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SAMPLE AND ERGODIC PROPERTIES OF SOME
MIN-STABLE PROCESSES

By KeiTH STEVEN WEINTRAUB
CITICORP Investment Bank, New York

A random vector is min-stable (or jointly negative exponential) if any
weighted minimum of its components has a negative exponential distribu-
tion. The vectors can be subordinated to a two-dimensional homogeneous
Poisson point process through positive -#; functions called spectral func-
tions. A critical feature of this representation is the point of the Poisson

_process, called the location, that defines a min-stable random variable.

A measure of association between min-stable random variables is used
to define mixing conditions for min-stable processes. The association be-
tween two min-stable random variables X; and X, is defined as the
probability that they share the same location and is denoted by ¢(X;, X,).
Mixing criteria for a min-stable process X(¢) are defined by how fast the
association between X(¢) and X(¢ + s) goes to zero as s — .

For some stationary processes (including the moving-minimum process),
conditions on the spectral functions are derived in order that the processes
satisfy mixing conditions.

1. Introduction. Let X = (X|,..., X;) be a random vector. Then X is
min-stable (multivariate negative exponential) if and only if the weighted
minimum A%_; X;/a; has a negative exponential distribution for all
(ay,...,a;,) with 0 < a; <« and at least one a,; > 0. The symbol A means
minimum. This definition implies that X has negative exponential marginals.
One of the most important aspects of min-stable theory is the relationship of
min-stable variables, vectors and processes to a two-dimensional Poisson
process on the strip [0, 1] X %,. This relationship is determined by spectral
functions and pistons.

In the following sections we show how a univariate negative exponential
random variable and then a min-stable random vector are related to the
Poisson process via spectral functions from [0,1] into £%,. For random
vectors, these functions characterize the joint distributions just as the vari-
ance-covariance matrix does in the Gaussian case.

The main goal of this paper is to describe the spectra, and hence the
dependence structure, of min-stable processes. A min-stable process is a
continuous time stochastic process with finite dimensional distributions which
are min-stable random vectors. In general, the sample paths of min-stable
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ERGODICITY OF MIN-STABLE PROCESSES 707

processes are not continuous but are continuous at any given point with
probability 1.

A min-stable vector may be subordinated to a two-dimensional Poisson
point process by spectral functions and a group of £, operators called
pistons. This relationship determines the multivariate dependence structure.
The basics of min-stable theory as described in de Haan and Pickands (1986)
are reviewed briefly in Section 2. Section 2.1 shows how the pistons and
spectral functions must behave in order for a min-stable process to be station-
ary.

The ergodic properties of moving minimum processes, a special class of
stationary min-stable processes, are discussed in Section 3. A measure of
association is defined, and through this measure of association three mixing
conditions are proposed. For a min-stable process X(¢), ¢ € %, the three
mixing criteria measures are:

0. The association between two separated marginal values of the process X(¢)
and X(¢ + s).

1. The maximum association between a single value X(¢) and a weighted
combination of the future of the process after time ¢ + s.

2. The maximum association between a weighted past of the process up to
time ¢ and a weighted future after time ¢ + s.

The point of the two-dimensional Poisson process that defines a min-stable
random variable is called the location. The location of a moving-minimum
process is intimately related to mixing behaviour. A moving-minimum process
X(%) can be mixing only when the horizontal coordinate of the location goes to
© as ¢ — o, Section 3.1 shows the conditional distribution for X, given X, for
a pair of jointly min-stable random variables. This conditional distribution is
applied to part of the Kaplan-Meier double censoring problem.

2. Min-stable theory. A two-dimensional homogeneous Poisson process
on the strip [0, 1] X &, is a random array of points IT := {((U,, Y)Il = 1,2, ...}
defining a homogeneous Poisson random measure M with unit intensity. In
effect, I is the cross product of a sequence of independent uniform random
variables on (0, 1) with a homogeneous Poisson process {Y}};_; , . All the U,
are independent of all the Y;.

