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RANDOM WALKS, CAPACITY AND PERCOLATION
ON TREES!
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A collection of several different probabilistic processes involving trees is
shown to have an unexpected unity. This makes possible a fruitful inter-
play of these probabilistic processes. The processes are allowed to have
arbitrary parameters and the trees are allowed to be arbitrary as well. Our
work has five specific aims: First, an exact correspondence between random
walks and percolation on trees is proved, extending and sharpening previ-
ous work of the author. This is achieved by establishing surprisingly close
inequalities between the crossing probabilities of the two processes. Second,
we give an equivalent formulation of these inequalities which uses a
capacity with respect to a kernel defined by the percolation. This capacitary
formulation extends and sharpens work of Fan on random interval cover-
ings. Third, we show how this formulation also applies to generalize work
of Evans on random labelling of trees. Fourth, the correspondence between
random walks and percolation is used to decide whether certain random
walks on random trees are transient or recurrent a.s. In particular, we
resolve a conjecture of Griffeath on the necessity of the Nash-Williams
criterion. Fifth, for this last purpose, we establish several new basic results
on branching processes in varying environments.

1. Introduction. We shall exhibit a simple and useful correspondence
between random walks and percolation on arbitrary trees. In the case where
the tree is infinite, the random walk is transient if and only if percolation
occurs (i.e., there is almost surely an infinite connected component). This is
established as a consequence of inequalities relating ‘‘crossing probabilities.”
These probabilities are, on the one hand, the probability that a random walk
started at a given vertex hits the boundary of the tree before returning to its
starting place (in the infinite case, we mean by this that the walk never
returns) and, on the other hand, the probability that the given vertex is
connected to the boundary in the corresponding percolation process (by which
we mean, in the infinite case, that the component of the vertex is infinite). Our
first proof of these inequalities is algebraic and extremely elementary, depend-
ing on the well-known relationship between random walks and electrical
networks and on recurrence relations for conductances and percolation proba-
bilities arising from the tree structure.

The inequalities relating crossing probabilities can also be expressed by
using a capacity with respect to a kernel arising from the percolation probabili-
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ties; this is especially useful for calculating the probability of connection to a
subset of the boundary when the tree is infinite. It extends, as well as
sharpens, a recent result of Fan ([12], [13]) on random interval coverings. (The
connection between such coverings and percolation is explained in [22] and will
not be detailed here.)

The capacity which arises above appears more naturally in our second proof
of the inequalities between the crossing probabilities. This proof is much more
probabilistic than our first one and, although it provides a slightly worse
constant, it applies to a useful class of percolation processes wider than the
customary edge-independent ones. In particular, we shall apply the result in
Section 3 to percolation processes which model random labelling of trees. A
random labelling of one tree by another tree is, in brief, an adjacency-preserv-
ing random map from the first tree to the second which maps one root to the
other; for example, if the second tree is an m-ary tree, then this amounts to
choosing a label from {1, ..., m} for every vertex in the first tree. It turns out
that such labelling can be modelled by a percolation process on a kind of
product tree formed from the two given trees. Thus, by using the results of
Section 2, we shall immediately be able to give a close estimate of the
distribution of the graph of such a random labelling. This extends and sharp-
ens a recent result of Evans [11], who considered the following special case.
For n, m > 2, assign independently and uniformly to each vertex of an n-ary
tree a label in {1,...,m}. Given a set in {1,..., m}Y, Evans gives (implicitly)
upper and lower bounds for the probability of finding a non-self-intersecting
path beginning at the root of the n-ary tree which is labelled with some
sequence drawn from the given set. The bounds of Evans differ by a factor of
16. Besides extending the labelling to a more general setting and answering a
broader question, we also reduce the factor of 16 to 4. In addition, we shall
show that Evans’s method, whose essential ingredient is an elementary case of
the Burkholder-Davis—Gundy inequality ([11], [9], Chapter 6, (100.2), [26]),
can itself be improved to yield a factor of only 4. Moreover, this improvement
can be used as an alternative derivation of one of our main theorems, Theorem
2.4 [although the hypothesis (2.5) would then need to be strengthened].

After establishing the .connection between random walks and percolation in
Section 2, we see in Section 4 that it reduces the question of deciding the
transience or recurrence of certain random walks with drift on random trees to
simpler calculations of percolation or survival. The critical value of the drift
separating transience from recurrence was already calculated in [22] in the
simplest case. Thus, the new aspect here is resolving the question at criticality,
as well as extending the generality of our previous results. In this connection,
there is a criterion due to Nash—Williams ([27], [14], [24]) which is sufficient for
recurrence of reversible random walks. In situations of sufficient regularity,
the criterion is necessary as well. With the goal of testing the necessity under
random perturbations, Griffeath considered a simple random walk on the

.following random trees. At time 0, begin with one particle, the root of the tree.
At time n € Z™, each particle present independently generates two children
with probability (a/n) A 1 and one child otherwise, where a is a positive
constant, and then dies. The corresponding tree is, of course, the associated
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genealogical tree. Griffeath observed that a ‘“mean” Nash-Williams criterion
ensures a.s. recurrence of simple random walk if @ < 1; he conjectured a.s.
transience if a > 1, when the criterion is no longer satisfied. Bramson and
Griffeath [5] established transience only for a > 2, however. These same
results appear independently in [19]. We shall establish the full conjecture in
Section 4 and generalize it considerably. We shall also see that with a suffi-
ciently large perturbation, the Nash—Williams criterion is no longer necessary.
In order to accomplish these things, we shall establish some new fundamental
results on branching processes in varying environments (i.e., with time-inho-
mogeneous progeny distributions) which are interesting in themselves.

2. Crossing probabilities.

2.1. Definitions. We shall use the term #ree to mean a finite or countable
connected graph with a distinguished vertex, 0, called the root, and which has
no loops or cycles. For any vertex o, we write |o| for the number of edges on
the shortest path from 0 to o. For vertices o and 7, write o < 7 if ¢ is on the
shortest path from 0 to 7; o <7 if o <7and 0 # 7; and ¢ —» 7 if 0 <7 and
|7] = |o| + 1. We shall use the name of a tree for its vertex set as well. If o is a
vertex of a tree T, let I'° denote the subtree formed by the vertices {r € T;
o < 7} with o as the root. If o # 0, then & denotes the unique vertex such
that & — o. For 7 < o, write 7(o) for the unique vertex satisfying 7 - 7(0) <
o. The edge preceding o, from & to o, is denoted e(o). We write o A 7 for the
vertex farthest from 0 which is less than or equal to both ¢ and . We define
the boundary dT' of a tree T as the set of paths beginning at 0 which go
through no vertex more than once and which cannot be extended. In the
infinite case, we shall also be interested in the reduced boundary d'T, which is
defined to be the subset of dI" of infinite paths (if any). Observe that o'T = 9I”,
where I" is the reduced subtree of T' whose edges appear in some element of
d'T. We sometimes identify elements of dI" \ &'T" with their endpoints in I'. We
say that I is locally finite if the degree of every vertex in I' is finite, but this is
only rarely supposed here.

For a (nearest-neighbor) random Walk on I, we denote the transition
probability from o to by p, ,. For any (bond) percolation process on I', we
denote the probability of survival of e(o) by p,; we suppose that, Vo # 0,
P, < 1and that,V o, X, _ . p, <. For an electrical network with resistors on
the edges of T, we use C, to denote the conductance of the edge e(o).

We assume as known the correspondence between random walks and
electrical networks (see, e.g., [10] or [22], Section 4), whereby the transition
probabilities of a random walk are defined from an electrical network via the
relations

C, i
! ~ L v no-—r7,
C,+%,.,C, 7
p0',1'= C
z ifr - o,

¢, +%,.,C,°
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and, conversely, given any positive constant, a,, conductances are determined
from transition probabilities via the relations.
pT,?(o’)
C, ‘101170,0(0)0«1_[“7 Ps .

Note that to every random walk on I' there corresponds a one-parameter
family of electrical networks due to the arbitrary scaling constant, a,. Our
new correspondence between electrical networks and percolation will not
depend on a scaling constant, but it will depend on the choice of root.
Consequently, our correspondence between random walks and percolation will
depend on both a scaling constant and the choice of root; more precisely, to
every percolation and choice of root there will correspond one random walk,
but to every random walk, choice of root and positive scaling constant there
will correspond one percolation. We now describe these correspondences.

For normalization purposes, set

p. 1
+ , ifo#0,
g'gfl_p‘r 1_ (o ne
a, =
7 P
Y , if o =0.
0-7 1 — P

Let us say that a random walk with transition probabilities {p, ,} and a
percolation process with survival probabilities {p,} are associated if

j
a;l, ifo-r,
1-p,
pa—,r= 1
a)l, ifr->0o
1-p,

Note that such a random walk has a bias toward the root even when all p_ are
equal. Correspondingly, we shall say that an electrical network with conduc-
tances {C,} and a percolation process with survival probabilities {p,} are
associated if

1
IT »..

o =
1 _pa' 0<r<o

In this case, we find that

1+ ¥ ¢'= TII pt,

0<r=<o 0<r<o
whence
' -1
p. = 1+ E0<‘r<crc"r
o -1
1+ Z0<1'50'C"r
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We denote by 0 — dI" the event that the random walk started at 0 does not
return to 0 before traversing some element of dI'. By 0 < dI' we mean the
event that some element of dI" remains in the random graph generated by the
percolation process. More generally, for E c dI', we write 0 & E for the event
that some element of E remains after percolation; and for o € I', we write
0 & ¢ if 0 and o lie in the same connected component after percolation. We
write €(0 — dT') for the effective conductance of the electrical network from 0
to T'. (For infinite I, this is defined as the limit of conductances over the net
of finite subtrees, cf. [22], Section 4.) Similar definitions apply for 'T.

We say that a percolation process is Bernoulli if the events of survival of
the edges are mutually independent.

2.2. The basic connection. The fundamental inequalities linking percola-
tion, random walks and electrical networks on trees are as follows in the
simplest but most important situation.

THEOREM 2.1. Let T be a tree with mutually associated percolation process,
random walk and electrical network. If the percolation is Bernoulli, then

P[0 — aT'] €(0 — aI") £(0 = aT")
= <P[0edl]<2
ag!+P[0—->dT] 1+ €(0—-dT) ~ T 71+ £€(0-aT)’
which is the same as
P[0 & aT'] 200 — oT B0 - T P[0 « oT']
5= pooar] = 20 =aPl0 = < T—5room

The same inequalities hold with d'T in place of dT.

