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UNIFORM LOCAL PROBABILITY APPROXIMATIONS:
IMPROVEMENTS ON BERRY-ESSEEN

BY MARJORIE G. HAHN! AND MICHAEL J. KLASS?
Tufts University and University of California, Berkeley

Let X, Xg,... be independent, mean zero, uniformly bounded ran-
dom variables with S, = X7 + --- + X,. Optimal criteria are determined
on the length and location of an interval I' so that P(S, € I') is propor-
tional to (JT'|//Var S,) A 1. The proof makes an unusual use of support
considerations.

1. Introduction. Let X, X;, Xs,... bei.id., mean zero, bounded random
variables. Let n be a fixed natural number, S, = 3°7_; X and I be an interval.

If S, /\/Var S, has a continuous density f(x) which is bounded away from 0
and infinity on a bounded region B, then for I'/\/Var S, C B,

S» T )v 0y
JVarS, /Var§, ~ JVarS,’

where |A| = sup{|x — y|: x,y € A} denotes the diameter of the set A and
A; < Ay means there exist C; > 0 and C3 < oo such that C1A; < Ay < Cq4;.
Even if S, //Var S, does not have a density (let alone a bounded one), the
approximation in (1.1) may still hold. If this is to be the case, intervals I
of arbitrarily small length are not permitted (otherwise S,/,/Var S, would
“usually” have a density). Notice that if X took on only the values —a and
1—a, then the support of S, would consist of atoms 1 unit apart. Consequently,
if (1.1) is to hold for all of the above X distributions and all integers n, the
intervals I' must contain an at least half-closed interval of length at least
equal to the diameter of the support of X. Since nonlattice variables can be
infinitesimally close to lattice variables, the condition on the minimal length of
I' cannot be eliminated by a nonlattice assumption. Additionally, since P(S, €
I') is at most 1, the validity of (1.1) requires that |I'| = O(,/Var S;,). Moreover,
if such a I is located too far into the tail of the distribution, then P(S, € I') =
o(|IT'|/y/Var S,). [See, e.g., Bikyalis (1966).]

Our main result identifies the family of intervals for which an appropri-
ate analogue of (1.1) holds and provides an extension to independent (but

(1.1) P(S, eF):P(
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not necessarily identically distributed) mean zero, uniformly bounded random
variables.

THEOREM 1.1. Fix any 0 < ¢ < % For any integer n > 1, let X3,...,X,
be independent mean zero, uniformly bounded random variables with sum S,
Let

(1.2) L=§gl(lsuprjl) < oo.

Let y, . and y; . be unique reals such that

(1.3) Ve =inf{y: P(S, <y) > &}

and

(1.4) ¥y, =sup{y: P(S,<y)<1l-¢}
Let T be any at least half-closed interval of reals such that
(1.5) IT| > L

and

(1.6) TN [ypeInel# 2.

Then there exists ¢, > 0, depending only on & (and not otherwise on n,{X;},L
or I), such that

(1.7) P(S,,el“)zc8<1/\—|£|—).

JvVar S,

Moreover, by direct application of the Berry—Esseen theorem,

(1.8) P(S,el') < (<_|1"_| +2c¢*L

NeT )”ﬂl——s“)

where c* is the constant determined from the Berry—Esseen theorem.

Combining (1.7) and (1.8), Theorem 1.1 establishes that whenever the inter-
val T has length at least L and some portion of I' intersects the center of the
S, distribution, namely, between the eth and (1 — £)th quantiles, P(S, € I)
is proportional to the length of the interval over the standard deviation, pro-
vided this ratio is not larger than 1. However, as the central limit theorem
would indicate, this bound is too large as I' departs from the center of the dis-
tribution. A result of Bikyalis (1966) implies that if (1.6) fails, then the upper
bound in (1.8) can indeed be reduced by a factor of y,, where y, | 0 as £ | 0.

