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A TRANSIENT RANDOM WALK ON STOCHASTIC MATRICES
WITH DIRICHLET DISTRIBUTIONS

By JEAN-FRrRANGOIS CHAMAYOU AND GERARD LETAC

Université Paul Sabatier

Let X; be a (d X d) random stochastic matrix such that the rows of X;
are independent, with Dirichlet distributions. The rows of the (d X d)
matrix A are the parameters of these Dirichlet distributions, and we
assume that the sums of the rows and columns of A provide the same
vector r = (ry,...,ry). If (X,)5_, are i.i.d., we prove that lim, , (X, -
X,) almost surely has identical rows, which are Dirichlet distributed with
parameter r. Van Assche has proved this for d = 2 and four identical
entries for A.

1. Dirichlet distributions on rectangular matrices. If 2 and d are
positive integers, ./}, ; denotes the set of matrices (p; J)l ljd 1 with 2 rows
and d columns such that p;j = 0 and, for all i, X¢_,p;; i= 1. An element of
S = Ay q 1s called a stochastlc matrix of order d; ./, 1s a semigroup under
matrix multiplication. An #;-valued random Variable is called a random
stochastic matrix of order d. If a =(ay,...,a,) with a;> 0 for all j, the
Dirichlet distribution D, on ., ; is defined by its density,

(1.1) Flag + -+ "’ad)lill(r(ai))_lx?’_l,
i
with respect to the Lebesgue measure on the simplex . ;. More generally, if
A= (a;)f ., withe; >0,
we still call the Dirichlet distribution D, on ./}, ; the law of the matrix
X = (Xi j)i‘e 15’1 1
such that the row X® = (X, ;, X, ,,..., X; ;) has a distribution D,

and such that X®, ..., X® are 1ndependent
In [3], Van Assche proves two results that we express in the above notation

as follows: Let p > 0 and A = [£ p ] Then the following hold:

1. Law(Y, X) = D5, 5,y ® D, implies Law(YX) = D5, 5,,,.
2. If (X,,)5 _, are i.i.d. with distribution D,, then
Z=lim(X,X,_, X))

n—o

&; 1)“'$al,d)

exists almost surely, Z = (5) and Law(Y) = Dy, o).

The aim of this note is to extend these results as follows.
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THEOREM 1.1. Let A = (a; )l 1 j 1 With a;; > 0. Denote the margins of A
byr,=X% ia;; ands;, = ¥ |a;,;. Then Law(Y, X) = D, ... ») ® Dy implies

Law(YX) = D,
For instance, if we write for p and ¢ > 0,

B, o(dx) = xP7Y 1 = x)? g 4(x) da,

1
B(p,q)
then

Law(C, B, A) =B, piq ® Bp.g ® By g
implies Law(CB + (1 — C)A) = B, 4+ from Theorem 1.1.

THEOREM 1.2. Let A = (a; ;)i 1J » With a;; > 0, such that

= E a;; = E a; foralli=1,...,d.
j=1 j=1 )
If (X,),_, are i.i.d. with distribution D,, then Z = lim, , (X, X, _, -+ X;)
exists almost surely, all rows of Z are identical to some random Y of .} ; and
Law(Y) = D, ., Furthermore, if Y, in /| ; is independent of X, then

.....

For instance, if A, B and C are independent in [0,1] such that
Law(B, A) = B,, ® B,,, then Theorem 1.2 implies that

(1.2) Law(CB + (1 — C)A) = Law(C) ifand only if Law(C) = 8

ptq,ptq’

An application of Theorem 1.2 is provided by considering a stochastic matrix

= (p; j), j—1 such that p,; >0 for all 7, j, with stationary distribution

(77- )%_,. Assume now that a Markov chain on {1,..., d}, roughly governed by
P, suﬁ'ers at each transition n — 1 » n small random perturbations around
P, that is, P has to be replaced by some random X, of .. Taking A > 0 and
A = (Am;p;,); ;, then the row and column margins of A are (r,,...,r,) =
Mary, ..., 7). Assuming that X, has distribution D, is an expedient model:
One has E(X,,) = P; fluctuations around P are small if A is big. Theorem 1.2
implies that the asymptotic distribution is random with distribution

Dy .. wpy close to (my,...,m,) if A is big.
Finally, note that we consider in Theorem 1.2 the left random walk on ./,
(1.3) n—>X, X, ;- X;.