Certain measure preserving transformations from the strip [0, 1] X £, to
the upper half-plane #Z X %, preserve the homogeneous Poisson process. The
upper half-plane is the most convenient space to work in when examining
min-stable processes. An example of a transformation to the upper half-plane
can be found in de Haan and Pickands (1986). No new notation will be
introduced when operating in these spaces. We will still use II to represent the
Poisson process and (U, Y;) the points of IT regardless of whether the space is
10,11 X #, or #X X,.

A single negative exponential random variable X can be represented in
terms of the strip. Let f: [0,1] » £, with ||fll= [f(u)du = A < », and
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define
T Y

2.1 X= A .

@ AN
Then X has a negative exponential distribution with EX = 1/A:

v Y
P(X=>x)=P| A > x)
( ) (z=1 f(Uy)

= P(Y, 2 2f(U)), ¥ 1)
= P(3 no points of II below xf(u))
= exp( —area below xf(u))

exp(—fole(u) du)

—Ax

=e
Thus a random variable with the same distribution as X can be obtained by
replacing f in the denominator of 2.1 with any g > 0 such that |lg|l = || fIl.
A (k& X 1) multivariate negative exponential vector X can be subordinated to
the Poisson process on the strip by having a function f; for each of the
components X; of X. As shown by de Haan and Pickands (1986),

X min-stable & X, = A af ith
min-stable < X; = ———-- WI
(2.2) . fi(U)

fi:[0,1] » Z,, Ifill <, i =1,... k.

The f; € .£[0,1], are the spectral functions of X and determine the depen-
dence structure of X. de Haan and Pickands (1986) also show that an equiva-
lent representation of X can be obtained by applying a unitary operator to the
spectral functions f;. They call these operators pistons and show that equiva-
lent distributions can be obtained only through the use of pistons. This
equivalence is important for finding the spectral representation of stationary
processes.

If Y is a (¢ X 1) min-stable random variable with spectral functions g;, then
by Theorem (4.2) of de Haan and Pickands (1986),

(2.3) X=,Yeog=Tf, i=1,..,k,

for some piston I. The symbol =, means equal in distribution. One easy
observation is that since a piston is norm preserving, the expected values of
the marginals of X and Y in 2.3 are equal.

2.1. Min-stable processes. For a process X(¢) to be min-stable it must
have finite dimensional distributions which are min-stable. This characteriza-
tion [de Haan and Pickands (1986)] shows that

2 Y
(2.4) X(t) = A .
©= AT
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For the process X(¢) to be separable, we need continuity in probability which
occurs if and only if the functions f, are .#; continuous in ¢.

Equivalent processes can be obtained in the same manner as in the vector
case. Let W(¢) be a min-stable process with spectral functions g,. Then
W =, X if and only if there exists a piston I' such that g, = I'f, for all ¢.

The moving-minimum process is a min-stable analog to a Gaussian moving-
average process:

°° Y,
X(t) = —_—
D= A 7w -5
Here we have a weighted minimum of the underlying Poisson process with
weighting function f.

Distributional equivalence via pistons gives a simple characterization of
stationarity for min-stable processes. Let the min-stable process X(¢), ¢t € %,
with spectral functions f, be subordinate to a two-dimensional Poisson pro-
cess II in the upper half-plane. By definition, X(-) is stationary if and only if
X(-) =; X(- + s) for each fixed s. This equivalence occurs if and only if the
spectral functions f, of X(-) are related to the spectral functions f,,, of
X(- + s) by a piston, that is, f,., = I'°f,. The superscript s on I' denotes the
fact that a different piston is needed for each fixed s.

Stationary min-stable processes are therefore defined by one spectral func-
tion and a power group {I'*} of pistons satisfying

[t+s = [T = T°TY,
I'° = identity operator,
(ry~'=r.
3. Association, mixing and the moving-minimum processes.

DEeFINITION 3.1. The location of a min-stable random variable X with
spectral function f is the point (Uf, Y;*) € II such that

_ vy _ Y
X=Nrwy =

The location of X is the point of II that defines X. The location of a
min-stable random variable leads to a measure of association between two
jointly min-stable random variables.