Now if I" # &, then a random walk on T is transient iff P[0 — 'T] > 0.
Theorem 2.1 shows that this is equivalent to P[0 < #'T] > 0, that is, to the
occurrence of percolation.

A nice way to express the inequalities of Theorem 2.1 is as follows. Add a
vertex x to I' which is joined to 0 by an edge of conductance 1. Let 0 — dI", = x
be the event that the random walk on I" U {x} associated to these conductances
and started at 0 does not hit x before traversing some element of dI". Then the
inequalities become

P[0 - aT, = x] < P[0 « aT'] < 2P[0 — aT, - x]
since

£(0 > aT)
1+ ¢(0—-al)’

P[0 — dT, = x] =
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as seen immediately from the fundamental properties of the connection be-
tween random walks and electrical networks [10]. The same holds for ¢'T.
We shall use the following little inequalities in the proof of Theorem 2.1.

Lemma 2.2. If {x,} 0, 1], then

1-x, 1-TIlx, 1-x, 1-TIlx,
< .
Lz x,  [TIlx, and ) 1+x, = 1+ Ilx,

In each case, equality holds iff x,, = 1 for all but at most one n.

Proor. It is elementary to verify the inequalities when there are only two
terms. Induction on the number of terms then leads promptly to the general
case. O

Proor oF THEOREM 2.1. The inequalities for T follow from those for oI’
by using I" in place of T'. Also, by taking limits, it suffices to establish the
results for finite trees, so assume that T is finite.

The fact that €(0 — dT') = a P[0 — IT'] is the content of [18], Lemma 9-129
(since a, is the sum of the conductances of the edges incident to 0).

It remains to prove the inequalities between the conductance and the
percolation probability. Let € T(c) be the effective conductance from o to dI'”
in T'. By the usual series—parallel circuit laws [or [22], (5.3)], we have

£(0-aT) = ¥ (C;1+ ¢7(0)7Y) .
lol=1
Now
lol =1 = €T(o) =p,€(c - ), ’
where the latter conductance is defined rot using the edge conductances in T,

but via the edge conductances associated to the survival probabilities in I'?,
where o (not 0) is the root. Incorporating this in the formula above, we obtain

€0 -y = ¥ (C;1+p; (o »ar7) )
lol=1
= X (' —1+p;"¢(c —><91“")_1)_1
lol=1

unless I' = {0}, in which case €(0 — ') = +x. We also have a recursion
formula for the percolation probabilities:
Ploedar]=1- J] (1 —p,P[o «al'"])
lol=1 ]
unless I' = {0}, in which case P[0 « dT'] = 1. :
" Our proof of the theorem will proceed by induction on the cardinality (or

height) of T, based on these recursion.formulas. The theorem is true for
I' = {0}, so given T, assume the inequalities are satisfied for the trees I'”
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(lo] = 1). Thus, from
Plo & dT'?] -

ao’
€(0—dl7) < 1= Plo o]’

lol =1,

we deduce that
€(0-dr) < ¥ (p;*—1+p;(Plo o ars]™" - 1))_1
lol=1
1-(1-p,Plo<al’])
1—p,P[o o o]

lol=1

1-TI(1 - p,Plo < al'"])
[1(1 - p,Plo < 7 ])
P[0 « oT']

1-P[0edT]’

having used Lemma 2.2 in the second inequality. In the same way, from
Plo < dl'7]
2 - Plooil”]’

€(o - %) > o] =1,

we deduce that
-1

€(0>) = ¥ (p;'—1+p;(2P[o o oT?] ™! - 1))
lol=1
_y 1o (1 = p,Plo ar7])
- lol=1 1+ (1 - p,Plo < 51"”])

1 -TI(1 - p,P[o & ar])
= T+ TI(1 - p,Plo < ar’])
P[0 eor]

- 2-P[0eT]’

The induction is complete. O

2.3. Capacity and boundary sets. We now describe the role of capacity on
dT'. Given distinct points s, ¢ € dI", we write s A ¢ for the vertex of I' farthest
from 0 which is common to both s and ¢; if s = ¢, then we set s A ¢t :=s.
. Under the metric d(s, ¢) = e s~ s # ¢, the boundary is a complete separable
metric space. Given an electrical network on T, let

(2.1) K(s,t)=1+ Y C;'.

0<o<sAt
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The potential of a positive o-finite Borel measure w on dI" is the function
V(s) = | K(s,t)du(t
W(s) = [ K(s,t) du(?)
and the energy of u is the number
E(u) = [ K(s,0)d(p X p)(s,0) = [ Vi(s)du(s).
ar'xaT T

The capacity of a subset E C dI is defined as

cap E = sup{ea(p,)_l; u a Borel probability measure, u(I' \ E) = 0}.
We call a nonnegative function 6 on the vertices of T a unit flow if 6(0) = 1

and, VY o, 0(c) = X, ,0(7) if 3 7 with o — 7. Such functions 6 are in 1-1
correspondence with Borel probability measures u on dI" via the equation

0(o) = u({s; o €s}).
The following statements are shown in [22], Section 4: If n is a probability
measure, then
Vis)=1+ X 6(o)C;?

O0<oes

and
Ew)=1+ Y 06(o)C;Y

. O0#ocel
the associated random walk is transient iff current flow is possible, which is
equivalent to cap dI" > 0, in which case unit current flow 6, corresponds to
harmonic measure u, on dI'; u, is the unique probability measure on dI" of
minimum energy; and

(2.2) V,(s) = &(po) = (capdl’) ' =1+ €(0 > ar) ™"

except for s belonging to a set of capacity 0. Thus, provided cap dI" > 0, V;Lo(s)
is 1 plus the sum of the potential drops of 8, along the edges of s (for every s)
and &(u,) is 1 plus the power loss of 6.

Recall that a set is called analytic if it is a continuous image of a Borel
subset of a complete separable metric space ([1], pages 64-65).

THEOREM 2.3. Under the hypotheses of Theorem 2.1, if E C I is analytic,
then

capdl' - uo(E) <capE < P[0 < E] < 2cap E.

Proor. When E = 4T, this reduces to Theorem 2.1 by virtue of (2.2).
When E is closed, there is a subtree I'y of T such that E = dT. (Of course, E
is: compact if and only if 'y is locally finite.) Consequently, the latter two
inequalities are again valid. The first inequality follows for analytic (indeed,
wo-measurable) E by consideration of the restriction of u, to E (when pu,
exists, i.e., when cap " > 0). ‘
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Now it is not hard to see from the definition that
cap E = sup{cap K; K c E, K compact}

for all E. Indeed, if (3T \ E) = 0, then by regularity of u ([8], Theorem 3.38,
page 61), there is an increasing sequence of compact sets K, C E such that
w(@I' \ U K,) = 0. By the monotone convergence theorem, we have

E(1g, ~p) > (k) asn — o,
whence

lim inf cap K, > E(p)

On the other hand, from the Borel-Cantelli lemma and the hypothesis that
Y, .0, < o, it follows that the component of 0 after percolation is a.s. locally
finite, whence {s € dT"; 0 < s} is a.s. compact. It is routine to verify that 0 & E
is a measurable event for E compact and then that P*[0 < E] is a Choquet
capacity on dI', where P* denotes outer P-measure. If E is analytic, then
0 < E is analytic with respect to the paving {0 < K; K compact} ([8], Theorem
3.11, page 43), whence 0 © E is P-measurable ([8], Section 3.3.3, page 58) and

P[0 & E] = sup{P[0 <+ K ]; K c E, K compact}

by the Choquet capacitability theorem ([8], Theorem 3.28, page 52). Since cap
obeys the same relation, the inequalities for analytic E follow from those for
compact E. O

According to this theorem, if E C 4T is analytic and P[0 < E] > 0, then for
every a > 2/P[0 < E], E carries a Borel probability measure of energy less
than a. The proof implicitly gives such a measure, namely, harmonic measure
of random walk on some subtree Iy, K being a sufficiently large compact
subset of .E. However, one might desire to know such a measure in terms of
the percolation, rather than as harmonic measure of random walk, especially
since the kernel (2.1) has a simple expression directly in terms of the percola-
tion, namely, .

K(s,t) =P[0 < s At]™"

Later, in discussing Theorem 2.7, we shall see how to get such a measure more
explicitly with energy less than a for any a > 4/P[0 < E], although an
unspecified compact subset K of E still appears.

2.4. Non-Bernoulli percolation. The preceding results require only a slight
modification for site percolation due to a Markov random field (such as the
Ising model [21]). This is because the law of the component of 0, given the
survival of 0, is the same as that for Bernoulli bond percolation with

p,=P[0 o g0 F].
With this new definition of p, used to define {p, .}, {C,} and cap, the
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inequalities of Theorems 2.1 and 2.3 remain valid with the percolation proba-
bilities there conditioned on the survival of 0.

Still more general percolation processes have found use (e.g., in [21] and
[23]) and continue to elicit attention. In order to relate such processes to
random walks, electrical networks and capacity, we need a more flexible
method than the algebraic method of Section 2.3. Until now, we have relied on
fairly nonprobabilistic means, not having taken even one expectation, although
integrals have appeared in defining energy. Our second method is quite a bit
more probabilistic than the first and reveals the relationship between these
energy integrals and certain expectations. The method enables us to prove the
following results. Call a random subtree I'y(w) rooted at 0 a percolation on T'
if {w; 0 € Ty(w)} is a measurable event for each o € T'. As before, we write
0 & o for 0 € Ty(w) and 0 < E for E N dl'y(w) + .

THEOREM 2.4. Given a percolation on a tree T', define conductances from
the relations

(2.3) P[O<—>o]=(1+ Y C;l)_l, ocerT,

0<r=<o

and define cap using the kernel in (2.1). If there is some M; < » such that, for
all o,7 €T,

(24) P[0 » o and 0 < 70 < o A 7]
<M,P[0 & 0l0 & o AT]P[0 & 7|0 & 0 A T],
then
L 20~ . ar]
M, 1+ €(0—al) ~
and, for analytic E C dT,
M;'capE < P[0 & E].

If there is some M, > 0 such that, for all o,7 € T'and A C T with the property
that the removal of o A T would disconnect T from every vertex in A,

(2.5) P[0 & 7/0 & 0 and 0 <b A] > M,P[0 & 7|0 & o A 7],
then

€(0 — ')
M, 1+ €(0 - aT)

P[0 & dT'] <
and, for analytic E C 4T,
P[0 © E] <4M;'capE.

