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PRODUCT MARTINGALES AND STOPPING LINES FOR
BRANCHING BROWNIAN MOTION

By BriciTTE CHAUVIN

Université Pierre et Marie Curie

For a branching Brownian motion, a probability space of trees is
defined. By analogy with stopping times on R, stopping lines are defined to
get a general branching property. We exhibit an intrinsic class of martin-
gales which are products indexed by the elements of a stopping line. We
prove that all these martingales have the same limit which we identify.
Two particular cases arise: the line of particles living at time ¢ and the first
crossings of a straight line whose equation is y = at — x in the plane (y, ).

1. Introduction. Let us consider a branching Brownian motion where
the particles reproduce according to a Galton-Watson process with law p =
(p,, n € N). The generating function of p is denoted by f and we assume that
the mean m of p is finite. Each particle lives an exp(a)-distributed time
(e > 0) and during its life performs a Brownian motion on R. Offspring
particles move independently of each other and start off at the position where
the parent particle died.

The probability space is a space of branching Brownian trees which are a
special case of marked trees introduced in Neveu (1986) and Chauvin (1986).
They are defined in Section 2 whose purpose is to get a general branching
property which is a strong Markov property expressed with stopping lines.

The independence properties of this process provide a class of product
martingales (Section 3). Multiplicative functions have been introduced by
Watanabe and others [in Ikeda, Nagasawa and Watanabe (1968, 1969)] and
product martingales for the Galton-Watson process have been used by Joffe
and Spitzer (1967). More recently, Neveu (1987) has exhibited two product
martingales which were the motivation of our construction: First,

M, = l;[‘»b(Xt —at),

where L, is the population living at time ¢, X, denotes the position, a € R,
and ¢ is a solution of the Kolmogorov equation [the above martingale appears
also in Lalley and Sellke (1987)]; second,

Mx = a[r(z - x)”x’

where x,z € R and u, is the number of particles reaching the line whose
equation in the plane (y, ¢) is y = at — x. We prove here that the previous two
martingales are in fact the same one, stopped in two different ways by line L,
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1196 B. CHAUVIN

and straight line y = at — x, respectively. It allows us to prove that they have
the same limit when ¢ — +o and x — +, respectively.

2. The tree model and the branching property. A free o is by
definition a subset of

U={2}u OI(N*)"

such that
g€ w,
Vu,vel, (uv € w) = (u € w),
Vuew,VjeN, (yew) o (1<j=<y (o)),
where v, () is a nonnegative integer. We denote by () the space of the trees

and any u € U belonging to a tree w is called a node of w (or a particle when
the branching process is a spatial one). For u € U,

Q,={we, ucw}

is the set of trees having u as a node. Hence, v, defines a map from Q, to N.
The notation v < # means that v is an ancestor of uz and |u| denotes the
length of u.

Consider now as the space of marks the space I' of continuous real functions
y with lifetime o and such that y(0) = 0. We call #(¢), t € R, the natural
filtration on I'. For every ¢t € R,, #(¢t) c #(c) and y(o) is #(o)-measur-
able. By definition, a marked tree is

0= (w’(')/u’ ue€ w))’
where w € Q and y, € I'. Notice that other choices for the space of marks give
rise to other models of branching processes [see, e.g., Neveu (1986) Chauvin
(1986), (1988)].
We call 7 the canonical projection from the space Q) of marked trees onto
Q. For any u € U,
Q, =749,

is the set of marked trees havmg u as a node. The map induced by v, on Q,

by the canonical projection = is still called v,. Marks y, are maps from Q, to

I'. Denote by o, = o © v, the lifetime of «. Hence o, are maps from Q, to IR
The b1rtht1me S, of particle u is defined on Q, by

S,=8,+o, (v is u’s parent),
Sy = 0.
To define the position of a particle we have to consider
QO=Rx0.
We call 7 the projection from Q to O and we still denote by v,, 0,7, and S,
the maps induced on Q =#%Q,) by v,, 0,, 7, and S,. For any u € U, we
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denote by #(t) = y; (#(¢)) the filtration on (), generated by Y. Thus o, is
a stopping time for #,(-). The initial position Y, of particle u is defined on Q
by

Y, =Y, +v/(s),

If &, is the o-algebra generated by Y,a and &4, u # I, is the sub o-algebra on
Q deﬁned inductively by

g, =(4V H#(q,))NQ, (visu’sparent),

then S, and Y, are <,-measurable for every u € U. For s € R,, there is a
ﬁltratlon on Q deﬁned by

A (s) = 4,V H(s).