Its transient behavior contrasts with the positive recurrent behavior of the
right random walk on ./,

(1.4) noX, X

The fact that (1.4) has a stationary distribution is easily proved. For instance,
using Proposition 1 of [1], applied to the space E = /] ; and to the random



426 J. F. CHAMAYOU AND G. LETAC

maps F,: E — E defined by F,(y) =yX,, it is easy to see that the a.s.
convergence of (1.3) as indicated in Theorem 1.2 implies that for any y in . ,
the Markov chain on ./ 4,

(1.5) n-yX, - X,,
has the stationary distribution D,
For an arbitrary distribution i 1n / of X, (with X,,..., X,,,... iid), (1.5)

is the simplified version of the Potlatch process which is described on the first
page of [2].

2. Proofs. We offer two proofs of Theorem 1.1. The first uses the interest-
ing formula (2.1), which leads to (3.1). The second was suggested to us by
Stephen Lauritzen (Aalborg). Paul Erdés says that God has a book for the best
proofs; this one could be taken from it.

ProposiTION 2.1. Let a = (ay,...,a,) such that a; > 0 forallj=1,...,d
and denote o = E}Llaj. Let X = (X,,..., X;) be a random variable of ./ ;.
Then X has distribution D, if and only if for all f in (0, +x)? one has

d
(2.1) [E(( fiXy+ - +ded)_") = 1:[1}‘[‘”.

Proor. (=) Clearly, from (1.1), if (k,,...,k,;) € N¢ and n = E}lej, one
has

10y + 1) e (o + &y — 1)
o(c+1) - (c+n-1)
Let g be in R? and ¢ in R such that ltg;| <1 for all j:
IE([1 —t(g X+ +ngd)]_0)
* o(c+1) - (c+n-1)

iy
(2.2) E(X - Xhe) =

=X o IE([ngl + o "‘ngd]n)tn
n=0 ‘
(2.3) * * (a + 1) (a; + k; )
=X X l_[ = ’ thighs
k=0 kg=0J= k! !

d
= T1(1-1g) ",
j=1

the second equality being obtained with the multinomial expansion and (2.2).
Now to get (2.1), without loss of generality, we take Z‘le f; = 1and in (2.3)
we take t = 1l and g; =1 — f;.
(<) Let us take g in R¢ and ¢t in R such that |tg;| < 1 for all j. Applying
(2.Dto f; =1 — tg; we get (2.3), which implies that, for all =,

(24) [E([g1X1 + o +ngd]n) = f/ (g1 + +* +84%4]" Dy(dx).

1,d
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Since polynomials are dense in the continuous functions on the compact set
A1, a» (2.4) implies that X has distribution D,. O

FIRST PROOF OF THEOREM 1.1. Let f=(f,,..., f,) bein (0, +x)?; ‘f is the
transposed column. Thus YX'f is a real random variable. Write o =
T} ,LY_,a;; and recall that the rows X®,..., X* are independent. Now we
have

E((vx‘r) ") = E(g((¥x'F) "Ix)

)
0|
2 eeen”)
e

Equality (1) comes from Proposition 2.‘1 and independence of X and Y, (2)
comes from the independence of the X and (8) comes from Proposition 2.1.
From the “if”’ part of Proposition 2.1, the theorem is proved. O

SeEconD PROOF OF THEOREM 1.1. If a > 0, the gamma distribution vy, (dz) is

(T(a)) "2 exp(—2) Lo, +=(2) dz.

Let (Z )L 1 J 1 be a random matrix with independent entries such that
Law Z;; i) . Write

d k k
Jj=1 i=1 i=1

and define X in .}, ;,, Y in .} ; and Y’ in . , by

Clearly Y' = YX, but well-known properties of the Gamma distribution imply
that

Law(X) = D,, Law(Y) =D, . ., LaW( Y') =D, .

and that furthermore X and Y are independent. The remainder of the proof is
obvious. O

To prove Theorem 1.2, we use a proposition which, like Proposition 2.1,
belongs to the folklore. We do not claim novelty, and the proposition is
probably buried in the abundant literature on products of random matrices,
from which it is not easy to extract the following simple statement (which is a
particular case of Lemma 1(b) of [2]).
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ProposiTiON 2.2. Let (X,)7_, be a sequence of i.i.d. random variables
valued in ./} such that Plmin, #{XD;; =01 < 1. Then there exists Y in A
such that, almost surely,

Y
lim X, - X, =

Y
Furthermore, if Y, is a random variable in 1,4 Which is independent of
X, then Law(Y,X,) = Law(Y}) if and only if Law(Y;) = Law(Y).