Concentration function results identify the order of magnitude of the max-
imum probability concentrated in an interval of a specified length [. Theo-
rem 1.1 shows that, provided this length is at least L, all intervals of length
1 located near the center of the distribution have essentially the same proba-
bility content.
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Although nonasymptotic, Theorem 1.1 also bears some relationship to local
limit theorems. Perhaps the most general references in the independent but
not identically distributed case are those of McDonald (1979a, b) and Muhkin
(1991), which consider lattice random variables, and Maejima (1980), which
considers random variables with uniformly bounded, continuous densities.

The remainder of the paper focuses on the proof of Theorem 1.1. A judi-
cious decomposition of partial sums of certain triangular arrays into two com-
ponents, one of which has uniformly bounded variance, allows Theorem 1.1
to be obtained from the Berry—Esseen theorem plus support considerations.
Quite surprisingly, support considerations are the essence of establishing a
version of Theorem 1.1, first for sums of infinitely many random variables
whose sum of variances is finite (Section 2) and then for weakly convergent
partial sums from a triangular array (Section 3). Section 4 then completes the
proof of Theorem 1.1.

An easy reduction will simplify the notation. If L = 0, the result is trivial.
Hence it may be supposed that 0 < L < oo. Dividing each random variable
by L, it may furthermore be supposed that L = 1, which will be assumed
throughout the sequel.

2. Support considerations and the concentration of infinite sums of
independent random variables. For any closed set F, let diam F denote
the diameter of F and let

(2.1) lp=inf{l >0: [x,x+I]NF # ¢V x € (=l +inf F,sup F')}.

For closed sets F and G, let F+ G = {x+ y: x € F and y € G}. Clearly,
lrpie <max{lp,lg}. In fact, the following lemma holds.

LEMMA 2.1. Let F and G be nonempty closed subsets of R. Then
(2.2) lrie¢ <max{|lp — lg|,min{lF,lg}}.
Moreover, if lp =0, then

(lg — diam F)*, if diam F < oo,
(2:3) Irve = [0, if diam F = oo.

The proof of this lemma involves no probability and is contained in the
Appendix. An immediate corollary follows.

COROLLARY 2.2. Let F,..., F, be nonempty closed subsets of R such that
lp, <1foreach 1< j<n.Thenl " F < 1. Moreover, if lZ};l F= 1, then:
. () Ip; =1 for some 1< j<n. ‘
(i) I, <1=1lp; =0.
(iii) Ir, = 0 = Fj consists of a single point.
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Observe that if Wy,..., W, are independent random variables with sup-
ports F4,...,F,, then Wy + ... + W, has support F; + --- + F,. Moreover,
if F is the support of any random variable W, then for any ! > Ir, P(W €
[2,z+1]) > 0 for all z € [l +inf F,sup F).

We now obtain a slight extension of these ideas.

THEOREM 2.3. Let Wy, Wy, Ws,... be independent mean zero random vari-
ables such that

2.4) 3 Var W; < co.
Jj=0

Let F; denote the support of W ;. Suppose that for each j > 1 there exists
0 < aj < 1 such that

(2.5) F;c[-aj,1—aj]
Suppose also that

(2.6) lp, < 1.

Let Soo = Y729 W, and denote its support by Bo.. Then
(2.7) Ip, <1

If lp, =1, then (2.8) holds where:
(i) lp; =1 for some j = 0;
(2.8) (11) le <1l = le =0;
(i) Irp, =0 = P(W;=0)=1

For a partial converse, suppose there exists xo € R such that
(2.9) supp Wo = {xo+j: j=0,£1,42,...} N [inf Wy, sup Wy].
Then

(2.10) (2.8)(1)—(iii) imply lp, = 1.
Furthermore, if z € (—1 + inf By, sup By), then both
(2.11) P(Ss €(2,24+1]) >0 and P(Sw€[z,2+1))>0

hold if lp,, <1 and either lp_ < 1 or (2.9) holds.

PrROOF. Let B, denote the support of S, = }-7_, W;. From Corollary 2.2,
it follows that g, < 1. Therefore, (2.7) will follow if

(2.12) liminf I5, > l...