A particle whose age is s will be said to be s-old. The position of a particle u
which is s-old is now defined on 2, N {s < o,} by

and X, (s)is %(s)-measurable. In the following, X, (o, ) stands for X, (o, ).
The space () is endowed with the o-algebra & generated by {Qu, X},
u € U, for which the previous defined maps are measurable.
_ By definition, a stopping line 7 is a family of positive random variables ,:
Q, = [0, 0, ], indexed by u € U, such that: (i) 7, is a stopping time for 2Z(+);
(i) L (&) = {u, u € m(®), 0 < 7,(&) < 0,(&)} has the line property, that is, no
strict ancestor of a node in L belongs to L (this idea is also found in the
notion of prefix code).
For a stopping line 7, define D, as the set of strict descendants of the line,
say

D ={u,ueU:3velU,v<u,v+u,vel}.

Notice that any family of r.v. 7,: Q, — [0, 0], indexed by u € U, satisfying
condition (i) can be modified to become a stopping line in the following way.
Let

(2.1) . {O'u if3velU,v<u,v#u,r, <0,
. T =

7, otherwise.

The o-algebra associated with a stopping line is defined on Q by
#=V (ueD)nr,)

uelU
so that % contains on the one hand the whole life of v, v € U, for v ancestor
of some » in L, or v in a branch not yet at L_, and on the other hand %
contains the life of % until =, for v in L,.
We define a partial order relation among stopping lines, setting » < 7’ if and
onlyif D.oD, and(u €L . NL, =1, <T).
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Finally, for u € U and s € R,, we define shift operators T, ,: Q,n
{o, > s} - Q by

YQO Tu,s(‘:’) = Xu(s)’

7(T, (@) = {v,v e U, w € #(a)},

o€, v+,

Yo© Ty, o(B) = 7,,(@),

0p° Ty, 5(®) = 0,(®) — s,
Y1) o Ty () = (s + £)(3) — 7,(s)(6) on (s +t<a,).
In other words, T, (&) is the tree beginning at node u, when « is s-old, with

initial position X,(s).

Examples.
ExampLE 1. For n € N, u € U, let us define on ()u
= o, iflul#n,
T =
“ 0 if|ul =n,

so that 7(™ is a stopping line and
L, (&) =L,w(®) ={u,u € #(d), lul =n}

is the nth generation of a tree &. The associated o-algebra is denoted by %,.

ExampLE 2. For ¢t € R,, u € U, let us define on Q2,
ift<S,orS, +o,<t,

9 = .
ifS, <t<S,+a,

u

t- 8,
so that 7® is a stopping line (the line property is ensured because the

birthtime of a particle is the deathtime of its parent) and
L&) = Lo(&) = {u, u € #(d), S,(&) <t <8, () + g,(&)}
is the population living at time ¢. The o-algebra associated with this line is
denoted by %, and (%, t € R.) is a filtration on ().
ExampLE 3. For x, a € R,, u € U, let us define on ), the first age when
particle ¥ meets the line whose equation in the plane (y,t) is y = at — x, by

7, =inf{s,0 <s < 0,, X,(s) =a(S, +s) —x)
ifVs, 0<s<a, X, (s) #a(S, +s) —«x.

{au

Thus 7, is a stopping time for 27,(-) and we get a stopping line 7* by putting
as in (2.1),
. o, f3velU,v<u,v+u,r’<o,
TS =
“ '*  otherwise,

Tu
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so that the line property is satisfied. We denote by %, the associated o-alge-
bra; (%, x € R,) is a filtration on ) and L, is written instead of L .. For u
in L_, times S, + 77 are the first crossings of Neveu (1987).

There are many analogies between stopping lines and stopping times [some
of them can be found in Chauvin (1988) or in Jagers (1989)] which allow the
establishment of a strong Markov property for spatial trees as follows.

For convenience, we write v, o, vy, X and Y instead of vy, 0y, v5 X5 and
Y, respectively.

PROPOSITION 2.1. For every reproduction law p = (p,, n e L\I), for every
probability law A on R, there is a probability P, on a space (), &) such that:

(i) v is p-distributed, y is a standard Brownian motion killed at time o
which is exp(a)-distributed, Y is A-distributed, v, v and Y are independent;

(ii) the following branching property is valid. Let 7 be a stopping line.
Conditioned on ¥, shifted trees T, , , u € L,, are independent, Px , -distrib-
uted (P, stands for P, ). In other words, for every nonnegative (Q, F)-mea-
surable function f, indexed by u € U, for every x € R,

(22) ES( 11 fue ) = T1 Exo(f)-

uelL,

The proof is analogous to Neveu’s [in Neveu (1986)] for Galton-Watson
trees.