Suppose that X, and X, are min-stable random variables defined via the
homogeneous Poisson process II in the upper half-plane with spectral func-

tions f and g, respectively. Define the association between X, and X, as
q(Xs, X,) = P((Uf*’ Y¥) = (Uf, Yg*))'
The association is the probability that X, and X, share the same location. It

is shown below that q(X,, X,) can be defined in terms of integrals of
the spectral functions f and g. The association is analogous to a squared
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correlation and has the following desirable properties [Weintraub (1987)]:

(3.1) 0<g<x<1.
(3.2) g =1 ifandonlyif X, = cX, for some constant ¢ > 0.
(3.3) q(aX;, bX,) = q(X;, X,) forall constants a,b > 0.

(34) q(X;, X,;) =0 ifandonlyif X, and X, are independent.

(3.1) is obvious since ¢ is a probability. (3.2) and (3.3) are properties of
correlation for random variables, except that translation is not allowed. This is
no great loss since the negative exponential distribution is not translation
invariant. Note also that (3.4) is not true of general random variables but is
true in the min-stable case, which mimics the property of the squared correla-
tion in Gaussian random variables.

Lemma 3.2 gives q(X/, X,) in terms of the spectral functions.

LeEMMA 3.2. The association between the min-stable random variables X
and X, defined on the Poisson process in the upper half-plane, with spectra f
and g, respectively, is

- 1) | &)
/

(3.5) a(X;, X,) =f_:[ oM dv] du.

Proor. Denote the conditional probability that the min-stable random
variables X, and X, are defined by the point (u,y) € X Z,, given there is
a point of II at (u,y) by P; (u,y). The probability that there is a point of II
at (u,y) is du dy by the definition of the homogeneous Poisson process in the
upper half-plane. Then,

(3.6) a(X;, X,) = [u=_wfy=opf,g(u,y) dudy.

Given that there is a point of II at (u, y), it is the location of both X, and X,
if and only if

Y, vy
Oﬂw)‘ﬂw

and
Y, y

Oaw)=aW’

which implies that for all /,

Yoz 20

—lfw»viﬁam»

soﬁthat the area below

[_fg)_vg(v)]
NF@) " g(w)
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as a function of v is empty. P ,(u,y) is the probability of the area being
empty so that for all points (u,y) € ZX %,,

= f(v) &)
P, (u,y) = exp|— Vv dv|.
() p[ Y, Y g

Substituting in (3.6) for P, (u,y) and integrating over y gives the desired
result. O

3.1. In this section the conditional distributions for bivariate min-stable
random variables and the distributions for the horizontal coordinate of the
location of a min-stable variable are shown. We first show that a min-stable
random variable is independent of the horizontal coordinate of its location and
that the marginal distribution of the horizontal coordinate takes on a nice
form. The marginal distribution of the horizontal coordinate of the location is
used in the sequel where mixing conditions for moving-minimum processes are
discussed.

LemMmA 3.3. Let X; be a min-stable random variable with spectral function
f. Also let U* be the horizontal coordinate of the location of X;. Then the joint
density of U* and X is given by
(3.7) e *IfIf(u) dxdu,
which implies that U* is independent of X,.

Proor. If X, € [a,a + da), then the set of points C below the function
a - f(u) contains no points of Il and there is a point of I in the set
A ={(u,ylaf(u) <y < (a +da)f(u)}, since X;€[a,a + da) implies that
X; >y for some y € [a,a + da). The nature of the Poisson process allows us
to make da small enough so that we can ignore the probability of there being
more than one point of II in A. Now suppose that simultaneously with
X €[a,a + da) that U* € [b, b + db). Therefore the location must be in the
set B=A N {(u,y)lb <u <b + db}. Notice that B and C are disjoint and
that

area(B) = db [*"f(u) du.

Letting M represent the Poisson random measure defined by II, we get
P(X;€ [a,a +da),U* € [b,b + db))
=P(M(B) =1,M(C) =0)
(3.8) =P(M(B) =1)P(M(C) =0)
: = area( B)exp( —area(B))e !/l
a e lflf(b) dadb,

as da,db — 0. This last expression gives the joint density of X, and U* as
shown in (3.7). If we integrate over b we get the marginal density for X,
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which is negative exponential with mean || f||”'. If we integrate over a we get
FOI FII”* db, the marginal density for U*. The product of these marginals is
the joint density (3.8) and therefore by the factorization theorem the result
follows. O

For any class of multivariate random variables, the conditional distributions
are important objects of study, especially in terms of prediction. In the rest of
this section the derivation of the distribution of X, given X, for a min-stable
pair is established.