‘REMARK. It will be seen from the proof that in case I' is well founded (i.e.,
dT = @—in particular, if T is finite), then it suffices that (2.4) or (2.5) hold
only for o, 7 € 4T and A c dI'. Thus, in general, it suffices that (2.4) or (2.5)
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hold for o,7 € 4T}, and A c 4T}, for some sequence of finite subtrees I', of T
(rooted at 0) tendlng to all of I‘

Percolation processes satisfying (2.4) were termed quasi-Bernoulli in [21]
and used therein as well as in [23]. Bernoulli percolation processes, of course,
satisfy (2.4) and (2.5) with M; = M, = 1 and with equality.

ProoF oF THEOREM 2.4. By the same methods we used in the proofs of
Theorems 2.1 and 2.3, it suffices to assume that I' is finite and to deduce
M; ' cap ol < P[0 © 9T'] from (2.4) and P[0 © dT'] < 4M; ' capdl' from (2.5).
Also, we may as well assume that, V s € T, P[0 < s] > 0.

Define the random variable

X = Z MO(S)IOHSP[O « S]_l'
sedl
Then

do <
E[X%] = X mo(s)ro(2) |]J[>[0 (_)8:]1;[0 © tI;]

s, tedl’

If (2.4) holds, then
E[X?] <M, Y po(s)mo(t)P[0 o s A t]_l =M€ (o)

s, tedl
= M,(capol’) "
It follows that
1=E[X]" =E[X1o,,r) < E[ X2]E[13.. 5]
< M(capol') "'P[0 < oT'],

as desired.

For the other direction, we adapt Shepp’s “‘stopping-time”” approach [30].
First, embed I' in the upper half-plane with 0 at the origin, and order 4T
clockwise. Denoting this ordering by <, we may express the important feature
of this ordering by

S <8yl Xt; = S ANt <83AE,.

Assume that +o is a symbol ¢ dI' and extend the ordering so that every
element of dI" is < + . Define two subsets of dI" as follows:

5T = {s €00 T o010 5 1 617 2 4y,

s<t -,

07T = {s €dl; ¥ puo(t)P[0 o s At] ' > %éo(/_bo)}.

t<s

Then dI' = 9"T U 97T since V, (s) = &(u,) for all s €l Define a random
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variable
+ min d*T' NTy(w), ifd'T NTH(w) + T,
sT(w) = .
+ oo, otherwise,
which has properties similar to a stopping time. Now
1=FX]=E[EXIs"]] = [E[ Y. wmo(8)P[0 © slsTIP[0 s]_l].
st<s

Let A, :={s €9T'; s < t}. Then

P[0 < sls*] = ) P[0 sl0 o tand0 <> A,]1,._,,
tedl’

whence if (2.5) holds, then

1>M,E

P[0 & 5|0 *
Z /*“0(3) [ Sl()(—)ss]/\s ]]

st<s

= M2E[ Y wo(s)P[0 < s A s+]_1].

st<s

Since s*€ 4*T when 0 < 4*T, it follows that
1> MZE[%GO(MO)10<—>6+F] = 7 M,&(po)P[0 © 97T].
Similarly, 1 > iM,& ()P[0 © d T). Addition of these inequalities yields
P[0 © '] < P[0 © d*T] + P[0 © 97T]
< 4M;'E (o) " = 4M; capl,

as desired. O

It was observed in [22] that when I is infinite and locally finite and p, is
constant, then the expected size of the component of 0 is finite iff the
associated random walk is positive recurrent. However, only half of this
equivalence remains true in general.

ProrosiTiON 2.5. Assume (2.3) for a percolation on a tree T'. Then
Ecard I'y(w)] < =« if the associated random walk is positive recurrent, but not

conversely.

Proor. We have the estimate

E[card Ty(o)] = E[ > 1090] = Y Pl0oo]
ocel ocel
-1
=1+ Y (1+ N C;l) <1+ Y C,.
0#o0€l’ O<r=<o 0#o0€l
Since the walk is positive recurrent iff ©C, < « ([18], Proposition 9-131),
positive recurrence entails the finiteness of Elcard I'y(w)]. On the other hand, if

Hi
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I' = N with C, = 1/n, then the walk is null recurrent while the expected size
of T'y(w) is finite. O

It would be nice to have a direct probabilistic proof of the relationship
between random walks and percolation—one that does not use the medium of
electrical networks or its equivalents. Unfortunately, we were not successful in
finding such a proof.

2.5. General percolation and capacity. As we shall see in Section 3, it is
quite useful to have a version of Theorem 2.4 which relates even more general
percolation to capacity. Here, conductances (and random walks) may no longer
play a role. Furthermore, the capacity may no longer arise from a kernel on
dI'. Rather, the capacity will be defined through a limiting energy which arises
from a kernel on I', not on dI'. Therefore, we must redevelop some of our
earlier theory of capacity on trees ([22], Section 4), sketched in Section 2.3, to
this more general setting.

Given a tree I', define the height of T as

ht I' := sup{lo|; o € T}.
For n > 0, write
,={ceTl;lol =nor(lol <n and o €dT)}.

For a general percolation as defined in Section 2.4, write P, := Plo € T'y(w)]
and
Plo, 1 € Ty(w)]
(2.6) K(o,7) = P P, ’
0, otherwise.

Let 6 be a real-valued function on I such that, Vo € T’ \ T, 8(c) = L _ _, .0(7).
If '

if PP, +0,

VoeT, P =0 = 6(0)=0,
then we say that 6 is subordinate to the percolation. Set

(o)

Xr?(w) = Z P 10«-»0-(‘0)
oell, o
P #0

and

&0 =E[(X))’] = L K(o,m)0(c)8(r).

o,rell,
Now &, > 0 and, from simple algebra,

6, + 6, 6, — 0, &,(0,) + &,(6,)
( 2 )”’)( ) 2

[which amounts to the parallelogram law for the inner-product seminorm

(2.7) s,
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&(-)'/?]. In particular, &, is convex. Write %, for the o-field generated by
the events {0 & o; o] < n}. If

(2.8) Vo0, P[0odlFy] =Pl0od0os]l,.,,
then {(X?, #,)} is a martingale, so that by Jensen’s inequality we have
(2.9) &,(0) < &,.4(0).

In such a situation, we may define
&(0) = lim &,(0).
n—oo

Let % be the convex set of unit flows on I' which are subordinate to the
percolation.

PropPosITION 2.6. If a percolation on a locally finite tree T satisfies (2.8),
then '

inf £(60) = li inf £(0).
012% (6) nl—lﬁoolg% +(6)

If this number is finite, then the infima are minima and there is a unique
0 € % minimizing &.

ProOF. Give % the inherited topology from the product space ' R. Then &,
is continuous on %. Since T is locally finite, % is compact, whence &, has a
minimum on % unless % is empty. The asserted equality is now clear from
(2.9), as is the fact that the infima are minima when finite. Lastly, if both 6
and 0 minimize & on %, then

ol ALAT 0—06
= —+ —
o ( 2 ) ( 2 )
by virtue of (2.7), which implies that &£((6 — 6)/2) = 0. From (2.9), we may
conclude that &((6 — 6')/2) = 0 for all n, whence X972 = 0 a.s. for all n,
sof=¢6¢.0

If (2.8) is satisfied, u is a Borel probability measure on 9T, 6 is the unit flow
corresponding to u, and @ is subordinate to the percolation, then we say that
w is subordinate and we define &(u) = &(6). Finally, for E c T, set

(2.10) cap E = sup{cf(,u)_l; w subordinate and w(dT' \ E) = 0} v 0.
We now have enough theory to state and prove our most general results on
percolation. '

_THEOREM 2.7. Let T be a tree of finite height. Given a percolation on T,
define cap as in (2.10) using the kernel (2.6). For E C iI', we have
(2.11) capE < P[0 & E].
If there is some M > 0 such that, for all o,7 €dl' and A CI' with the
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property that the removal of o A T would disconnect T from every vertex in A,

(2.12), P[0 & 7[0 & 0 and 0 <> A] > MP[0 < 70 & o],
then, for all E C dT,
(2.13) P[0 E] <4M 'capE.

The proof is exactly as for Theorem 2.4. Using reasoning similar to that
used in proving Theorems 2.1 and 2.3, we may deduce the following corollary
of Theorem 2.7 which lifts the restriction that the height of I' be finite.

COROLLARY 2.8. Given a percolation on a locally finite tree which satisfies
(2.8), define cap as in (2.10). For any analytic set E C oT', we have (2.11). If
(2.12) holds for all o,7 € T and A C T with the property that the removal of
o A 7 would disconnect T from A, then, for analytic E C 0T, we have (2.13).

It is interesting that the method Evans uses in his study of random labelling
[11] can also be used to prove Theorem 2.7, although it requires a stricter
hypothesis than (2.12). On the other hand, Evans’s method has an advantage
in that it gives a measure of small energy directly in terms of the percolation.
Finally, as mentioned in the introduction, the constant arising in his method
can be improved from 16 to 4. To illustrate all of this, we shall sketch how the
method gives Theorem 2.7 in the special case of Bernoulli percolation.

“The proof of (2.11) is no different than that of Theorem 2.4. To prove (2.13),
we order the vertices of dI' (assumed finite) as in the proof of Theorem 2.4.
Define

* (@) = min il N Ty(w), if ol NTy(w) # 9,
+ o, otherwise.
Let o7 be the o-field generated by the events {0 < ¢; ¢ > s}. We claim that
the probability measure
u(s) = Pls* = 51/P[0 © aT'
satisfies
P[0.o aT] < 4€(n)” ' < 4capdl.

Indeed, the Burkholder-Davis-Gundy inequality ([11], [9], Chapter 6, (100.2),
[26]) yields

4P[0 > oT] = 4|E[( T 1s*=s)2] > [E[( )N E[13*=sl~%])2]

sedl’ sedl’

- [E[( Y Pls* = 50 © s]10ﬁs)2}

sedl’

2

= [E[( Y. P[0 « T u(s)1,., P[0 s]_l) ]
sedl

= P[0 < T PE(u).

This gives (2.13) for E = oT" and hence for all E.
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3. Random labelling. We shall apply Corollary 2.8 to a general scheme
of randomly labelling trees. Suppose that I' and T are two trees and that A is
not an element of T. A random labelling of T' by T is a Markov random field
L:T - T U {A} such that

L(0) =0,
(o »>7and L(c) #A) = (L(o) > L(7) VL(r)=A4)
and
(0o > 7and L(o) =A) = L(7)=A.