The following two corollaries should not be considered as new results: The
martingale Z, in Corollary 2.2 has been much used by Biggins (1978), Uchiyama
(1982) and others, and the branching process w, in Corollary 2.3 has been
introduced by Neveu (1987). We state them here to show how these martingale
properties are nothing but the branching property.

CoOROLLARY 2.2 (Example 2). For A € R,, for ¢: R, — R defined by

(2.3) Ey(verX@ ooy = 1,
Zt()\) — 2 eAXu(t—Su)—td>(A)
uel,

is a positive ,-martingale whose expectation equals 1 [in our model ¢(A)
equals A2/2 + a(m — 1)].

Proor. For s,t € R,, s < t, apply the branching property to L,. O

CoOROLLARY 2.3 (Example 3). Let x € R, and denote by

(24) My = Card(Lx) = Z 1(0572<¢ru)
ueU

the number of first crossings of line L,. Then (u,, x € R,) is a branching
process.
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Proor. For x,y €R,, x <y, s €[0,1], express E*(s*») and apply the
branching property to L,. O

The last useful tool is the following lemma where a decomposition of
stopping lines with pasting is made as for stopping times. This is essentially
the theorem of Courrege and Priouret [in Dellacherie and Meyer (1975),
Section 94-103].

LEmMA 2.4. Let 7= (1, uc U) and p = (p,,, ueU) be two stopping
lines such that T < p. Then, for any v € U, there is a family (1, w € U), p',;:
Q x Q - [0, 0,1 such that:

@ wo(-, ) is Z(r,) ® Fmeasurable;
(i) for every @ € Q,, (&, - ) is a stopping time for Z,();
(iii) for every & € Q,
lvweLplveL,/"'l:u(w’ v, T (w)) = pvw(w)lvweL lveL ’ w# 0
lveLﬂnL,/"‘(Ua( y Lo, ‘r(w)) = (pv(w) -7 (w))lveL NL,

3. Product martingale associated with a family of stopping lines.
Let us consider a supercritical branching process for which m > 1. For sim-
plicity, let us assume that p, = 0. Let a € R, and let ¢ € C*(R) be a solution
of the K-P-P differential equation [Kolmogorov, Petrovski and Piscounov
(1937]

" —ay +a(f(¥) —¢) =0
Y(—) =1, Y(+x) =0.

It is known by the theory of differential equations [see, e.g., Bramson (1983)]
that equation (3.1) has a solution with values in [0, 1] if and only if a® >
2a(m — 1). In this case the solution is unique up to a translation.

(3.1)

THEOREM 3.1. Let a > y/2a(m — 1) and let y € CA(R) be a solution of
equation (3.1), where f is the generating function of p = (p,,, n > 1) with mean
m > 1. Let (7%, x €R,), 7* = (1%, u € U), be a family of stopping lines
indexed by R, such that

(3.2) Vx,y €R,, x<y=>r7"<17
so that (F., x € R,) defines a filtration on space (Q, F).
For any stopping line 7, for n € N, let
AV ={u,ueU,lul=n,ue¢eD,, ue¢L,)

be the set of particles of the nth generation which have not yet reached the line
L_. Assume that for every x € R,, y € R, the following barrier condition
holds:

(3.3) AT — @ Pra.s.

n— +oo y
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Forx e R,, let

(3'4) M‘r" = l_.[ ‘p(Xu(Tlf) - a(Su + Ttatc))‘

u€L, -
Then M_. is a nonnegative %, .-martingale.

Proor. Let x,y € R,, x <y. By (8.2), 7* < 7” and every particle in L, is
a descendant of some particle in L_.. Hence

L[ el—[ l/f(Xvw(T w) - a(Suw + va))
vweL,y

As in the proof of Corollary 2.3, we need to express 77 with T, .-z~ The
decomposition was explicit in the case of Example 3 but here we need the
decomposition of Lemma 2.4:

T9,(8) = (8, T, (&), w=*a,
73(8) = 175(&) + p5(6, T, ,5(3))
for v € L. and vw € L. Let us apply branching property (2.2). We get
EF(My) = T1 [ TI  w(-a(S, + ) + X, (5, 8))
vEL,x wo(@, 6)<o,(3)
_a(Sw(J’,) + Mll)ll(a‘;’ ‘6,))) dPX,,(‘r,,) ((0 )

which can be written (because u’ = {u’ (@, + ), w € U} is a stopping line)