LEMMA 3.4. Suppose that X;, i = 1,2 are jointly min-stable random vari-
ables with spectral functions f;. Then

1
P(X, = %)X, = x;) = exp(—f[x2f2(u) —x, fu(w)], du)mfAfl(u) du,

where
A = {ulx; fi(u) > %, f5(u)},
and [y],=y if y is positive and equals 0 otherwise.

Proor. Notice that the limits on the integrals have been deliberately left
ambiguous, since the proof is the same for all underlying spaces for «.
Taking the ratio of infinitessimals we get
P(X,>x,, X; =x)
. P(X, > x,)X, = =
(29 (a2l = 1) = St

For X, to be equal to x; we must have no points of II strictly below x, fi(u)
and one point of II on the curve x, f,(x). Given that there is a point of II on
the curve, the probability of there being another on the curve is 0 so that we
can ignore this possibility. For X, > x,, the area below x, f,(#) must contain
no points of II. This implies that in order for the event in the numerator of
(3.9), to be true, the point on the curve x, f,(x) must be at a point of A so that
it will not be below x, f5(x). The conditional probability is

P(Empty under x, f(u) Vx5 fo(¢),3 (U, Y;) €Mon x, f(u) 5 U, €A)
P(Empty under x, f(z), 3 (U,;,Y;) € Mon x, f1(u))

The event that the area strictly below a curve is empty and the event that a
point of II lies somewhere on the curve are independent since they are
statements about disjoint sets. This shows that the conditional probability is
the product of '

P(Empty under x, f(u) V x5 f5(u))
P(Empty under x, f(x))

and
PA(U,Y) eMonax f(u)dU €A
P(3(U,,Y;) € on x, fi(u))
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The first of these probability ratios is

- 1/1 2 d
e eﬁ{”_(f;ffliﬁi‘{) 2 exp ~ [[xra () = mfi(w)]. ).

Let B = {(u, Py € [, f(w), (x; + A) fy(u))}. Then the second ratio is

lim P(One poipt in A N B) - tm exp(—Afy fi(u) du)Af, fi(u) du
A-0 P(One point in B) a-o0 exp(—Affy(uw) du)Affi(u)du
1
= mfAfl(u)du,

which gives the result. O

Suppose that X; and X, are jointly min-stable as above and that one can
observe Z = X; A X, and I = I(X; < X,). The following lemma shows that Z
and I are independent and therefore that knowing which variable produces
the minimum adds no new information for the prediction of Z or the estima-
tion of its distribution, This is the standard Kaplan-Meier (1958) random
censoring problem in a min-stable setting.

LemMa 3.5. Let X, X,, Z and I be defined as above. Then Z and I are
independent.

PrOOF. Since Z is min-stable with spectral function fy(u) V fy(u),
P(Z > z) = exp(—z|l f; V f,I). Let A = {ulf(u) = fy(u)}. Applying Lemma 3.4
implies

P(I=1) =P(X, <X,)

= ]x =0p(x2 > x,|X; = x,) dP({ X, < x1})

= Lm=oﬁf%%ﬂexp(—xlf[fz(u) - fl(u)]+ du)

|| f1||e‘x1||f1|| dxl

= ([ A du) [ emp| = f () ~ Fiw))

‘ _x1ff1(u) du) dx,

o

= (fAfl(u) du)f e~slfV Fall

x,=0

1
X —
£V foll

fAf1(u)dU,
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Calculating the joint probability P(Z >z I= O) and showing that it factors
proves the lemma:

P(Z>21=0)=P(X,>z X, <X,)
= [" P(X, 2 vIX, = v) dP({X, < v}).

Substituting the result for the conditional distribution from Lemma 3.4 yields

o [y fo(u)d
f=z%exp(—vf[fl(u) = fa(w)], du)”fz”‘?_UIIfZH dv.