Proor. We first prove that if g is in R?, then there exists a real random
variable Y, such that, almost surely,

lim X, -+ X,"g =Y,'(1,...,1).

n—o
To see this, we write
tgn =Xn Xltg’
and
Un = m,in(gn)i’ Vn = max(gn)z
13 14
Let p and q in {1,...,d} be such that, for fixed n > 1, one has U,_,=
(8,-1), and V,_; = (g,_,),. We have, for all i,
Un—l + (Xn)iq(vn—l - Un—l) = Z (Xn)ijUn—l + (Xn)qun—l
J*q
d

< Z (Xn)ij(gn—l)j = (gn)l

Jj=1
Similarly,
(8)i < Voot = (X,)ip(Voos = U,_y).
Thus if M,, = min,;(X,),;,
Ui U,y + M(V,_, - U,_)) <U, <V,
Voo -M,(V,_1-U,_)) <V,_,,

we get

which implies
Vn - Un =< (1 - 2Mn)(Vn—1 - Un—l) =< (VO - UO) ]._.[ (1 - 2MJ)
j=1

Since P[M; = 0] < 1, clearly almost surely ©*_,M, = +c, (U,);_, and
(V)5 o are adjacent sequences and their common limit Y, has the required
property.

The first part of the proposition is now easily obtained by applying this to
each g of the canonical basis of R<.
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To prove the “if”’ in the second part, one has just to observe that Y, defined
by
Y,
D = lim (X, -+ X,)
Y, o
has the same distribution as Y, and that
Y, Y
&=
Y, Y
To prove the “only if”’ in the second part, one may assume without loss of
generality that Y, is independent of (X, )} _,. Thus,

'Y
Law(Y;) = Law(Y, X, ) = Law(Y, X, - X;) = Law Y| :
Y
Y
Since Y| : | =Y, the proof is done. O
Y

Proor oF THEOREM 1.2. Clearly, Proposition 2.1 is applicable and there
exists a random variable Y in .| ;, such that, almost surely,

Y
lim X, X, , - X, =

n—o .
Y
Furthermore, if Y; is independent of X, and has distribution D, ., then

from Theorem 1.1 Law(Y; X,) = Law(Y;). The second part of Proposition 2.1
implies that Law(Y) = D, . O

3. Comments. One can see two possible lines of generalization. The first
is deceptive; it consists of trying to extend Theorem 1.1 to random Dirichlet
measures on an abstract measurable space (E, &). If « is a bounded measure
on (E, &) with total mass o, a random Dirichlet distribution X with parame-
ter a is a map of some probability space () on the set of probability measures
on (E, &) such that, for any finite measurable partition (A,,..., A;) of E
with a; = a(A)) positive for all j = 1...d, the following hold:

1. the map o — (X(A)),..., X(A,), QO - R? is measurable;
2. the law of (X(A,),..., X(A;) in ./ ; is D,
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This is standard for generalizing Proposition 2.1 to this framework: A
random probability X on (E, &) is a Dirichlet random measure with parame-
ter o if and only if, for any measurable f: E — (0, +) such that log f is
bounded, one has

(3.1) [E((fEde)_a) = exp(—jE(log ) da).

The tool for this is the extension of (2.3); if X is a Dirichlet random probability
with parameter «, if g: E — R is measurable and bounded and if |¢/max|g| < 1,
one has

’0'(0'+ 1)~~~ (o+n-1)

] )

= exprg‘,1 %fE(g(x))na(dx).

Although (3.1) and (3.2) are attractive, we have not been able to extend
Theorem 1.1, which corresponds to the case where a is concentrated on a
finite number of atoms, beyond the trite case where « is concentrated on a
countable number of atoms.

The second extension is more promising. It consists of using the definition
of beta distributions on the cone of positive definite matrices, as is well known
in multivariate analysis, and even on a symmetric cone. For this, we must
replace the gamma distributions of the second proof of Theorem 1.1 by
Wishart distributions on symmetric cones.

Finally, we would be pleased to extend Theorem 1.2 at least to the case
where A does not satisfy this rather artificial symmetry condition on margins.

However, we do not know how to generalize the Dirichlet distributions, or
11
2 1)

Y
(3.2) n=0

even the Beta distribution, even in a simple case like A = [
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