Moreover, if (2.12) holds and /g, = 1, then lim,_, g, = 1. Applying (2.5)
and (2.6) together with an inductive argument based on Lemma 2.1 yields the
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existence of an integer ny > 0 such that [g, =0 for 0 <n < ng and I/, =1 for
n > ng. Corollary 2.2 then implies that (2.8) holds.

To prove (2.12), fix any £ > 0. By (2.4), there exists n, < oo such that
Yjsn, VarW; < §s2. Hence, using Chebyshev’s inequality, for all n > n,,
P(|Ss — Sul > £/2) < 1. Take any n > n, and any z € B,. There exists § > 0
such that P(|S, — z| < £/2) > §. Hence, by independence of S, and Se — Sy,
P(|Se — 2| < &) > 8/2. Consequently, z € By, where for any set @ define
Q. ={x: d(x,Q) < ¢} withd(x, @) =inf{|x—y|: y € Q}. Thus, B, C B,
for all n > n, and so for any £ > 0 and all n > n,,

(2.13) B,N[—k,k] € BoN[—Fk,E].

We will now show that for any £ > 0 and & > O there exists m,  such that for
alln>m,p,

(2.14) Boo N[~k k] C By, N[—E, k.

Fix ¢ > 0 and £ > 0. By compactness of By, N [—£, k], there exists 8, > 0
such that for all z € B, N[—k, k], P(|Se — 2| < £/2) > 8.,%. There also exists
m, < oo such that for all n > m, 4, P(IS, — Swl < £/2) > 1 — 8,,/2. Hence,
for all such z, P(|S, — z| < &) > 8,,1/2. Therefore, for all n > m,

Boo n [_k, k] g Bn,s’

whence (2.14) holds.
There exist x; < y; such that

(%2, 21N Boo N[—k, k] = {xz} U{ys}

and yi —xz = lp_n[—kk]- By (2.13), (x1+¢, y1 — &) C BS. Hence, for all n > n,,
Ip, > yr — xx — 2& = lp [k x] — 2. Since & > 0 is arbitrary, liminf, . /g, >
I n—#k]- This being valid for each k& > 0, (2.12) holds.

If (2.9) and (2.8)(i)—(iii) hold, then for some z,,

B,={z,+j: j=0,£1,£2,...}N[inf B,,sup B, ]

and for some 0 < ng < oo, Ig, = 1 for all n > ny (so that B, contains at least
two points for n > ng). Combining (2.13) and (2.14), it follows that Ip = 1.
Thus, (2.10) holds.

(2.11) obviously holds if /g, < 1. When /p_ = 1 and (2.9) holds, then since
(2.8) also holds, each X for j > 1 is either a point mass at 0 or a two-point
distribution living on {—a;,1 —a;}. Hence, By, the support of S, consists of
points exactly one unit apart. Thus, (2.11) follows. O

COROLLARY 2.15. Let W be a nonconstant infinitely divisible random vari-
able whose Lévy measure vy has support in [—1,1]. Let F denote the support
of Wo. Then lp, < 1and lp, = 1if and only if W has no Gaussian component
and vy has support in {1} U {—1}.
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ProOF. Take any such Wy, vo and Fy. There is no loss of generality in
making several assumptions. First, assume W, has no Gaussian component,
since otherwise /r, = 0. Next assume that EW, = 0 since lgypp (wo—EW,) =
lsupp w,- If vo has support in {1} U {—1}, we are done. So suppose (—1,1) N
supp vy # <. Replacing W by — W), if necessary, assume that supp »oN(0, 1) #
. Finally, assume that v¢({0}) = 0.

Decompose vg as vo = v§ + vy, where v{(A) = (AN (0,1]) and v, (4) =
vo(AN[-1,0)). Now write Wy = W{ + W, where W} and W, are indepen-
dent, mean zero, infinitely divisible laws with supports F§ and F; and Lévy
measures v{ and v, respectively. Since v¢((0,1)) > 0, Corollary 2.2 can be
invoked to conclude that Iz, < 1if [ F=1 and [ ri < 1. We will focus on F§
since F; can be handled in a similar manner.