B0 =TT Moy st

vEL,x

By the barrier condition (3.3) let us notice that, conditioned on ., for any
vV E L 7% » E QU’

A(I:%}z('.), .) —_)n p—y +w® PXU(T:)-a-S-

so that it is sufficient to prove:

LemMa 3.2. Let 7 = (1,, u € U) be a stopping line such that
AW - .8 P-a.s.(forsomex €R).
Then, for every z € R,
E, (M) = y(x +2).
Proor oF LEMMA 3.2. For n € N, let us introduce the following approxima-
tion of M :
u® = T1w(Xu(r) - (S, + 7)) TT #(Xu(0) - a(S, + ),

uelL uEA("
Iulsn
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where v, denotes the number of children of particle . The assumption of the
lemma gives the L'-convergence of M™ to M_ (¢ is [0, 1]-valued). It is then
sufficient to show that M is a nonnegative %, , ,-martingale (%, has been
introduced in Example 1). Without loss of generality it suffices to consider
2z = 0 so that the purpose is to prove

(3.5) VneN, EZa(MTD) =M™,
(3.6) E,(M®) = i(x).

Here X denotes a Brownian motion on R and we get by a standard
computation from Ité’s formula, for every t € R,

(3.7 E (1> 9(X(t) —at) + 1, _4"(X(0) — a0o)) = ¥(x),
which gives (3.6).
For the martingale property (3.5), let us write

EZ(MY) = T1 w(X(7,) - a(S, +7,))
uel,

lul<n

xEZ1| [T (X () —a(S, + 7))
uelL,

lul=n+1

x I1 4"(X,(0,) - a(S, + )]

1
ue ALt

Let us consider particles u such that |u|=n+ 1 and u ¢ D,. If such a
particle is in L_, it occurs in the second product; if not, it occurs in the third
one. Hence the expectation in the R.H.S. equals

EZol TT (L, <o¥(Xu(7,) —a(8, +7,))

lul=n+1
u¢D,

+1,, ., 0"(X(0,) — a(8, + 3,)))

and we use now the branching property applied to the line 7(**? (introduced
in Example 1). Let us moreover notice that {u ¢ D} is in &%,,,, S, is
&, ,,-measurable and by the decomposition lemma applied to stopping lines
7 +*D A 7 and 7, there is some uU such that

7u(®) = 15(5, T, o(8))-
Thus the above expectation becomes

| II-.[+1EYu(1pé(tﬁ,')<o-w(_aSu + X(I““%(‘b’ .)) - al“%((;” '))
ué&D,

+lag =¥ (—aS, + X(o) - aa)),
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which equals, by (3.7),
IT (Y, -aS,).

lul=n+1
u¢D,

Putting together the children of the same particle it becomes
(3.8) IT v(X(0,)-a(S, +q)),

lvl=n,ve&D,
veL,

and (3.5) is realized. O

Our purpose is now to identify the limit when x — +® of the martingale
M _. for a family of stopping lines which tends to infinity as in Definition 3.3.

DEFINITION 3.3. An increasing family of stopping lines (7%, x € R,) is said
to tend to infinity when x tends to infinity if

(3.9) VoeQ, infllul,ueL.}— + o

X — +x©
(in other words, for x sufficiently large, L . is posterior to any generation
line L,).

THEOREM 3.4. Let (7%, x € R,) be an increasing family of stopping lines
such that (3.3) and (3.9) hold. Then

(3.10) lim M,.=W,=e %

X— +©

does not depend on the family (t*, x € R,) of stopping lines. The law of Z,is
given by its Laplace transform

(3.11) Ey(e ¢ "%) = y(2),
where b = a — \a? — 2a(m — 1).

PrOOF. Suppose that 7* and 7* are two increasing families of stopping
lines indexed by R, satisfying (3.3) and (3.9). For any x, there exists a perhaps
random y(x) such that

5 < FY®)

[indeed the barrier condition implies that N(x) = sup{lul, u € L.} is as.
finite and (3.9) provides y(x)]. Moreover y(x) is a %. stopping time and by
Theorem 3.1,

fo = sz( M,Fy(x)) .
In the same way there exists a y'(x) such that

~x Y
FE < Y@
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y'(x) is a &. stopping time and
M,;x = Ey;x( M,‘.y'(x)) .

