 2 is verified. O

Cramv 3. Let v, be defined as in the statement of Proposition 1. Then, for
any positive ¢ and s with n™! < ¢ < 35/2, we have

2.9 1+ 12 2e)) ! 12ns) " eun(s)
(2.9) ( + n(s—?) > (12ns)  + 24n
Proor or CraM 3. Since
2¢\\ ! _1
(1+12n(s— ?)) — (12ns)
1 2¢\\ !
= (8ne —1)(12ns) |1 + 12n(s‘— ?) ,

(2.,9) reduces to

8ne — 1 g2 5 1
— 25 /5T =)
1+ 12n(s — 2¢/3) 2 ( 4n )
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which is equivalent to
1
2(8ne — 1)s?2 — 12ne2%s + (8ne — 1)(:;2 - F) >0,
n

as the left-hand side of this inequality is increasing w.r.t. s, it is enough to
consider the case where s = 2¢/3. So, we have to verify that 8ne —1 >
& - @2ne) L

Since the left-hand side (resp. right-hand side) of the latter inequality is
increasing (resp. decreasing) w.r.t. ne, we may only check the case where
ne = 1. The verification is easy. Thus (2.9) holds. O

We may now finish the proof of Proposition 1 in the case where j > 1. Starting
from (2.7) and noting that ¢ = ne/j < ne, we may apply Lemma 2 with v = ne
to get

2¢

L1 “l2 0
R L= B P L)

The end of the proof is then straightforward, using Claims 2 and 3 to bound,
respectively, (1 + 2¢/(3s")~'/? and C;, and noting finally that 6 — 15 < 0.4. O

Proor oF ProproSITION 1 (where j = 0). Here s = 2¢/3, and Lemma 1
gives

n ne Az
Pan(0) =(1-¢) <exp ey
_3/2 04 A2 °
= wem exP(E)eXp T 95’ exp( —H(ne)),

where the function H is defined, for any positive v, by

3log(3/2) _ log(2m) N v N % _ log(v)

2 2 4 v 2 7’

it is elementary to see that H is minimum at the point v, = 1 + V2.6, with
H(vy) > 1.5 X 1072 > 0. Therefore, H is a positive function and so

H(v) =

0 A s/ 0.4 A2
< - —— — —
Paal0) < n\/2_7rs exp( ne )exp 2ss’

< %(1 + ﬁ)_l/zexp(o"l)f;(s).

3s’ ne
Now, since ne > 2, we have
%v,(s)

i < (16n5(4/9 — 1/16)) ' < 9/(55n¢)
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hence
04 g%v,(s) 04 +9/55 04
— + < < —;
ne 24n ne ns
thus,
0 1 ) 2¢\ "1/ 0.4 £2v,(s)
Py, x(0) < ;( + "87) exp| —— — —, fi(s)

So, using Claim 2, we easily get (2.5) and the proof of Proposition 1 is com-
plete. O

Let us bring our attention to the proof of Theorem 1. To derive Theorem 1
from Proposition 1, we first have to bound a Riemann sum by the correspond-
ing integral with an explicit corrective factor. To do this we shall interpolate
the mean value of a certain function on a small interval by its value at the
midpoint. The following lemma will be useful.

LEMMA 3. Let0<é6 <s<1-38ands' =1 — s. If gis a positive function,
defined on the interval [s — §, s + 8], such that log(g) is convex, then, for any
positive A, a lower bound for

1 s+6 /\2
%/;—5 g(u)exp(———zu(1 — ) du
is given by
_)\—2 _E( 2—62 )_1+ ' 12_82))—1
g(s)exp 255 | %P 5 ( s(s ) (s'(s ) .
Proor. Applying Jensen’s inequality twice, we get
1 s+6 Az
%‘/;—8 g(u)exp(——u(1 _— ) du

1 s+8 )‘2
= exp(%fs_a (log(g(u)) - 2u(l_—u)) du)

1 s+6/\2 -1
> exp(log(g(s)) %), E(u_l + (1-u) )du)

'Now the function u — 1/u has a positive fourth derivative. Simpson’s inter-
polation method at the second -order (parabolic interpolation) then gives

1opeesl o 1( 1 1 4y 1 52
2afs_,su u<6(s+8 s— 5 s)

o
s  3s(s?-8?%
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Substituting s’ for s gives a bound for the mean value of 1/(1 — ), finishing
the proof of Lemma 3. O

To integrate the right-hand side of inequality (2.7), the following exact
formulae will be of some help.