We may think of A as the empty label. Thus, the vertices of I' are labelled
with vertices of T at the same distance from the root in such a way that an
element of dI" is labelled with an element of 4T (or possibly with a vertex of
T), except that when L(o) = A, we consider o, as well as all paths of oI’
through o, to be unlabelled. In the obvious way, L induces a map from dT" to
dT U T U {A}, which we also call L. Because of the Markov property, the
distribution of L is determined by the numbers {(P[L(¢) =x]; c €T, x € T,
lol = |xl}.

In the special case where dT and d'T are singletons, we may interpret the
labelling as a percolation, where a random subtree of I' is formed from those
vertices o for which L(o) # A. Another special case is where T is an n-ary
tree for some n. Here, the random labelling can be thought of as simply
choosing one (or no) letter from a size-n alphabet for each vertex of T’ other
than the root. (Our setup only allows one letter for the root. If we wish to
allow n letters for the root, then we may use our current setup by simply
considering a new tree, namely, I' with a new vertex adjoined to the root and
deemed to be the new root.) This is the type of labelling studied by Evans [11],
although he considers only the case where I' is an m-ary tree for some m > 2
and L satisfies P[L(¢) = x] = n ™! for |o| = |x| (so that L # A a.s.). Given a
set E ¢ dT, Evans estimates PILY(E) # @].

We shall estimate more general probabilities related to the graph of L, for
which purpose we introduce the product tree T - T. This is defined to have
vertex set {(0,x); o €T, x € T, |o| = |x|}, root (0,0) and successor relation

(o,x) > (7,y) < o—>randx —>y.

The graph of L on I' may be regarded as the random subtree (or percolation in
the sense of Section 2.4)

(T T)o={(o,x) €T -T; L(co) =x}.
For this percolation on I' - T, the kernel of (2.6) becomes
K((U’x)7(7'9y))
(3.1) P[L(c A7) <x Ay]™', ifloA7l<|xAyland
= P[L(co) = x]P[L(7) =y] >0,
0, otherwise.
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The condition (2.8) is evidently satisfied, as is (2.12) with M = 1 and with
equality, whence Corollary 2.8 gives the following estimates of the distribution
of the graph of L.

THEOREM 3.1. Let L be a random labelling of a locally finite tree T by a
locally finite tree, T. For analytic sets E co(I' - T),

capE < P[3(s,w) €E, L(s) =w] <4capkE,

where cap is as defined in (2.10) using (3.1).

We call T [respectively, L] spherically symmetric if the number of edges
incident to o [respectively, the law of L(c)] is a function only of |o|. If T and
L are both spherically symmetric, then it turns out that cap(éI' X E) can be
expressed as a capacity of E in dT. We proceed to carry out this reduction in
order to show how Theorem 3.1 incorporates Evans’s results [11]. Assume that
both T" and T are locally finite. Define

(3.2) v(x) =P[L(c) =x], x€T,lol=Il

We may, by taking a smaller tree if necessary, assume that V x € T, v(x) # 0.
Let

M, = card{o € T; lo| = k}.

Fix an integer n < ht I'. If the unit flow 6, on T' - T minimizes & on % (see
Section 2.5), then 6;(o, x) depends only on x in light of our assumed spherical
symmetry and the convexity of &. Thus, writing 6,(x) == L ,_,00(c, x), we
obtain that

’ -1 ’ ’
&(0,) = Z v(2) Z 8o(o, x)66(7,5)
|x|=lyl=n lol=|rl=n
0<z<xAy loAT|=|z|
= X v(2) T0(x)60(y) L M.
lx|=lyl=n lol=lrl=n
0<z<xAy loAT|=|z|

If we set

f(k,n) = 3 M2

lol=lrl=n
loATl=Fk
then an easy calculation yields that

M;*-M;l, ifk<n,

k =
FEm =0y, itk=n
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Using this notation, we have

G(05) = L w(2) 'f(lzl,n) X 0(x)86(¥)

0<|zl<n |x|=lyl=n
xAy=z

Y 00(2)*v(2) ' f(lel,n).

0<l|zl<n

For unit flows 0 on T, define

Y 6(2)%w(2) 'f(lzl,htT), ifhtT < oo,
0<lz|<htT
lim Y 0(2)%(z) 'f(lzl,n), ifhtT = c.

O0<lzl<n

(33) &) =

[When ht T' = «, this limit exists since the terms form a monotonically increas-
ing sequence as in Section 2.5. This is also a consequence of (3.6).] If it
happens that M, —» © as n — », then

(3.4) &L(0) = ZTe(z)zv(z)‘l(M.;.l - M3L,).

To show this, denote the sum on the right by S. Certainly &,(0) > S. Thus, we
must show that if S is finite, then

(3.5) lim Y 6(z)%(z) 'M;'=o0.
2% zl=n

Now

Y v(x) <v(z) and ) 6(x) =06(2).

zZ0X Z20X

It therefore follows from the Cauchy—Buniakowski—Schwarz inequality that

)(2) T 0)"(x) = T o(x) T o)) = L o) = o),

zZoX zZ2—X zZoX zZoX
whence

(3.6) Y 6(x) 2 (x) "} = 0(2)(2) L

zZ—Xx

Thus for k& > n,
HZ 0(x)’v(x) " = ¥ 6(2)%w(2) 7}
x|=k |zl=n

S0, since My — o, .
Y 0(2)’v(z) 'M; = lim Y (My'-M;l) ¥ 6(2)v(z)

lzl=n - “®n<k<N lzl=n
' 2 —1/ a5 _
< X oo(x)v(x) (Mg - MLY).
lx|=n

If S < «, then this last sum tends to 0 as n — «, which demonstrates (3.5).
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IfhtI' <wand Ec{x € T; x| =htT}or htI' = w and E c &T, define
cap,(E) = sup{@”L(p.) ~'; w is a Borel probability measure and w(E) = 1}.
Then
cap(dI' X E) = cap,(E)

since, for each unit flow 6 on T, there is a unit flow ¢ on I' - T such that
0'(o, x) depends only on x and 6(x) = L -x0'(0, x), whence &7(8) = £(6").
This leads to the following corollary of Theorem 3.1, which more directly
includes Evans’s results [11].

CoroLLARY 3.2. Let L be a spherically symmetric random labelling of a
spherically symmetric locally finite tree I by a locally finite tree T. For analytic
sets E,

(8.7) cap, E < P[L™Y(E) # O] < 4cap, E.
If M, — ® as n — «, define conductances
C,=v(x)(My] - MI;IIH)_I, 0+xeT,
where v is as in (3.2). We then have
€0 —-dT)

1+ (1-M €0 ->aT) = PIL7H@T) 2]

(3.8) €0 »oT)

YT a-M)e0 STy

Proor. The only part left to show is the assertion (3.8) on conductances.
Note that the term in (3.4) corresponding to z = 0 is 1 — M; !, which differs
from the formulas in Section 2.3. Instead of (2.2), we have here

-1
cap; IT = [(1 -M:t) + il;f Y 0(x)2C;1]

0+xeT
= [t -MY) + €0 -a7)7Y]
Putting this into (3.7) with E = &'T gives (3.8). O

The energy &7, of measures on 4T (and hence cap;) can be expressed in
terms analogous to the integrals of Section 2.3. For example, if M, — «, then

(3.9) Eulm) = [Ky(v,w) d(p X p) (v, w),

where
K;(v,w) = Z ’/(~’C)_‘1(M|;|1 - M|;|1+1);

O<x<vAw
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while if ht I' = © but M,, - M, < , then (3.9) holds with

K;(v,w) = Z V(x)_l(M|;|1 - M|;|1+1) + 8v,wV(w)_1Moo_1,

O<x<vAw

where v(w) = lim , ., v(x).

4. Random walks on random trees. If I' is infinite and locally finite,
the branching number of T, defined as br I' := exp dim dI" (where Hausdorff
dimension is computed in the metric given in Section 2.3), is an average
number of branches per vertex of I' in several senses ([21]-[23]). In particular,
the random walk corresponding to conductances C, = A7/l is transient if
A <brT and recurrent if A > br I', and the critical probability for Bernoulli
percolation (with p, = p) is p(I') = 1/br I' [22]. What happens at criticality
(Ge., A=brT or p=1/brT) was left open in [22]. It is easy to construct
examples of either kind of behavior at criticality for random walk ([22], page
944), whence for percolation as well [since an electrical network with a
constant multiple of the conductances above, namely, (1 — A~1)~!C,_, is associ-
ated to the Bernoulli percolation with constant survival probability p = A ™!
for A > 1]. What we shall do here is to show that the type of behavior at
criticality can often be determined for random trees. We call A above the drift
parameter and p the survival parameter.

4.1. Trees generated by percolation and Galton—-Watson branching pro-
cesses. A simple but quite general situation arises as follows. A denumerable
graph without loops or cycles is called a forest.

PROPOSITION 4.1. Let T be a locally finite tree and T'(w,) be the random
forest generated by Bernoulli percolation with survival parameter p. If critical
random walk on T is transient, then, for every p € [p(T'), 1], random walk
with drift A is a.s. transient on some component of I'(w,) iff A €]0, p/p(D)].
On the other hand, if critical random walk on T is recurrent, then, for every
p €lp/D), 1], random walk with drift A is a.s. transient on some component of

N(w,) iff A €10, p/p ).

Proor. Suppose that critical random walk on T is transient (respectively,
recurrent). Then percolation occurs (respectively, does not occur) at criticality.
Therefore percolation occurs (respectively, does not occur) a.s. on [some (re-
spectively, any) component of] I'(w,) when done with survival parameter
pI)/p (cf. the proof of [22], Proposition 6.1), that is, at criticality (22]).
Hence random walk at the critical drift A = p/p () is a.s. transient (respec-
tively, recurrent) on some (respectively, every) component of TI'(w,). It is
evident from this what happens at other values of A. O

This proposition takes a neater form.when we need consider only the
component of 0. Such is the case with Galton-Watson branching processes.
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THEOREM 4.2. Let m > 1 be the mean number of offspring per particle in a
Galton—Watson process. Given nonextinction, critical random walk on the
associated genealogical tree is a.s. recurrent.