Then M, . and M. have the same limit when x tends to infinity.
For the second part of the theorem, notice that if

X} = supX,(t—-8,)

uelL,

denotes the position of the rightmost particle at time ¢, it is known [Bramson
(1983), Neveu (1987)] that for @ > /2a(m — 1),

X —at—, ., — .
Together with (3.9) this implies
(3.12) inf{X,(7%) —a(S, + %), u €L} =, . — ®.

Moreover we know [Bramson (1983)] the asymptotic behaviour of the function
¢ when x —» —oo:

—log ¢(x) ~ ce®® if a > y/2a(m — 1),
—log y(x) ~ (¢’ — cx)e?* if a = y/2a(m - 1),
where ¢’ €R, c € R,, b = a — y/a? — 2a(m — 1) . Thus
log ¢(z + x) bs

_-)x - — e
log ¢(x)
and with (3.12) this leads to (3.11). O

CoOROLLARY 3.5. With the notation of Examples 2 and 3, let
M, = I1 w(X,(t-8,) —at)

uel,

and

M= TT 0(X,(75) ~a(8, + 7)) = (W(-2))""

Then, M, and M, are, respectively, &, and &, martingales and they have the

x

same limit when t - +x and x = +, respectively.

We may conclude that with any family of stopping lines satisfying some
reasonable conditions (satisfied by the line of particles living at time ¢, the
generation line, the stopping line associated with an oblique straight line) one
can associate a product martingale and all these martingales have the same
limit.

Acknowledgments. I wish to thank P. Jagers for useful discussions in
order to find a more elegant formulation of the final conditions. I am also
indebted to the referee for a shorter proof of Theorem 3.4.



STOPPING LINES FOR BRANCHING BROWNIAN MOTION 1205

REFERENCES

ATHREYA, K. and NEy, P. (1972). Branching Processes. Springer, Berlin.

Bigains, J. D. (1978). Martingale convergence in the branching random walk. Adv. in Appl.
Probab. 10 62-84.

Bramson, M. (1983). Convergence of solutions of the Kolmogorov nonlinear diffusion equation to
travelling waves. Mem. Amer. Math. Soc. 44 1-190.

CHAuVIN, B. (1986). Arbres et processus de Bellman-Harris. Ann. Inst. H. Poincaré Sect. B
(N.S.) 22 209-232.

CHAUVIN, B. (1988). Arbres et processus de branchement. These de Doctorat, Université Paris 6.

CHauviy, B. and RouauLt, A. (1988). K-P-P equation and supercritical branching Brownian
motion in the subcritical speed-area. Application to spatial trees. Probab. Theory
Related Fields -80 299-314.

DevrAcHERIE, C. and MEYER, P.-A. (1978). Probabilités et Potential. Hermann, Paris.

IkEDA, N., NaGasawa, M. and WATANABE, S. (1968). Branching Markov processes. J. Math. Kyoto
Univ. 8 233-278.

IkEDA, N., NaGasawa, M. and WATANABE, S. (1969). Branching Markov processes. J. Math. Kyoto
Univ. 9 95-160.

JAGERs, P. (1989). General branching processes as Markov fields. Stochastic Process. Appl. 32
183-212.

JOFFE, A. and SpITzER, F. (1967). On multiple branching process with p < 1. J. Math. Anal.
Appl. 19 409-430.

KoLmocorov, A., PETROVSKI, I. and Piscounov, N. (1937). Etude de I’équation de la diffusion avec
croissance de la quantité de matiére et son application & un probléme biologique.
Moscow Univ. Bull. Math. 1 1-25.

LaLLEY, S. P. and SELLKE, T. (1987). A conditional limit theorem for the frontier of a branching
brownian motion. Ann. Probab. 15 1052-1061.

NEVEU, J. (1986). Arbres et processus de Galton-Watson. Ann. Inst. H. Poincaré Sect. B (N.S.)
22 199-207.

Neveu, J. (1987). Multiplicative martingales for spatial branching process. Sem. Stochastic
Processes Princeton. 223-242. Birkhaiiser, Boston.

UcHrvama, K. (1982). Spatial growth of a branching process of particles living in R®. Ann. Probab.
10 896-918.

LABORATOIRE DE PROBABILITES
ToUR 56, ETAGE 3

UNIVERSITE PIERRE ET MARIE CURIE
4, PLACE JUSSIEU

F-75230 Paris CEDEX 05

France