The integrals in the exponents combine so that

P(Z>2,1=0)= ([0/"2(u)du)[oo e VIV Fall dy

z

||f1 szll (/ f2(u)du) =21V fall
=P(I=0)P(Z = z). a

3.2. The definition and properties of the association for min-stable random
variables are a basis for building mixing conditions for min-stable processes.
For some properties of moving-minima in discrete time, see Deheuvels (1983).

Three mixing criteria for min-stable processes based on the measure of
association g of the previous section are

9o(s) = q(X(2), X(t +5)),

) X(r)
ax(s) = \!"(X(”’ A )

X X(v)
gy(s) = V q( /\t h((r)) A t g((:)))

where g and h are p0s1t1ve integrable functions. The subscript i in gq;,
i =0,1,2, represents the number of tails of the process which are being
weighted before comparison. A min-stable process X(%) is said to be i-mixing if

lim ¢,(s) = 0.
s§— 0

The first two of these criteria are applied to moving-minimum processes to
show which spectral functions yield processes which are mixing.

If the spectral function f of X(¢), a moving-minimum process, has finite
support, then X(¢) is defined on a strip in #ZX £,. It follows that X(¢) is
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i-mixing for i = 0, 1, 2, since when
s > sup{ulf(u) > 0} — inf{ulf(u) > 0}

(the diameter of the support of f), X(r) and X(¢ + w) are independent for all
r <t and w > s. That is, X(r) and X(¢ + w) are defined on nonintersecting
portions of the Poisson process. Not only are these processes i-mixing, but for
large enough s, the past and future of the processes are strictly independent.
This is analogous to a well-known result for moving-average processes.

The next result is that all moving-minimum processes are 0-mixing.

THEOREM 3.6. If X(t) is @ moving-minimum process, then it is 0-mixing.

Proor. Moving-minimum processes are stationary so that
90(s) = q(X(0), X(s)).

The spectral function for X(0) is f(z) and the spectral function for X(s) is
f(u — s). Let A; = {ulf(u) > 8}. Then

o »  f(v) f(v- )

q0(s) =_/;=_m[];=_mf(u) Y f(u—s) } .
[ (v) f(v—s)
Jalle 70y ¥ T =)

= f(v)  fv-s)
fe Py Y s

-1
dv} du

(3.10) +f

- f) = flo-s) |7
SfA[/v o f (1) ] +fz«s[f=—wf(u—s)dv} o

1
ﬂ/;%f(u)du+”f”/ f(u—s)du.

-1
dv] du

The integral in the first term above goes to zero as § — 0 by the Lebesgue
dominated convergence theorem. The second integral in (8.10) can be split into
two pieces:

(3.11) /

AsN[m,»)

f(u—s)du+f f(u—s)du.

AsN(—o,m]

Since f is integrable, the Lebesgue measure v(A;) < « and
lim v(A; N [m,x)) =0,

m— o

which further entails that the first integral in (3.11) goes to zero as m — «. As
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for the second integral in (3.11),

_/:4 e m]f(u —s)du < _/::_mf(u —s)du
= [ Fw) du,

which goes to zero as s — «. By taking limits in the correct order we have an
upper bound for g,(s) which goes to zero and the result follows. O

DEFINITION 3.7. If U(s), the horizontal coordinate of the location of X(s),
goes to + w.p.1 as s > +, we say that the location is well-behaved.

The following two theorems establish the connection between the behavior
of the location U(s) and the spectral function f(u) of the moving-minimum
process X(s). The two theorems are used to prove the 1-mixing result (Theo-
rem 3.10) for moving minimum processes. Theorem 3.8 gives a necessary and
sufficient random condition for U(s) to be well behaved. The second shows
some deterministic conditions that imply and are implied by U(s) being well
behaved. Some new notation will have to be introduced in order to obtain the
results. Let

L= {llU, <0},
R = {IIU, > 0},

indicate the index sets of points of II to the left and right of 0, respectively.
Define

(3.12)

_ Y, _ R
x0= Aoy O Avm oy

as the left and right parts of X(¢). Notice that
X(t) = X.(t) AN Xg(2),
and that
U(t) <0 e X(t) =X, (t) « X1 (t) <Xgp(t).