Before analyzing [ Fi> several observations are needed. Consider any Lévy
measure v with v([a,b]) < oo where [a,b] is the smallest closed interval
containing supp » and 0 < a < b < 1. The probability measure

00 1%k 00
p=Poisyv=e )" 7 has supp u= UG
k=g ° k=1

where G = supp »U{0} and G = GY_, + G for k > 1. For each n, there exist
Xn, ¥n € Usey Gg with x, < ¥n, (Xn, yn) € (U‘;;’:I Gg)c, and y,—x, > lUi‘;ng - %
Because GY € G C -+, there exist &, such that x,, y, € Gy and (xn,yn) €
(UR, Gg?)c = (UZ, G?)c C (G}, )°- Therefore, ngn > yn — %,. Consequently,

lu= g0 <suplgy <sup{maxlg ,lg}=lg <max{a,b—a}.

Furthermore, centering u to create a mean zero law will not change lgupp L.
Write v{ = j21vi where v,(A) = v(AN (27", 277t1]) for n > 1. Let Y
be independent random variables with .#(Y}) = &, * Pois v,, where ¢, is
chosen so that EY} = 0. For all n > 1, 0 < lys < 1 with both inequalities
strict whenever v,,((O 1)) > 0. Furthermore, v,,((O 1)) > 0 for some n > 1
since v¢((0,1)) > 0. Since v¢ has support in a compact set, Wy has finite
variance as do W} and Y} for all n. Therefore, Theorem 2.3 implies that
l Fr = Lsupp Yo v < 1. Analogously, it can be shown that /p- < 1. Hence

lp, <1, thereby cémpleting the proof. O

3. Results for triangular arrays. We now extend Theorem 2.4 to trian-
gular arrays.

THEOREM 3.1. Foreachn > 1, let Wp1,Wya,..., Wy, be independent mean
zero random variables with supports F,1,..., Fyp,, respectively. Suppose that
for each such Fj there exists 0 < anj < 1 such that

(3.1) Fnj cl- anJ’]- anj]
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Suppose also that there exists a random variable S such that

(3.2) /(fj an) — £(8).

=1

Let F denote the support of S and Fx = FN[—K,K]. Then for any K > 0,
any 0 < £ < 1 and any sequence x, € [¢ — 1 +inf Fg,—& + sup Fx], both

(3.3) h'lllllol‘}f P(Z Waj € (%n, %0 + 1]) >0
and
(3.4) hﬂg}f P<Z1 Wi € [%n, 20 + 1)) > 0.

Proor. If S has a Gaussian component, then (3.3) and (3.4) are trivial.
Hence, it may be assumed that S has no Gaussian component. For ease of
exposition, replace each W,; by —W,; if necessary so that it may also be as-
sumed that if S has an infinitely divisible part with Lévy measure v, then
»(0,1] > 0. Under this assumption, we prove (3.3). The proof of (3.4) is anal-
ogous, requiring no further change in W,;.

We intend to proceed as follows: First, we reorder the variables and obtain
a limit distribution for the sums as well as the individual variates. Second,
we partition the sums into two subsums, the second of which converges to
an infinitely divisible law. Third, we show that if (3.3) is to fail, the limit
distribution of the individual terms and partial sums must be discrete with
atoms located one unit apart. Furthermore, both endpoints of the limit interval
[x*, x*+1] of [ x,, x,+1] may be assumed to be atoms of the limit distribution.
Fourth, to obtain an explicit means of relating the events {S = x*},{S =

x* 4+ 1} and {ZJ_I Wpj € (2, %, + 1]}, we introduce another partition of the
W, for 1 < j < k, into two groups whose sums T',; and T2 converge in
law to independent, discrete-valued, mean zero random variables T'; and T's,
each having atoms one unit apart, with —oo0 < y; = essinf Ty < 0 and T
unbounded above if T'; is unbounded above. [Note .Z(S) = £ (T1 + T2).]
Finally, with these variates, if (3.3) fails, then there exist §, — 0 such that

nlgglo P(Th1+ The € (x5 — 8ns Xn s |Th1 — y1l < 6) = P(S=x*T1=y1),

which will be shown to be positive. Using a certain representation of T, we
will connect the occurrence of {T'n1 + T2 € (%n — 87, %11, |Tn1 — y1| < 8x} with
what amounts to the occurrence of {Tnl +Tho€(xn+1—-28,x, +11,|1Th1 —
1.— y1| < 8} for any fixed 0 < 6 < 3 1 thereby establishing that (3.3) must in
fact hold.
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Having outlined our method of proof, we are ready to begin. By reindexing,
if necessary, it may be supposed that for each n,

VarW,; > VarW,a > ... > Var Wp;, .