Proor. From [22], Proposition 6.4, the critical drift is a.s. m (given
nonextinction). Now percolation with survival probability 1/m on a
Galton-Watson tree yields a component of 0 whose law is the same as that
generated by a nontrivial Galton—Watson process of mean 1. This is finite a.s.
([3], page 7), whence percolation a.s. does not occur, so that the random walk is
a.s. recurrent. O

The same method, with the aid of [22], Proposition 6.5 produces a general-
ization to multi-type branching processes. Here, the singular (deterministic)
case is already interesting.

THEOREM 4.3. Given nonextinction, critical random walk is a.s. recurrent
on the genealogical tree of any supercritical positive regular multi-type branch-
ing process.

It is interesting to consider whether critical random walk is positive or null
recurrent in the setting of Theorem 4.2. It turns out that both are possible and
that-the ‘““magnitude’ of the tail of the distribution of the first generation size
does not determine the recurrence type in all cases.

PROPOSITION 4.4. Let m > 1 be the mean number of offspring per particle
in a Galton—Watson process. Given nonextinction, critical random walk on the
associated genealogical tree is a.s. null recurrent if €{Z, log Z,; Z, > 2] < =,
where Z, is the number of particles at time 1. However, for any m > 1 and
p €13, 11, there is a Galton-Watson process with mean m and FZ,(log Z,)?;
Z, > 2] < » such that critical random walk is a.s. positive recurrent and
another process with mean m and E[Z(log Z,)?; Z, > 2] = © such that the
walk is a.s. null recurrent.

PrOOF. As in the proof of Proposition 2.5, the walk is null recurrent iff

m™" = 4o,
Y Z,m™"

n>1

where Z, is the number of particles at distance n from 0. By the theorem of
Kesten and Stigum ([2], page 23, Theorem 2.2.1), Z,m™" converges to a
nonzero random variable a.s. given nonextinction when the condition
EZ, log Z,] < = is satisfied. This plainly implies that the above sum diverges.

On the other hand, given m > 1 and p €13, 1, choose a, > 0 for n > 0 so
that Ya, = 1, Xlm"Ja, = m and

a, = lan_ln—(p+3)/2
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for all sufficiently large n. Consider the Galton-Watson process such that
(4.1) P[Z,=|m"]]= Y a n=0.
Lm*|=1m"]
Note that P[Z; = 0] = 0. It is evident that E[Z,] = m and that for some
finite c, :
E[ Z(log Zl)p] =c+ Yn ®*¥2(nlogm)”

=c + (logm)” Y n-@-p/2
< @,
We claim that ¥Z,m ™" < « a.s., so that the walk is positive recurrent a.s. In
order to prove this, set
tP = E[Z, log,, Z,Z < mN], Q-
ty =tP + 12, cy = mle in/m,

Since F[Z,(log Z,)/?] <  (because p > 3), Corollary 2.5.7 of [2], page 45,
states that Z, /c, has a finite nonzero limit a.s. In our case, we have, for some
constants ¢, ¢’ and ¢” and for all large N,

ty=c+ Y. n|lm*|a,+N ), |m"]a,

N-E[Z,; Z, > mV],

n<N n>N

=c + Z n—(P+1)/2 + N Z n—(p"'?’)/2
n<N n>N
1-— 2

~ c"N¢ p)/ ,

whence
Ye,m™=Ye /™ <o,

This ensures the a.s. convergence of £¥Z, m ™" as well.
Finally, to prove the last part of the proposition, given m > 1 and p €13, 1,
define b, inductively by b, = 1 and b, , = e%. Set
nk = lbk/kzjz
and choose a, > 0 so that Xa, = 1, ZIm"]a, = m and
an-1
_ (borlm™]) 7, if n=ngy,

a, .
0, ifVEk,n+#ng,

for all sufficiently large n. Again, the corresponding Galton-Watson process
defined by (4.1) satisfies E[Z;] = m and, for some finite c, ¢’ and ¢,

E[Z,(log 2,)'/*] = ¢ + ¢ La,, | m"* |n¥?
' | ="+ Lbylby/(2k)°
. .
= [ Z,(log Z,)"].
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Define ¢, #» and c,, as before. In view of the theorem cited previously (2],
page 45), it now suffices to show that Yc,m ™ = « in order to establish a.s.
null recurrence. To this end, we calculate, for all large K,

b
O o 2K @ = -1
Lok < K2’ broges = M2k+1 Y byl <1,
k>K
whence
bok P
t, < 7 O Nogg <N < Nog., -
Since
Nogyy — Nog = eP2/K

we obtain that for large K|,

Ye,mh=Ye /MmN Y e b/K > N 1=, DO

K>K)nagg<n<ngg,1 K=K,

4.2. Random walks on randomly perturbed trees: Statements of results.
We consider next the Nash-Williams criterion and Griffeath’s conjecture. A
simple version of this criterion for trees states that if conductances satisfy

r(x ca)_1=oo,

nx1‘logl=n

then the associated random walk is recurrent. The proof (by contraposition) is
short: If the walk is transient and 6,, is the unit current flow on I, then by the
weighted form of the arithmetic-harmonic mean inequality, we find that

IA

r ( )y oo<o)(oo<o>0;l)‘1)

nx1\l|o|l=n
l“/

r(ze)

Z Z 90(‘7)(90(‘7)00_1)

nx>1|o|l=n
oel’

Y 0p(0)’Crt < o,
0#ccl”

as asserted. This proof also shows, by (2.2), that

IA

, (4.2) (0> 4T) < ( Y ( Y cc,)_l)_l.

) nz1"‘lo|l=n

In case C, depends only on ||, the Nash-Williams criterion takes the follow-
ing form: Write C,,; for C, and let M, denote the number of vertices at
distance n from the root. If LM, !C, ! = », then the walk is recurrent.
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The Nash-Williams criterion is useful because it is so easy to apply.
Furthermore, in the special case where T is spherically symmetric, the crite-
rion is necessary for recurrence as well as sufficient (provided I is infinite, of
course). Indeed, in this case 6,(c) = M|, so €(0 - oI = (EM,'C; )1
Thus, it is natural to ask, as Griffeath did, how much this special case may be
perturbed before losing the necessity of the Nash-Williams criterion. In
particular, what if M, is the mean number of particles of a branching process
in a (time-) varying environment (BPVE)?

To facilitate discussion, for the remainder of this paper, let Z, be the
number of particles at time n generated by a branching process beginning
with one particle (Z, = 1) such that at time &, each of the previously existing
Z,_, particles gives birth independently to a random number of children
distributed according to the law of a random variable, L,. (The particles
existing at time k2 — 1 then cease to exist.) Thus, M, = E[Z,]. The case
originally considered by Griffeath is that of simple random walk (SRW), that
is, C; = 1, on the random genealogical tree generated by

1, with probability ( 1- %) v 0,

L,= o
2, with probability % Al,

where « is a positive parameter. Here, for some positive constant c,

M,= 1 [(1+ E) /\2] ~ cn®.
l<k<n k

Since Z,, = O(M,) a.s. (see Section 4.3), SRW is critical a.s. for every value of
the parameter a. Now XM, ! = = iff @ < 1. Griffeath’s conjecture is that this
“mean Nash-Williams” condition is both necessary and sufficient for a.s.
recurrence, with a.s. transience in the contrary case. As we mentioned in the
introduction, this was established for @ < 1 and « > 2 in both [5] and [19].
Indeed, the conjecture is entirely correct and is a consequence of the following
more general result. Write

A = supl|L,ll,
n

which may be infinite. We say that a BPVE is without extinction if the
probability of extinction is zero, that is, V n, L, > 1 a.s.

THEOREM 4.5. Given a BPVE, a random walk on the associated genealogi-
cal tree endowed with conductances {C,} is a.s. recurrent if

(4.3) S Y MIC = .

n=1

If (4.3) fails and either A < « and the BPVE is without extinction or M, + =,
then the random walk is a.s. transient given nonextinction of the BPVE.
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Remark. The sufficiency of (4.3) can be used to rederive recurrence in
Theorems 4.2 and (by a similar method) 4.3.

Since the question of transience of a random walk on a tree depends only on
the reduced tree, it is natural to stipulate the lack of extinction in Theorem
4.5. Indeed, the theorem may fail badly without such a stipulation.

PRrROPOSITION 4.6. There is a BPVE with A < » and with positive probabil-
ity of nonextinction such that SRW is a.s. recurrent despite failure of (4.3) ( for
C,=1.

Now, in principle, the formulas of Section 4.3 allow one to examine the
reduced genealogical tree of any BPVE by studying a BPVE without extinc-
tion, and thus one could modify (4.3) to apply to the general case where A < .
In practice, however, one could not make the calculations necessary to verify
the resultant criterion. Thus, it is somewhat remarkable that there does exist
an easily verifiable criterion which determines the type of the random walk in
every case where A < . To state this criterion, denote

[E[L2] - Var(L,)

"THL,?  EHL.
Yn = (1+ Y CE‘)Cn
k=1
and
Co =M, = 1.

THEOREM 4.7. Given a BPVE with A < », a random walk on the associated
genealogical tree endowed with conductances {C,} is a.s. recurrent if

(4.4) Y M;IC (1 + yuley) =

n=1

and is a.s. transient given nonextinction if (4.4) fails.

ReMark. If the BPVE is without extinction and A < «, then (4.4) is
equivalent to (4.3). This will be shown directly in Theorem 4.9.

The situation changes considerably when A = «, even if the BPVE is
without extinction. The following.proposition shows, in fact, that the restric-
tion 'A < @ cannot be weakened much in Theorem 4.5 and that there is no
general “0-1 law” for SRW. It also shows that the mean Nash-Williams
criterion (4.3) is no longer necessary for a.s. recurrence under large perturba-
tions.



2068 R. LYONS

PropPosiTION 4.8. There is a BPVE without extinction such that

L
sup Elexp| ———— |; L, > 2| <=

and SRW is recurrent with probability in 10, 1[. There is also a BPVE without
extinction such that

< ®©

L2
i L,>2
(1 L,)
and SRW is a.s. recurrent despite failure of (4.3).

Nevertheless, the requirement A < « can be alleviated provided we accept a
weaker conclusion.

THEOREM 4.9. Given a BPVE violating (4.4), that is, such that

Z M;10;1(1 + ’Ynln+1) < @,

n=1

random walk on the associated genealogical tree endowed with conductances
{C,} is a.s. transient given lim Z,/M, > 0, which is an event of positive
probability. Moreover,

1] = -1
5[ Y MM (1 + vnln+1)] <E[€(0 - IT);dT + <]
n=0

IA

o -1
( Y. M 'C; 1) .
n=1

If the BPVE is without extinction, then

-1

e

1 o
< — M;ICoY 1 + y,1
2A 2|:nz=:0 n n ( ’Yn n+1)]

In order to prove the preceding results, we need to examine BPVE’s in some
detail. A few of the results about BPVE’s which follow will not be used in our
study of random walks; rather, they are included for the sake of completeness
and their own interest.