THEOREM 3.8. With the notation introduced above,
lim U(t) = —« < limsupf(¢) X, (—-t) =0,
t— —

t— o
lim U(¢) = © < limsupf(¢) Xp(+¢) =0.
oo t— —

. PROOF. Suppose there is a point of II at (z, y(#)) with ¢ > 0. This point
generates X(s) if and only if
y(t)
—— <X .
Fe- =%
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¥

XwL(s)

— yl(t)/ )
w

(t, ¥(»)

0

F16. 1. X;(s) and a pointin R, for which Xp(s) < X;(s).

See Figure 1. In this case U(s) is positive. This happens infinitely often as
s > —oo, if and only if

t
7(% <X (s) = y(t) < lisnjglipf(t — 8)Xy(s).
For this to be a probability 0 event we must have for almost all ¢,

limsup f(¢t — s) X, (s) = 0.

VS<0, 3Is<8>

This is equivalent to
. (3.13) limsupf(s) X, (—s) =0.
s§— 00

We have shown that P(U(s) > 0 i.0. as s » «) = 0 if and only if (3.13)
holds. That is, limsup,_,U(s) <0 if and only if (3.13) holds. Splitting
RBX R, around m € # (instead of 0) and repeating the above argument
shows that V m € &, limsup, _,, U(s) < m if and only if (3.13) holds. This is
equivalent to the first double implication in the statement of the theorem.

The second implication follows by an obvious rearrangement of the above
argument. O

The integrability of f does not imply that f has zero limit. For example, let
f be the boxcar function

(3.14) f(u) =Y I(i<us<i+277),
i=0
which has integral 1 but does not decrease to 0, so that
limsup f(—¢t) X (¢) = o,

t— —

since X;(¢) > X(¢) and limsup, _, _,, X(¢) = ». By Theorem 3.8, U(—¢) is not
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well behaved. The theorem below shows that lim, _,,, f(z) = 0 is a necessary
condition for U(—#) to be well behaved.

THEOREM 3.9. Consider the following three statements:

() f(s) is eventually monotone decreasing to 0. That is, 3 S> 0>
fs+t)<f(s)Vt>0,s=>8.
(ii) U(s) is well behaved as s — .
(iii) lim, ., f(s) =0
Then
() = (i) = Gi).

Proor. Suppose f is eventually monotone decreasing. This implies that
for u < 0 and s large enough, f(u + s) > f(s). In other words, f(s)/f(u + s)
is eventually bounded by 1. This implies that

lim sup lim sup ——(—ﬂ-——
u—-w sow (U +S)
Then there exist C > 0, u, < 0 such that for all u < u,,

lim sup % <C.

Since lim sup a(¢) = (liminf 1 /a(#)) "%, the following is true for all u < u:

f(u + s) 1
liminf ———— > —
s> f( ) C
This implies that the integral
0 f(u+s)
3.15 liminf ——— | du
( ) j;= —oo[ §—®© f( S) ]
is infinite.

The condition in Theorem 3.8 is
lim sup f(s) X (—s) =0,

8§ — 0

and the left-hand side of the previous equation is equal to

f(s) f(s)
limsup A Y,(——— _Yhmsup—, VielL.
s zé\L "FU+s) T L F(U +s)
This implies

| , | f(s)
limsupf(=5) X,(=s) < A Vilimsup zrrrs,

and the right-hand side of the above equation is 0 w.p.1 if and only if its
expectation is 0. The expectation is 0 if and only if the reciprocal of its
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expectation is infinite, that is, if and only if

oo=f0

(limsupﬂﬁu(é_%)_ du

_ (0 . f(uts)
= [u=_w[hsnll£f—f(s) du.

Using the fact that the integral 3.15 is infinite, we have that (i) implies (ii).
By the definition of Xz(s), the spectral function of A ., Xz(—s)is

I(u=0)V f(u +s).