Moreover, by adding identically zero variables, if necessary, it may be assumed
that 2y < kg <---.
Let

and

kn
v2 =VarS,;, = > EW?U-.

J=1

Fix any K > 0, any 0 < £ < 1 and any x, € [~1+¢&+inf Fg,—e+sup Fx].
By passing to subsequences if necessary and using a diagonal argument, it
may be assumed that there exist extended reals x*, 0 < a; < 1 and 0 <
U < 00, and independent random variables —a; < W; < 1 — a; such that as
n — 00, X, = X*, Up = U, @nj = aj and £(W,;) —» £ (W;). By bounded
convergence, EW; = lim,_,o.c EW,; = 0 and EW? =lim, .o E Wﬁj.

If voo = 00, then by the central limit theorem for triangular arrays, S,z,/vn
converges in law to a standard normal, which contradicts (3.2). Hence, v, <
00. From the “usual algebra” involving fourth moments of sums of independent
random variables and the uniform bounds of the summands, it follows that the
fourth moments of S,;, are uniformly bounded. So by uniform integrability,

kn
ES=1lmE) W, =0
n—00 i

and

ES? = lim Srzzk,, =vZ.

n—>oo
For any j*,
j*

E(Z W§) = lim E(Sy)? < 0%,
=1 n—»00

Hence, there exists 0 < Uy such that

o0
Z EWf =a2.
Jj=1

. Moreover, there exist integers 1.< j; < jz <--- with j, — oo such that

Z(Sn,) — j(,fi w,-).
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Let
j— k"
Sp=Sub, —Snjp= Y. W
J=Jn+1

Since ES2 < v2 — v% < 00, {S,} is tight. By another subsequence argument,
there exists a random variable Wy, independent of {W, j > 1}, such that

Z(8,) = £(Wy).

Therefore,
[o,¢]
/(Z Wj) = lim (S, +85) = £(8).
20 n—

Clearly, EW; =0 and EW? + o2, = vZ..
We claim that Wy is infinitely divisible. This follows from the fact that
{Wyt jn < J<kn}areuan.: for any ¢ > 0,

2
nj

lim sup P(|Wyj| > &) < lim sup —;
=00 i =00 i
2 J EW?2?,
< lim sup &~ Z — T
noRgsge =1 J
2

] v
< lim 2 =0.
n—o00 6‘2]n

Since |W,j| < 1 for each j and n, the Lévy measure v of Wy has its support
in [—1,1]. Theorem 2.3 now entails that /r < 1. By weak convergence,

kn
(3.5) liminf P<Z Wy € (xn, 2n + 1]) > P(S e (x*,x* +1)).

Ifeither [y < 1orbothlz = 1 and S has an atom in (x*, x*+1), the probability
in the right-hand side of (3.5) is positive and we are done. We may therefore
assume that [r = 1 and that S has no atom in (x*, x* + 1).

Invoking Theorem 2.3:

(1) Ip; = 1 for some j > 0.
(11) lpj < l:lpj =0.
(i) Ip;=0=> P(W;=0)=1.