4.3. Branching processes in varying environments. We introduce the fol-
lowing notation for the remainder of this paper. Write
fu(s) =Fst], O0<s<l,n>1,

for the probability generating function of the progeny distribution of a BPVE
at time n. Let {L, ;},.; ;. be independent random variables with L, ;
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having the same law as L, and such that

Zﬂ
Zn+1 = Z Ln+1,i'
i=1

Write
F(s) = E[s]
for the probability generating function of Z,. Since

E[s% ] = E[E[sZ11Z,]] = E[E[s™LnnZ, ||

= E[E[s21)7| = E[ fu0i(5)%] = Fu( £r0a(5)),
we have
F,=fiofae o o fo.

As is well known, {Z, M} is a nonnegative martingale and, as such,
converges a.s. to a finite random variable W:

W= lim Z,/M,.

n—o

For n > 0, let
g, = P| lim 2, = 02, = 1]

be the probability of (descendant) extinction for a single particle born at time n
and

qn = 1 - qn'
In principle, one can calculate ¢, as

9, = }\lliirloofn+lo fn+2c> e n+N(0)‘

Let
m, =f,(1) = E[L,]

be the mean of L,,.
At generation n, the i-th particle (i <Z,_,) gives birth to L, ; new
particles, which we label (n,i, j) for 1 <j <L, ;. Let

Ln,l
3k o—
L ;= by Y,
. j=1

‘whei:e Y, ; ; is the indicator function of particle (n, i, j) having an infinite line

of descent, that is, belonging to the reduced genealogical tree. Let
Zg = l(z,.#?»
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be the indicator of nonextinction,
Zﬂ
Zyi= Z Lt+1,i
i=1

and
VAR

lim Z* € [0, ].
n—o

When the index i does not matter, we shall omit it and write L,, L}, and Y, ;

It will be essential for us to reduce the study of a BPVE on the event of
nonextinction to that of a BPVE without extinction. Such a reduction depends
on part (i) of the following proposition. Parts (i) and (ii) generalize well-known
properties of Galton-Watson processes ([3], pages 49 and 52).

ProPOSITION 4.10. Let T' be the genealogical tree of a BPVE with q, < 1
and let T" be the reduced subtree of T'. The following properties then hold:

(i) The law of T’ given nonextinction is the same as that of the genealogi-
cal tree of a BPVE with probability generating functions {f,'}, . given by

fr:k(s) = q;ll[ fn(qn + qns) - qn—l]'

(ii) The law of T given extinction is the same as that of the genealogical
tree of a BPVE with probability generating functions {f,}, ., given by

fu(s) = a3t 1Fu(ans)-
(iii) The joint probability generating function of L, — L* and L* is
E[s™ 2] = £,(gus + 2,0).
The joint probability generating function of Z, — Z* and Z} is
E[s%»~ %% |F,(q,5 + @,t)-

(iv) The law of T given nonextinction is the same as that of a tree I
generated as follows: Let T* be the genealogical tree of a BPVE with probabil-
ity generating functions {f}},., as in (i). To each vertex o of T'* having
degree d, + 1, attach U, independent copies of the genealogical tree of a BPVE
with probabzlzty generating functions {f, }os1 as in (i), where U, has the
probability generating function

ﬂfr(f”)(qwﬁ)
f5( @)

where d,, derivatives of f,,, are indicated; all U, and all trees added are
mutually independent given T'*. The resultant tree is I'.

., Es%] =
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Proor. We begin by establishing (iii). We have
E[sEn=Latln] = [E[[E[sL ~Lag AL, ]]
B [E[[E[szlgl(l_Y”’J)t J=1Y"’J|Ln”
= IE[IE[SI_Yn,ltYn,l]Ln]

= [E[(qns + g,t) L”]
A precisely parallel calculation yields the other part of (iii).

In order to show (i), it is required to show that, given L% ; # 0 and given
the o-field %, ; generated by L}, ,, k + i, and Lm g m<n, k>1, the
probability generatlng function of Ln ; is f,:“. This is accomplished through
the following calculation:

E[s¥ L%, # 0, F, ;] = E[s¥|L% , # 0]
= (7;11[E[3 "L »eo]
=qn- 1[E[S L 7 0]
= g, 2 {E[15 Frsth] — P[LY = 0]}
= q;—l[ fn(qn + an) - qn—l]
=1 (s)
in light of (iii). In a similar fashion, (ii) follows from the following calculation:
([sni2, -0, %] = Elsteti ;- O
= q;lﬂE[SL"lL*—o]

=g, E[s"7FH0%]
= qn—lfn(qns)
= fu(s).

Now (iv) will follow once we demonstrate that the probability generating
function given for U, is the same as that of L, — Lll,I given L}, = d,. Again,
by using (iii), we have for some constants ¢ and ¢/,

P d
E[ s+l = d] ‘c( ) [i(@ns +3ut)| = CFiP(qns).
t=0

Normalization requires that ¢’ = 1/f%(q,), which completes the proof. O

Because of this proposition, 1t will be useful to denote
M} =E[Z}Z; =1] =g, 5[ Z*],
my = () (1) = EHL;
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and
W* = lim Z*M*"',

n-—o

(Note that this limit exists a.s. because of Proposition 4.10.)
We record the following calculation, the first part of which is well known.

ProposITION 4.11. For any BPVE, we have

n
Mn = ]._[ my,
k=1
Zn )2 n—1
= 1 + Z Mk_llk 1
(Mn k=0 ’
Ifq, < 1, then
mﬂ;z = _n—;ilmn’
My = T1m} = 3.45"M,,

Z: 2 — Zn 2 Z]—an

Proor. The first equation follows by induction from

Zn
Mn+1 = IE[Zn+1] = [E[[E[Zn+1|Zn” = IE[IE[ Z Ln+1,ilzn}

i=1

= IE[ZnIE[‘Ln+1]] = Mnmn+1'
Likewise,

IE[er+1|Zn] = IE[Zn+1|Zn]2 + Var(Zn+llzn)

Zn
= Zr?IE[Ln+1]2 + X Var(L,, ;)
=1

= Zr%IE[Ln+1]2 + Zn([E[Li+1] - IE['Ln+1]2),
SO
E[Z3+1M;31] = IE[ZEMJZ] + Mnln+1IE[Ln+1]2M;fl
=E[Z2M;2] + MY,

which yields the second equation. The third equation follows from Proposition
. 4.10 and, in turn, entails the fourth equation.

Finally, let F*(s) := Hs%%|Z# = 1] be the probability generating function of
Z* given nonextinction. By Proposition 4.10, we have

Fn*(s) = (-I-O—I[E[IZ,L—ZjSZ,": - ]'ZE')‘=0] = qal[Fn(qn + (7”3) - qO] ’
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whence
E[(Zzx/M?)?] = goM; %[ ;%125 = 1]
= GoMETA(FF(1) + M¥)

a1 q
=qoM}*(q5'q2Fy (1)) + ﬁoz
= 3M2(E[22] - M,) + 25

ol Za\?]  Toan
=Q§[E“Mn) —A‘}: :

which is the fifth equation. O

We next show that all BPVE’s behave regularly in a number of ways. When
A < », we demonstrate additional nice behavior in Proposition 4.13 and
Theorem 4.14. However, lest the reader be lulled into feeling that all BPVE’s
are just like Galton—Watson processes, we forewarn him of the pathologies to
come in Proposition 4.16 (see also [25]). Three parts of the following theorem
are already known: Almost sure convergence in (4.5) is due to Lindvall [20],
although he did not identify the limit. Similarly, convergence in (4.13) is due to
dJirina [16] without identification of the limit. The criterion (4.11) is essentially
due to Church [6]. Our proofs, however, are based on an almost entirely new
and efficient method which focuses on (4.7).

THEOREM 4.12. If q, < 1, then the following hold:

(4.5) Z,->ZF a.s,;
(4.6) . GnZn ~p 225
Z; .
(4.7 iz -p 1 givenZ§ =1,
(4.8) convergence in (4.6) and (4.7) isa.s. given W > 0;
(4.9) W* =q,W a.s,;
(4.10) P[0<Z}<®]>0 = gq,—-1;
(4.11) Pl0<Z}<x]>0 e Y P[L,+1]<o;
(4.12) M,y P[L,+1]>0 = 2Z*< ®© .5
k>n
(4.13) M, - €[ Z2];
(4.14) 3. M, TE[Z];
(4.15) limM, =0 = limM!=wandg,'=o(M,);

(4.16) limM, <o = g,—1.
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Proor. We make the convention that
Zy
4,Z

=0 on Z§ =0.

n

By compactness, there exist [0, ©]-valued random variables Z,, Z, and Y, a
number y and a sequence {r,} tending to « such that Z, i Zys Gp ank = Z.,
z;./q,Z,)=Y,and g, — v. Now

(4.17) 9o =P[Z} = 0] = E[P[Z} = 01Z,]] = E[q7].
Therefore, if v < 1, we obtain
G0 = P[Z, = 0] +E[(1 - y)™;0<Z, <.
Since P[Z,, = 0] = q,, it follows that P[0 < Z,, < ] = 0:
(4.18) y<1 = P[Z,=%]=4q,.
We next demonstrate that
(4.19) P[Z, = »| = P[Z, = «].

If this is not the case, then necessarily vy = 0 and, by (4.18),

(4.20) IP’[Z'O,, < OO] >gq, and IP’[Z; = 0] = q,.
Now

' —ex e—1
(4.21) 1—xzexp( _1) for 0<x=< P

by convexity of the exponential, whence, by (4.17),

’ _ an _eqn Zn
q0 = [E[(l - 3q,,) ] > [E[exp(Tklk)]

for all sufficiently large k. Taking the limit as & — o gives

e —

—eZ, )

qo = [E[eXP( > q,

by (4.20), which is a contradiction.
We now claim that the Laplace transform of Y is

Ele*Y] =e %G, + q5, x=0.
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Indeed, for x > 0, we have

k—o nyfn,

—xZ}
E[e™*Y] = lim [E[exp( — "”
[ —-xZ*
= limE|E e
lim {exp(_ 7

np—ng

= limE Qn, +qn, exp(

[
=limE (1 + cjnk(exp( -

ja

Z,,
—X
q”kznk )) }
Zp,
—-X
)—1) s Z5 =1(+q,.
npy~n,

2075

Our method of calculation of this limit depends on whether y < 1 ory=1
Suppose first that y < 1. Then by (4.18) and (4.19), we have P[Z_ = ] =
PlZ,, = «] = g,. Therefore ([4], page 341, Theorem 25.3), we have

= * _
an—>Poo and 9nZn,, 2p® onZj=

whence

X Zn
[E[e—xY] = llm[EI:(l - Z—(l + 0(1))) ,Zak =1

ng

=e g, + q.