Therefore =
(3.16) E(S/Z\tXR(—s)) - [[,;(s\z/tf(u + s)) du]“
(3.17) - [fuit(s\z/uf(u + s)) du]_l.

If the integral in (8.17) is infinite for some value of ¢, it is infinite for all values
of ¢. This implies that the expectation in (8.16) is 0 for all values of ¢. Since
A 45+ Xr(—s) is a nonnegative random variable, its expectation is 0 if and only
if it is 0 with probability 1. If this were the case, we would have

liminf X,(—s) =0,

8§
which would imply that U(—s) is to the right of 0 infinitely often since as
s - —o, we would have
Xp(—s) <Xp(-s)

infinitely often. Therefore U(—s) would not be well behaved. We therefore
have that (ii) implies

(3.18) I ( V f(s))du <.
u=0\s>y
Since V., f(s) > 0 is monotone decreasing as a function of u, it must

converge to a nonnegative constant. If it did not converge to 0, then the
integral in (3.18) would diverge. Also notice that

lim V f(s) = lim f(s),

57 s>u §o® '
so we have shown that (3.18) implies V ., f(s) decreases to 0 monotonically
ag u — o which implies (iii). O

A Dobrushin-like condition for X(¢) to be well behaved locally is discussed in
de Haan and Pickands (1986). In their paper they show that the realizations of
X(#) are arbitrarily close to 0 or bounded away from 0 in every finite interval
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according as
(3.19) I ( V f(u+s))du=or < o,
U=—*230<s<s

where 0 < 6 < ». Notice that the integral is finite or infinite for all §. The
proof of one implication is as follows: For a < b,

Y,

X(t) = __t

AN xo= A Nz -5
Y,

EEARZSN (/AR

If the integral (3.19) is infinite,

E A X(t)=[fw=_m( V f(u—t))du]_1=0.

a<t<b a<t<b

Since X(t) is nonnegative, it must be true that A,_,_, X(¢) = 0 almost
surely. This implies that X(#) comes arbitrarily close to 0 on every finite
interval. If the integral in (3.19) is infinite, then so is the integral in (3.18), so
that bad local behavior implies bad global behavior of U(?).

The boxcar function of (3.14) is an example of a spectral function which
yields a moving minimum process that is badly behaved globally and locally.
Substituting the boxcar function into (3.19) gives an infinite integral. This is
because for all §, the integrand in (3.19) is

V L IGi<u-t<i+27),

0<t<6i=0

a smeared version of the boxcar function.

The next theorem is a 1-mixing result for moving-minimum processes. A
moving-minimum process is 1-mixing if and only if the spectral function f has
limit 0. Assuming that f has limit 0, the proof that X(¢) is 1-mixing follows in
similar fashion to the 0-mixing proof of Theorem 3.6. Proving the result in the
other direction is not so simple and requires result (iii) of Theorem 3.9
regarding the location of a moving-minimum process. If U(s) is not well
behaved, then the association between the present and the distant future is
not going to go to 0. This is the basic idea behind the theorem that follows and
the motivation for the results regarding the behavior of U(s).

THEOREM 3.10. Suppose X(t) is a moving-minimum process with spectral
function f(u). Then

lim ¢,(s) = 0 & lim f(—s) = 0.
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Proor. Assume that lim, _,, f(s) = 0. Notice that

X(r) Y,
r/z\s g(r) _rés 4 g(r)f(Ul_r)
Y,

AR YA T

and since the moving-minimum process X(s) is stationary,

q(X(t) A 2 ))= (X(O) A g(r))

This implies that

f)  V,..g(r)fo-r) 17
ql(s)‘f{fu__m[f o Fw) Vrng(rz)f(u_"z)d] a
) f0) | Vom g =) 17
Iulzm ——oof(u) VrZng("z)f(u_"z)
fO) | Voeos (D fo=r) 17
|u|<m[ v fu) rZZSg("z)f(u—"z)d] au