For j > 1, lr; = 1 implies that the mean zero variate W concentrates on
the two-point set {—aj,1 — a;}. For j = 0, Corollary 2.15 implies that W
has no Gaussian component and that its Lévy measure v has its support in
{=1}U{1}. Hence, S is discrete with its atoms located exactly one unit apart.
Since x* € [-1+ £ +inf S, —¢+sup S] and (x*, x* + 1) contains no atom of S,
both x* and x* + 1 are atoms of S.
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Let po = min{P(S = x*), P(S = x* + 1)} > 0. We need to write S,;, as a
sum of two groups of variates. If W, # 0, note that 0 < a; < 1andlet J,; = {1}
and J,2 = {2,3,..., k,}. Otherwise, .Z(S) = .Z(Wy) is the difference of two
independent Poisson random variables, the first having parameter v({1}) > 0
and the second v({—1}), adjusted by a centering constant to have mean zero.
In the latter case (W, = 0), there exists a partition of {1,2,..., k,} into two
disjoint subsets J,1 and 2 such that :

: 2 2%
fim, 3 EWy =,
Jj€dn

where A* = %min{v{l},po} and

/( ) W,,j) > Z(Np — \%),

J€dn1

where N . is Poisson with parameter A*.

Fori=1,2, let

T.;= Z an.
jEJni
There exist independent T'; such that
ZL(Tyj) > £Z(Tj) and £(S)=2L(T1+T2).

Each T; is discrete with its adjacent atoms one unit apart.

Let
—ai, if Wl ';'é 0’
=A%, if Wy=0.
The support of T is either {y1,y1+ 1} or else {y1+%k: £=0,1,...}. When

T, is unbounded above, then T'5 is also unbounded above.
We assert that

(3.6) ‘ P(S=x*T1=y1)>0.

y1=essinf T = [

PROOF OF (3.6). Let 2* =min{k>0: P(S =«x* T, = y;+ k) > 0}. The
set defining £* is nonempty'and P(T's = x*—y1—k*) > 0. If * = 0, we are done.
It remains to see that k* cannot be positive. If 2* > 0, then P(S = x*,T1 =
y1+ k*—1) = 0, which implies that P(Ty = x*— y; —k*+1) = 0. Since T3 has
atoms one unit apart, P(T3 = x*—y1—k*) > 0 and P(Ts = x*—y;—k*+1) =0,
necessarily P(Ty < x* — y; — k*) = 1. Therefore, the support of T'; must be
{y1, y1 + 1}, which implies that k* cannot be greater than 1. Hence, k* = 1.
This produces a contradiction as follows:

0<P(S=x*+1)
—P(S=2"+1,Ts < 2" — y1 — )
<P(Ty>=y1+k*+1)=0.
Hence, £* = 0 and (3.6) holds. O
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To obtain a final contradiction, suppose that
(3.7) lim P(Tp1 + Tnz € (%, % +1]) = 0.
Then forall0 <6 <1,
(3.8) lim P(Tpn1+ Trz € (%2 — 8,%,]) = P(S = 27).

Combining (3.6) and (38.8), there exists §, > 0, 6, | 0 such that

}gl;lo P(Ty1+The € (x, — 6n, 201, 1Th1 — y1l < &)
=P(S=x*T1=y1)>0.

3.9)

We intend to employ (3.9) to contradict (3.7) by means of a coupling argu-
ment. The coupling enables us to transfer information concerning {7'»1+ Tnz €
(% — 6y %01} 10 {Tw1 + Tha € (%, + 1 — 28, %, + 1]} for any fixed 0 < & < 3

Let

_ 1—a1, if Wi#0,
Y2711, if Wi=0

and take any 0 < y* < ya. Then let

2, = Z I(an > y*).

jEJnl
Clearly,
! 1 ai, if Wl $ 0,
(3.10) hm P(2,=0)= [ ¥ if Wy=
and
. _ 1 Jau if W1 #£0,

Now introduce mutually independent random variables {Y nit, Y ni—, M,: 1<
i < k,} satisfying
/(Yni-h? =2Z(Wh | Wai > 5%,
K ' LYnis) =L (Wpi | Wy < ¥*),
P(Mn=j)=P(an?y*|=Qn=1)~
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Put T, = 2 jedn Y,i- and D, = Y.u,+ — Ynu,—. Note that D, < 1,
D, % 1and T, —> y;. Take any 0 < 6 < 1. By 3.7),
0='}i_g1°P(Tnl+Tn2 €(xn+1—-26,x,+1])
= ’}LIEOP(Qn =1)P(Dp + Tpi- + Tha € (xn +1—28,x, +1])
> im P(2, = 1)P(Tn1- + Trz € (xn — 8, %a])
(since D, < 1and D, —> 1)
= ’}LIEOP(Qn =1)P(Thi+ Thz € (%, — 8,%,] | 2, =0)