LEMMA 4. For any nonnegative a, b and positive A, let

rexp(2X?) 1 el A2
I A= ——— —-1/2—-a _ 1/2-b - .
a,b( ) Vo j;)u (1-u) €xp 2u(l —u) du

Then, the following relations hold:

(1) 11,1()‘)/2 = Il,O(A) = 1,
(i) Ipo(A)/2 =1I, (A) =4+ 175
(ii) Ip o(A) =2 + A2

ProoF. Clearly I, , = I, ,. Then note that, for any u € [0, 1],
u‘l/z"’(l _ u)—l/z—b _ (1 _ u)—1/2—bu—1/2—a+1
_ u_l/z_a(l _ u)—1/2—b+1,
which implies immediately
(210) Ia,b =Ia—1,b +Ia,b—1‘

~ From (2.10) (with a = b = 1) and (2.4), we deduce (i). Next, deriving (i) w.r.t. A
" gives (ii). We finally apply (2.10) with a = 1 and b = 2 to get (iii) from (i) and
Gi). O

We are now in position to prove Theorem 1.

PROOF OF THEOREM 1 (where n > 39 and A < Vn /2). Since n > 39, the
condition on A which is given in the statement of Theorem 1 reduces to
A > yn~% In particular, we also have that ne = Mn > 3.6764. Hence,
taking into account the fact that the function g(2)= (exp(=) — 1/~ is
increasing for positive »~ and recalling that s > 2¢/3, we have

0.4 1 06 04
— <14+ y|l—]—.
exp( ns ) %( 3.6764) ns

So, setting u = 0.4345,

0.4 n
exp| —— .
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This, combined with Proposition 1, provides the following upper bound for

p/\,n(j):

1 £ g2 n e2(v,(s) + v,(s"))

—f1- —=+ — |1+ — - . .

n ( 3s’ 65 ( ns )exp( 24n ) fi(s)
Next, to apply Lemma 3, just note that z: = — log (62" — 22 + 1) — 5/2log(=)
is convex [in fact, 22"(+)22(62°> — 22+ 1)2 = 36(2° — 1)2 + 5(22 — 1)% +
402% > 0]. So we may use Lemma 3 with & = 1/(2n) and

(u) = L(1 + i)u-?’/z(l ] . g2

It is easy to verify that log(g) is convex when noticing that log(g(u)) =
log(A/(6V2me ) + log(1 + n/(nuw)) — 83/2log(u) + 2((1 — u)/¢)), getting, for
any integer j with 0 <j <n — AVn,

. s+1/(2n) € &? M
p)\,n(.])s/ (1_ 3(1—u) + 6(1—u)2)(1+5)f'\(u)du'

s—1/2n)

Summing this inequality, we obtain, in the notation of Lemma 4,
2
£

w
6 I (A) + ;L‘Iz,o()‘)

exp(2A2)P(D;> A) <1, o(A) — 211,1(/\) +

2u e
—512,1(7‘) + alz,z()t)-

Applying Lemma 4, this becomes, via some easy calculations,

3vVn
W(exp(2)@)P(D;> )t) - 1)
1 3u 3u
2.11 < -1+[A+—+—+ —|n 12
(211 = ( 4 A 2A3)

As a matter of fact, inequality (2.11) is quite satisfactory since it is a
nonasymptotic version of Smirnov’s asymptotic expansion (1.3).
Let us denote by 71,(A) the right-hand side of inequality (2.11). Then 7, is

convex w.r.t. A. Thus, the negativity of 7, on the interval [yn~='/¢ Vn /2]
reduces to the negativity of a, = n,(yn~'/%) and b, = 7,(Vn /2).
Now, it is easy to see that a, and b, are both decreasing. So we have just to
verify negativity for n = 39, that is,
az < —6x1073<0,
b39 S _0.4 < 0.

Hence, Theorem 1 is proved in the case where n > 39 and A < vn /2. O
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The end of the proof of Theorem 1 is based on numerical computations on

the one hand and on the following considerations about the slope of the
function C, , = exp(2A?) P(D,; > )) on the other hand.