IA

f(v) ] I

M f.u|>m[fu~-wf( y P

g
nzs 8(r) fo—r) 17
f dv| du
|u|<m v=—w V r2>sg("2) f(u —ry)
Vs 8(rs) f(u —r1p) du
Al 1<m [2a(V r2s 8(r) f(v = 11))do
where m > 0 is chosen arbitrarily. The integrand in the second term is equal

to

/ f(u)du + Vf

lul=m lu

v Emf@mn) et fu=n)
AV 8O F =) do T L, T8 (ra) (v = 1) d

rp>s J—al
_ g(ry) f(u —ry)
-V g(ra)llfl

f(u—rp)

-V £l

ro=s
When |u| < m and s is large, the last expression is less than &,/|| fll, where
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e, — 0 as s — . These results lead to an upper bound:

1
ai(s) < m[fm.sz(“) dut ¥ [

lul<m

£ du]

1
- m[f!uisz(u) du + 2‘mes].

Letting s, m — o« (in that order) shows that
lim f(-s) = 0= limg,(s) = 0.

§— 00

To see the implication in the other direction, notice that stationarity of
X(s) also implies

X(r) X(r)

3.20 X(1), =q| X(-s), ,

(3.20) q( (t) rZ/S\H g(r)) q( (—s) rQOg(r))
and ¢,(s) is the maximum value of (3.20) over all g. If a weighting function g
can be found so that the association (3.20) is larger than a positive constant §
infinitely often, then g¢,(s) will not go to 0. Suppose U(—s), the horizontal
coordinate of the location of X(—s), is greater than 0 (or greater than some
N > 0) infinitely often as s — «. Let g be a weighting function with

Ve(r)f(u-r)>0,

r=0
for almost all © > 0. Then the probability that the weighted minimum
X(r)
\
ras 8(7)

has the same location as X(—s) is positive. Suppose that lim, _, f(s) # 0,
then by Theorem 3.9 we have lim _, , U(—s) # —. This completes the proof.
(]

Acknowledgments. The results in this paper are part of the author’s
Ph.D. dissertation at the Wharton School, University of Pennsylvania in
Philadelphia under the supervision of Professors James Pickands III and
Robert Stine. The author would like to thank Professor Pickands for suggest-
ing problems and the help he provided en route to their solutions. Also, thanks
to Professor Stine for motivation, proofreading and procedural and moral
support.

REFERENCES

BARNDORFF-NIELSEN, O. (1961). On the rate of growth of the partial maxima of a sequence of

, independent identically distributed random variables. Math. Scand. 9 383-394.

BILLINGSLEY, P. (1979). Probability and Measure. Wiley, New York.

DE HaaN, L. (1984). A spectral representation for max-stable processes. Ann. Probab. 12
1194-1204.

DE HaaNn, L. and Pickanps III, J. (1986). Stationary min-stable stochastic processes. Probab.
Theory Related Fields 72 477-492.



ERGODICITY OF MIN-STABLE PROCESSES 723

DE HaaNn, L. and Resnick, S. I. (1977). Limit theory for multivariate sample extremes. Z.
Wahrsch. Verw. Gebiete 40 317-338.

DEHEUVELS, P. (1983). Point processes and multivariate extreme values. J. Multivariate Anal. 13
257-2172.

ESARy, J. D. and MARsHALL, A. W. (1974). Multivariate distributions with exponential minimums.
Ann. Statist. 2 84-93. )

GALAMBOS, J. (1978). The Asymptotic Theory of Extreme Order Statistics. Wiley, New York.

KarLaN, E. L. and MEIER, P. (1958). Non-parametric estimation from incomplete observations. oJ.
Amer. Statist. Assoc. 53 457-481.

LEADBETTER, M. R., LINDGREN, G. and RoorzéN, H. (1983). Extremes and Related Properties of
Random Sequences and Processes. Springer, New York.

O’BRrIEN, G. L. (1977). Path properties of successive sample minima from stationary processes. Z.
Wahrsch. Verw. Gebiete 38 313-3217.

RovpEN, H. L. (1968). Real Analysis, 2nd ed. Macmillan, New York.

WEINTRAUB, K. S. (1987). Sample and ergodic properties of some min-stable processes. Ph.D.
dissertation, Dept. Statistics, Univ. Pennsylvania.

735 KapPoCK ST., 12¢
Bronx, NEw YOrRk 10463