1,

+q

Now suppose instead that y = 1. By taking a subsequence, we may assume
that g,, 11. For fixed x > 0, consider the function

—X

oo ook 2|

for 0 <r<land1 <t < x[where G(r,») := e *]. The derivative

d
—G(r,t)"" = (
o (r,t) exp

is nonpositive, so that

x)(l X X )
— + — — —
rt rt eXp rt

G(an, t)le ™™

as k — o, By Dini’s theorem ([29], Proposition 9.11), this convergence is

uniform on [1, ], whence
E[e~*Y] =

v

, =e g, t+ q,.
This establishes our claim.

lim E[G(@n,» Z,,); Z8 = 1] + o

E[e™; 25 = 1] + g,
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By uniqueness of the Laplace transform, it follows that we may take

= Z¥. In particular, the law of Y is independent of the sequence {n,}, so
that Z*/(g,Z,) = Z§. Since Z{ is constant on nonextinction, we have con-
vergence in probability, not merely in distribution ([4], page 341, Theorem
25.3), from which (4.7) and (4.6) follow. In particular, Z* and Z., have the
same distribution and so (4.10) follows from (4.18) and (4.19). If g, — 1, then
(4.6) entails

(4.22) Z, -p Z¥,
while if (jn + 1, then (4.22) is a consequence of (4.6), (4.10) and the fact that
Zn 2G4,

We next demonstrate (4.5) from (4.22). If P[0 < ZF < «] = 0, then (4.5)
follows from the fact that Z, > Z*. On the other hand, if P[0 < Z} < »] > 0,
then F,(s) — F(s), where F(s) = E[s%] is, like every F,, strictly increasing
on [0, 1] Deﬁne to = F(3) and s, :=F, 1(to) Then s, —» F, %(t,) = 5 and
froil(Spst) = Therefore {sZ-}is a martlngale converging in probability and
hence a.s. to ( )Z This ylelds (4.5).

We deduce from (4.7) and Proposition 4.11 that

Z; /My Z,/M; W™

L1 P T 7 MF T Qoz M, GW
q, n/Mn 90 n/ n do

from which (4.9) and (4.8) follow. By the monotone convergence theorem,

E[Z*] = o lim M} = lim G, M,,,

as,onW>0Vv W*>0,

which is (4.14). Furthermore, if E[Z}] = «, then liminf M, > lim g, M, = «,
while if HZ*] < », then P[0 < Z¥ < ] > 0, whence g, —» 1 by (4.10), so
lim M, = E[Z}]. We thus obtain (4.13), (4.15) and (4.16).

It follows from (4.5) that 0 < Z* < » is a.s. the same event as 3 n,z > 1,
VEk=n,Z,=z Now

P[Van,Zk=Z]>0
e 0< [P’[Vk z'n,Zk=Zn|Zn=Z] =JTIPL,= 1]z
k>n

e VYEk>n, P[L,=1]1>0 and Y (1-P[L,=1]) <.

k>n
This gives (4.11). In addition, we see by (4.21) that
P(Z, =Z*] = E[P[Z, = Z}I1Z,]]

> [E[ I1PL, = 1]Zn]

k>n

> [E[exp{ p_— Z kgnP[Lk + 1]}
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if P[L, # 1] < (e — 1)/e for k > n. By Jensen’s inequality, a still lower bound
is

exp{— ¢ MnZP[Lkaél]}.

e—1 k>n

This gives (4.12). O

PropoSITION 4.13. IfA < »and g, < 1, then
M,—> o e Z — o a.s.given nonextinction.

Proor. Suppose that M, — . Since

it follows that P[L, # 1] = «, whence Z} = « a.s. on nonextinction by (4.11).

Thus Z, — » a.s. on nonextinction by (4.5).
On the other hand, Z, — « a.s. on nonextinction trivially implies that

M, > . O

We now have a result, the first parts of which will be crucial in Section 4.4.
The equivalence of (i) with (iv) in Theorem 4.14 is also in [16], although in

slightly disguised form.

THEOREM 4.14. If A < x, then W > 0 a.s. given nonextinction and the
following are equivalent:

(i) g0 <1
(ii) LM, <
(iii) sup E[Z2M 2] < oo
(iv) Y m,; M 'P[L,>2] <® and infM,> 0.

Proor. Actually, (ii) < (iii) by Proposition 4.11. Also, if M, » «, then of
course W > 0 a.s. given nonextinction. Suppose that M, — « and that A < o,
In light of (4.9), it suffices to prove that W > 0 a.s. for processes without
extinction in order to show that W > 0 a.s. given nonextinction. We now use a
suggestion of Bramson and Griffeath. Given a process without extinction and
given r > 0, let {Z, ,},., be a BPVE with Z, , = 1, probability generating
functions f,,y, f,49,..., means M, ., n >r, and martingale limit W, =
lim Z, ,/M, . Clearly, M, , = M, /M,. By virtue of Proposition 4.11, we have

v

n—1
E[Z2,M;2] =1+ M, Y M;',,,.
k

=r

Because the BPVE is without extinction, m, > 1. Setting ¢, == m, — 1, we see
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that
E[L2] = E[(L, + 1)(Ly — 1) + 1] < (A + 1)c, + 1,
whence
ks — 5~ 1= 2 /
(cp +1) my

(4.23)

<u=(A_1)(1_m—l)

= mk k Py
S0

-1
E[Z2,M:2] <1+ M, ¥ M;*(A-1)(1-m;l,

n
r,n font
n—1
=1+ (A-D)M, Y (M;' - Mil)
k=r
=1+ (A-1)(1-MM?
<A.
Therefore Z, ,M, . tends to W, in L? ([28], Proposition 4-2-7) and thus

r,n

HW,]1=1 and H W?2] <A. In conjunction with the Cauchy-Buniakowski-
Schwarz inequality, this leads to the bound

P[W,>0]=>A"1.
On the other hand, it is clear that
Zr
W=M"Y W,
i=1
for independent copies W, ; of W,, whence

P[W = 0] = E[P[W = 0IZ,]] = E[P[W, = 0]*]
<E@-a1*].

As Z, — = a.s. from Proposition 4.13, we conclude finally that W > 0 a.s.
To establish the remainder of the theorem, note that the preceding para-
graph shows that

n

zZx\?
go<1 = E (M*)JSA,‘
. whence, by Proposition 4.11,

7 \2
g, <1 = sup[E[(\n }<0°.

|

IS

n
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Conversely, if sup, F[(Z,/M,)?] < », then Z,/M, - W in L2, so that H{W] =
land ¢, < P[W=0] < 1.
Finally, to show the equivalence of (ii) and (iv), note that

P[L, > 2] < [E[(LG” < (;‘)P[Ln > 2]

and

2[5[(1‘2"” =E[L2] -m,=mil, + MZ—m,.
Thus the series in (iv) converges iff
0 > Zm;lM,jl(miln + m2 — mn)
= X(M 1, + M2 - M.
If inf M, > 0, then this plainly implies (ii). Conversely, (ii) implies (i), which
means, by Fatou’s lemma, that inf M, > 0 and hence (iv) holds. O
Parts of this theorem are valid in general. For example:

ProposITION 4.15. For any BPVE,

o -1
Go=P[W>0] > (1+ ZM;lln+1) .
n=0

Proor. This follows from Proposition 4.11 and LZ2-convergence of the
martingale Z, M, . O

The pathologies of BPVE’s alluded to earlier are possible when the condi-
tion A < = is relaxed even the slightest bit.

ProprosiTION 4.16. For any continuous ¢: R*— R, there is a BPVE

without extinction such that
sup E[¢° L,] <
n

and P[Z, — «], PIW = 0] €]0, 1[.

PRbOF. We may assume that ¢ is strictly increasing, that
a,=le ' (n)| -11e, 2<a,<a,,+1,
and that ‘
" 2 < b, = card I, 1 oo,
where
I,={n;2*<a, <2, kx1.
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Set

r,=3-27%p;1, nel,,
and

fu(s) =(1—r,)s +r,st*on,

We claim that the BPVE with probablhty generating functions {f,} satisfies
the conditions desired.

Since
Tr= T L3274 =13 2<x
nx>1 k>1nel, k
we have
PlVn,Z,=1]=]](1-r,)>0.
Also,
M,=Tl(1+rae)=TI(1+3;") > TI (1 + 3551)™
Jj<n Jj<n 2k+lcqg,
JEI,
a \2
> 4> |-=).
= I1 4= ( 4 )

k+1
27 <a,

In particular, M, — «, so that P[W = 0] > P[V n, Z, = 1] > 0. Furthermore,

an easy calculation shows that
a%zrn(l - rn)
(4.24) l,=—7———5.

Therefore

2
ZMlln+1<E( l)airn<°°’

nx>1 nx=2

so that, by Proposition 4.15, we have P[W = 0] < 1. Since M, — o, this
implies that P[Z,, — «] > 0. Finally,

IE[qDOLn] = (1 - rn)qo(l) + rnqo(l + an)

< (1) + re(le7'(n)])
<¢(1) + nr,.

Because r, is decreasing and Xr, < », we have nr, = o(1). Therefore E{¢ > L, ]
is bounded. O

Despite the pathological behavior exhibited in Proposition 4.16, there is a
remarkable kind of 0-1 law due to Cohn and Hering [7]. Their work extends to
complete generality as follows.
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THEOREM 4.17. For any BPVE, HHW] € {0, 1}.

Proor. If g, =1,then HW] = 0.If g, < 1and M, — o, then the result is
in [7]. Finally, if g, < 1 and M, + », then fW] = 1 by virtue of (4.5) and
(4.13). O

4.4. Random walks on randomly perturbed trees: Proofs. We are at last
ready to prove our results concerning random walks on random trees.

Proor or THEOREM 4.5. Since {Z, M, 1} converges a.s. to a finite number,
(4.3) implies that ¥Z;1C, ! = « a.s., which, in turn, ensures a.s. recurrence by
the Nash—Williams criterion.