(by construction)

> lim 2Zn=1
>0 [by (3.9—3.11)].
This contradiction of (8.7) establishes the theorem. O

P(Tn1+ The € (xn — 8,%n),1Th1 — y11 < 8n)

4. Proof of Theorem 1.1. We only need to show (1.7). Recall that we may
assume L = max;<;<,(| supp X;|) = 1. Suppose that Theorem 1.1 fails to hold.
Then there exists £ > 0, a triangular array of rowwise independent mean zero
random variables W,1, W,s, ..., W, for some integers 1 < k1 < k2 <--- such
that, for some 0 < a,; <1,

P(—an, < Wy <l-ap)=1
and intervals I',,, at least half-closed, of length at least 1 such that
(4.1) Lo N[350 ¥ e1# D,

where

kn
Vne = inf{y: P(Z W < y) > e},

4.2) kj=1
Vo= sup[y: P(anj < y) <1- 8]
j=1
and
,/Var():".’; Wai) En
(4.3) lim (1 v T |1 ad ) P(Z W€ rn) =0.
n—>oo n ]=1 N

There exist yn1 < Yn2 With ¥,2 — Yn1 = 1 such that

(Yn1,Yn2) CT'n C [Vn1, 7n2]-

Without loss of generality it may be assumed that y,2 € I', whenever y,2 < oco.
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By passing to subsequences if necessary it may further be supposed that

kn
o= Var(z an) - ol

=1

for some 0 < 0 < 0.

CASE 1. 0o < oo. By Chebyshev’s inequality, {Z " Waitn=1 is a tlght
sequence of random sums. By passing to subsequences if necessary, it may
also be assumed that there is some random variable S of variance o2 such

that

kn
/(Z W,U-) - Z(8).
j=1
There exists x, such that (x,,x, +1] € I’y and (x5, x, + 11N [y, ,, 5',*;,8] #* .
Since 0, — 0w < 00, ¥, , and ¥, are uniformly bounded by Chebyshev’s
inequality. Hence, so is x,. As usual, it may therefore be assumed that x,
converges to some x* (finite). Let y; = essinf S and y} = esssup S.If y; —1 <
x* < y¢, then Theorem 3.1 contradicts (4.3). We need to consider two further
subcases.
Subcase (i). x* > yJ. Then x*+% is a point of continuity of the S-distribution.
Hence

lim P(ZWnJ_xn+ ):P(Szx*+%)=0,

n—>oo

Therefore,

0 = lim P(ZW,UEF )

n—->oo

J

kn
> lim sup P( Woi € (%, 20 + 1])
-1

n—oo
. "
= lim sup P( Woi > xn>
n—oo j=1
> e

by (4.2) since x, < ¥, ., which gives a contradiction.
Subcase (ii). x* < y; — 1. Proceeding as in subcase (i),

0= lim P(an, eT )

n—oo ]—1

' > lim sup P(Z W, e (xn,xn + 1])
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kn
= lim sup P(Z Waj < x5 + 1)

n—oo J=1

kn
> lim sup P( Y W< 5';,5)

n—>oo j=1
z &,

yielding the third contradiction.

Hence, the case 02 < oo of Theorem 1.1 is established. Moreover, because
Theorem 1.1 now holds for 02 < oo, it follows that for every 0 < v < oo and
every 0 < ¢ << 1, there exists ¢;, > 0 such that whenever the conditions of

Theorem 1.1 hold with the additional constraint that lim sup Var Zj.’;l Wpi <
v2, the conclusion (1.7) of Theorem 1.1 holds with ¢, replaced by c, ,.