ProOPOSITION 2. Let n > 2 and A be such that 0 < A < Vn . Then, we have

' Vn
(i) EC)‘;" > 0, whenever -5 < A,
n—-1 . . n
(ii) E jJ—l(n _j)(n—J)n—n(j) < 1,
j=1

d a 1
(iii) E\—C’\’" < 3.61, whenever A > 3

Proor. (i) Setting L, () = log(exp(2A®)p, ,(j)), it is enough to show
that the derivatives w.r.t. A of the functions L, ,(j) are negative when
Vn /2 < A, for all integers j with 0 <j <n — Avn . Now,

d L ( ) = 4A J An?

—_— = + pa— ,

dx AMj+Mn)  (G+am)(n—j—avn)
recalling that ¢ = A/Vn and setting » = ¢ + j/n (note that =~ € [0, 1]), we get

d 2 (1-22) (2 —e)(1 —»
(212) L, () - - X Al(lf,&) =)

From (2.12), it is clear that dL ,n(0)/dX <0, so we may now assume that

2#2¢+ 1/n. Thus, ¢ > & implies

n(l-22)%-2(22 - 1)(1 - »)

axDanld) < - he(l-2)
_ (n+1)(2- (e - (n + 2)/(2n + 2))
B Az(1—2) :

Then, noticing that 1> 2>¢+1/n> L+ 1/n > (n + 2)/@2n + 2), we get
dL, .(j)/dA <0, for any j with 0 <J <n — AV/n, which proves (i).
(ii) Note that

d
d—AP(Dn > )t)

n—1 ) n

=Vn| £ 7 =) () -1,
A=0 j=1 J
since P(D, > A) is nonincreasing w.r.t. A, (ii) follows easily.

(iii) The proof of (iii) involves some crude bounds on C, . [namely, (2.13)
and (2.14)] that we establish first.

We assume first that ne > 2 and ¢ < . Then, starting from Proposition 1
and using the bound exp(0.4/(ns)) < exp(0.3), we proceed exactly as in the
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proof of Theorem 1 in the case where n > 39 and ¢ < 1, to obtain this time,
€ 82
C/\,n < exp(0.3) I1,o()‘) - §I1,1()‘) + E12,1()‘) .
Using Lemma 4 and 2n~/2 < A < Vn /2, the above bound becomes

1
-1+ (A + —)n‘l/z)
4A

2
C,,< 03) + —— 0.3
n = exp(0.8) + Z—exp(0.3)

2A 3
< exp(0.3) + 3 exp(0.3)(—§).

Combining the latter inequality with (i), we get

8
(2.13) Cin< exp((; \Y 0.3),

for any integer n (n > 4) and any positive A.

With the help of (ii), we can build another bound for U, , which is more
efficient than (2.13) for small values of n. In fact, let & be defined as in
Lemma 1, then

N e e s e B L |
so, as a crude application of Lemma 1, we get

Pan(J) < Wi H(n = j)"n " exp(—24%).
Thus, (ii) implies

(2.14) C,.. < MWn +p, ,(0)exp(2A%).

We can now finish the proof of (iii). It comes from (2.12) that, on the one hand,
dL, ,(0)/dX <0, and on the other hand, dL, ,(j)/dA <1/A forall 1 <j <
n — Avn . Hence,

d (C)\,n _p)\,n(O)exp(z)‘z))

—C, , < .

dx % A
We finally combine the latter inequality with either (2.13), in the case where
n > 14, or (2.14), in the case where n < 13, to get, for any A > 3,

d

4 .
'ci—AcA,n < (29@(7)) VvV V13 < 3.61. O

“PROOF OF THEOREM 1 (where n < 38 or A > Vn /2). Using Proposition 2(i)
and the first part of the proof of Theorem 1, we may assume that n < 38.
Then, the condition on A in the statement of Theorem 1 reduces to A >

V10g(2) /2, so we may assume a fortiori that A > 3.
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Now, setting n = 1072, let A, ,, = {3 + kn/k € N} N [3, Vn[. One can check
with a computer [starting from the exact formula (2.3)] that

(2.15) max sup C, , < 0.951.
n<38 /\GAn,n ’

Combining (2.15) with Proposition 2(iii), we finally get

max sup C,,<0.951+7n-3.61<0.9871<1,
n<38 1,9 a<ym

which implies that Theorem 1 holds in the case where n < 38. O
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