If (4.3) fails and M, + =, then, by Theorem 4.12, M, has a finite limit. It
follows that YC, ! < «, which is to say that every element of J'T' has finite
resistance. Evidently, the random walk is transient a.s. given nonextinction in
this case. The remainder of the theorem will follow once we establish Theorem
4.9. O

In order to demonstrate Theorems 4.7 and 4.9, we use Theorem 2.1. That
is, we examine percolation, rather than random walk, on the genealogical tree
of the BPVE. Some calculations involving percolation on BPVE’s are collected
in the following lemma.

LEMMA 4.18.  Given a BPVE and conductances {C ,}, let § be the probability
that the root of the genealogical tree has only finitely many descendants which
remain under the independently performed Bernoulli percolation associated to
{C,}. Then

w -1
1-G= |1+ + X MJ'CoM (1 + vulnin)

n=1

If A < o, then

§g<1l o Y MICH1+y,l,i) <

n=1

ProOF. The component of the root under percolation has the same law as
that of the genealogical tree of a BPVE with variables, say, Z,,, M,, L), and [},.
Calculations similar to those in the proof of Proposition 4.11 show that

E[ L}, ] = pAE[L,], [F[(L%)zl = p7E[ L}] + (pe — PR)ELL,]-

Therefore

n

M, = TTHL,]= I1p. M, .
k=1 k=1
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and
2 E|L2 +p,. (1 —p, )EL, n
(Mr/z)_ll/n+1= Pri1 [ +1] 21’ +1( IZ +)EL, 1] — 1Mo ppt
pn+1|E[Ln+1] k=1
n n+1 1
= ln+1Mr:1k].:[1pk_1 +(1 —pn+1)k11p;1E[Ln+1] M,
=l M, Gt + ol M,
whence

1+ Y (M) ' =1+1+ Y M'CY(1 + v,1,,,).

n=0 n=1

The conclusions now follow from Proposition 4.15 and Theorem 4.14. O

Proor oF THEOREMS 4.7 aND 4.9. Let R, be the event of recurrence and
R, ; be the event that the walk is recurrent when restricted to the subtree
I7»:, where o, ; is the i-th particle of the n-th generation. Thus, for any n,

z,
(4.25) IRO = .]'Tlan,i‘
- 1=

Let ¢, /(T) be the probability that no element of 9'I'’: remains under the
Bernoulli percolation on I'’»¢ which is associated to the conductances {Clal;
o € I'?»i}, (The survival probabilities of the edges of I'°~: depend on n for this
percolation process, even though the conductances do not, because of the
dependence on the root.) Thus,

(426) Rn,i = {qn,t(r) = 1}
by Theorem 2.1. Let
qn = E[qn,z(r)lzn = l]

be the extinction probability for the initial particle in the compound (or
mixture) process of generating a tree by {L,},. ,, and following independently
by Bernoulli percolation associated to the conductances {C,},. , on that tree.
Lemma 4.18 gives

M -1
1—ci,,z{1+l,,+1+ Z(ﬁ)

k>n n

-1
k
(4‘27) xC,;l[1+ 1+ ) Cj‘l)CklkH}}

Jj=n+1

-1
> {1 +l,,,+M, Y M;]C;Y(1+ 7klk+1)} .

k>n
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Suppose now that (4.4) fails. Since
M 'Cr (L + Yplyyr) 2 M 'CL N (Crlyyr) = My g,
we have “M; ', < ». Thus P[W > 0] > 0 by Proposition 4.15. In addltlon
it follows that 7, ; = o(M,,), whence by (4.27), we have :
1

(428) qg,<1- m

In order to show that transience is a.s. on W > 0, we may and now do assume
that M, — o since the result is otherwise a consequence of the trivial part of
Theorem 4.5. Let %, be the o-field generated by {L, ;; £ <n, i > 1}. The
martingale convergence theorem guarantees that

lp, = lim E[1, || = lim [E[]j[lan,Jz]

n—o n—>x
Zn
= lim ]—[E[l «o=1] < liminf [TE[G, ;(T)]
n—ow ;=1 n—o =1
1 M,Z, M
= li’IlILiSf(cjn)Z” < li’IlILiSf(l - o(Mn)) <1y_o;

we have used (4.25), (4.26) and (4.28) in turn, together with the independence
of the events R, ; given %, . According to this inequality, recurrence can only
occur on W = 0, as desired.

The first inequality of Theorem 4.9 is a direct consequence of (4.2):

E[€(0 - T); 9T # 2] < [E[( Y z;lc;l)_lJ

nx>1

> M,ZIC;l)_I,

n>1

< ( r E[Z,,]‘IC,ZI)_1 = (

n>1

where the second inequality stems from an elementary inequality between
iterated means ([15], Theorem 26, page 31), here of orders —1 and + 1. In the
other direction, we have, by virtue of Theorem 2.1 and Lemma 4.18,

£(0 - JT)

a/
T+ 0oy T *2

E[€(0 - dT);dT # ]| = E

v

£l 50— d0a(0)| = 51 - d0)

v

1( & -
5( L MC(L vnl,,+1)) :
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In case the probability of extinction is zero, we may use (4.23) to find that
N N n

L MCT L, = X M, Y G

n=0 n=0 k=0

N n
(A-1) ¥ (M;* —M;il)kgock‘l

n

IA

=0

N N
=(A-1){ ¥ M,'C;! —M&ilkZ C;t

n=0 =0

N
<(A-1) Y M;]*C,
n=0

whence
L MIIC (1 +y,l,,0) <A Y M'CH,
n=0 n=0
which yields the last inequality of Theorem 4.9. This also finishes the proof of

Theorem 4.5.
Suppose now that A < «. If (4.4) holds, then Lemma 4.18 shows that

do = 1, whence ¢, (I') = 1 a.s. Thus, (4.26) says that recurrence is a.s. On the
other hand, if (4.4) fails, then transience is a.s. given W > 0 by Theorem 4.9,
which is a.s. given nonextinction by Theorem 4.14. This proves Theorem

4.7. O
We turn now to the propositions concerning misbehaving BPVE’s.

ProoF oF ProprosiTION 4.6. Consider a BPVE with generating functions
fi(s)=s, f(s)=@0/2—-1/n)+ (1/2+ 1/n)s% n > 2. Then easy calcula-
tions show that

m,=1+2/n, n>2,
M,=(n+1)(n+2)/6
and '
l,=(1/2+1/n)"'=1>1/5, n=>3,
whence
YM;'<» and Y M '[1+ (n+1)l,,,] =,

that is, (4.3) fails and (4.4) holds. Also, [/, < 1, so that, by Theorem 4.14,
go < 1. Finally, SRW is a.s. recurrent by Theorem 4.7. O

~ Proor or ProposITION 4.8. - Consider a BPVE with generating functions
f.($)=s,n<27,and f(s)=Q —r,)s +r,s'*%, n > 27, where
2

r. =
" nl(log n)(loglog n)zl
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and
a, = [(log n)(loglog n)zj.
For n > 27, we have
[E[exp—L"—z; L, > 2] =r, expia"—2
(log L) (log(1 + a,))
<r,exp(l +logn)
- =o0(1).
Since Xr, <o, P[V n, Z, =1]> 0, whence the probability that SRW is

recurrent is greater than 0. To show that recurrence is not a.s., we verify
failure of (4.4). Now

n > 27,

n n 2\ (n+1)(n+2)
M, = 1+r,a,) = 1+—|= ,
» = L1 0+ nay) kgm( k) 27 28

and

<a’r =o(i)
n nTn 7
by (4.24), whence
YML(1+nl,) <.

This proves the first part of the proposition.
The proof of the second part uses the generating functions f, above but

with the parameters
2+ logn

r, = 5
n logn[n(log n)”loglog n]

and

a,: [n(log n)zloglog n]

Now we have, for n > 27 and some constants c;,
L2 r(1+a,)? log n)*loglog n
o P ( ) _ ol le8™) ggg
(log L,,) (log )

~ (log(1 +a,))°

n n 2 +logn il 2+logn)
M, = 1+ r,a,) = 1+ ———— | ~cyex _
" kl=—£7( k) k§27(‘, nlogn ) ' p(k=27 n log n

n2rlex log 7 + 2logl log n)?
~ ¢, exp L7m X cg exp( og\n oglogn) = csn(logn)”,

whence XM, ' < o, that is, (4.3) fails for SRW. Finally, we claim that Z, has a
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finite limit a.s., whence SRW is recurrent a.s. We have

1 2 + log k
PIL, = 2] = r, <
kgn [ g ] kgn k lOgIOg i>n k2(10g k)3

1 w 2+ log x
< f 3 dx
loglog n /n x2(log x)

1
n(log n)zloglog n’

whence the claim follows from our preceding calculation of M,, (4.12) and
4.5). O

Finally, we say that a tree, T, is quasispherical [22] if

br I = liminf card{o € T; o] = n}'/".

n—o
This represents a sort of regularity of I' [22]. The genealogical trees of
Galton-Watson processes are quasispherical a.s. given nonextinction ([22],
Proposition 6.4). A simple consequence of Theorem 4.5 is that the trees of
BPVE’s with A < » are also quasispherical a.s. given nonextinction, as is
fitting in view of so many of our preceding results.

CoroLLARY 4.19. The genealogical tree of a BPVE satisfying A < « has
branching number liminf M!/'" and is quasispherical a.s. given nonextinc-

tion.

ProoF. As indicated in the remarks introducing Section 4, the branching
number is the same as the critical drift. From Theorem 4.7, the critical drift,

A, 1S
<w}
A

mn+1(\_1,

c)

’ n
A, = sup{/\ >1; ZM;I/\"(I + 1, A Y AR
k=0

a.s. given nonextinction. Now

n
1<1+10, A" Y M<l+
k=0

whence

CYMIA N < Y ML+, AT Y Ak) < (1 + )ZM;IA".

k=0 A-1

Therefore A, is the radius of convergence of LM, '\, that is, liminf M./ "
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Because W > 0 a.s. given nonextinction by Theorem 4.14, this also equals
liminf Z}/™ a.s. given nonextinction. This is the definition of quasisphericity.
O

Acknowledgment. I am grateful to Jean-Pierre Kahane for informing
me of his paper [17], which provided the key idea (due to Shepp [30]) for the
completion of my proof of the inequalities between crossing probabilities
described in Section 1. (This is the second proof described here, but the first I
discovered.)
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