CASE 2. 0o = 00. If limsup,_, (vn2 — ¥Yn1)/on > O, then by the central
limit theorem, limsup,_, P(Zf;l W, € I'y) > 0, which contradicts (4.3).
Hence, it may be supposed that

(4.4) limsup 222-Ym _
n—oo On
and
(4.5) lim Y%L — 2 for some [2] < o0.
n—>o0 Oy,

Writing (y,1, Yn2] as the union of [y,2 —v,1] intervals of length 1, it follows
[from (4.3)] that for some y,1 < ¥}y < ¥n2 — 1,

(4.6) lim a,,p(

n—->oo

kn
3 Woy € (720,700 + 1]) o0,
=1

J=

Let Sf,l) = Z};l W.; and Sf) = f; il W, where j, is chosen to satisfy
Jn
(4.7) v < ZEWij < % +0?
j=1
with v = 1.3v2me? and z as in (4.5). Let 02, = Var S for i = 1,2. Notice
that v2 < 0?2, < % + v2 and put

(48) ¢ = cl/B,W'

We need to contradict (4.6), which says that the probability S, = Sf,l) + Sﬁ?’
is in an interval of length 1 is of lower order than 1/0,. A two stage procedure
- will now be used to home in or intervals of length 1 by intervals of larger
length. The idea we employ is based on observing that in order for S, = SI +
ng) to hit the interval (v}, v;,+1], it suffices first that S ;2) land in a relatively



460 M. G. HAHN AND M. J. KLASS

large interval I,, about v}, say I, = (¥}, — 0n1, ¥j; +0n1]. Second, regardless
of which vy}, +y € I, that S happens to equal, if S e (- y,—y+1](an event
whose probability is uniformly bounded away from zero for —0,1 < —y < 01
and o, > 2), then S, will be directed into the desired haven, the interval

(7;1’ 721 + 1]:

kn

> limsupo, [ PSP € (~y+ Vi1~ + via + 1D dP(SP < 3)
n—oo (7;1_0'711:7:14'0'"1]

> lim sup U'nP(Sflz) € (7;1 — Oni, 7;1 +0n1l])

n—oo

x inf P(SV e (-y+ v~y + v +1D)

YE(Vi—0n1,¥5 F0n1]

> lim sup anP(Sflz) €(yi1—0on,¥Yp1+oml]) inf P(S(l) €(x,x+1])

n—oo —0Op1<X<0pn1

> limsup —2P(SP) € (v} — 01, Yoy + 0m1]) (by Case 1)

n—>oo Onpl

. con{ 20n1 _.2 1.6)
> lim su T P2 (by the Berry—Esseen theorem)
n—>oop Onl (0n2V21T On2 Y y

> lim sup —f—( 29m — 1.6) (since In 1)

n—»oo Onl \A/27re? On2
¢ . 20'n1 2v 1 )
> since > >26and 02, <> +v
( V2mwe? T 2me? !

/1

it v2
> 0.

This contradiction completes the proof of Theorem 1.1. O

REMARK. The first case of the proof of Theorem 1.1 estabhshes that when-
ever the conditions of Theorem 1.1 hold and lim sup Z 1 Wpj < v? < 0o, then
the conclusion (1.7) of Theorem 1.1 holds with c, replaced by c.. As v in-
creases, ¢, decreases to ¢, = ¢, Which, by the proof of the second case, is
found to be strictly positive. Consequently, for fixed &, the c,,, are uniformly
bounded away from 0.

APPENDIX

PROOF OF LEMMA 2.1. We prove (2.2) first. It clearly holds if Iz or lg = o0
or iflp or lg = 0. Without loss of generality we may assume 0 < Iy < lg < oo.
For'the time being, assume F and G are compact. Let m = max{lg — lf,lFr}
and take any z € [-m +inf(F + G),sup(F +G)]. Clearly if z € [-m +inf(F +
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Q),inf(F+@G)]orif z=sup(F+G), [2,z+m]N(F + G) # ¢, so it may be
assumed that inf(F + G) < z < sup(F + G). Let

ze=sup{x+y:. xe F,yeG,x+y <z},

Z=inf{x+y: xe F,ye Gand x+ y > z}.

There exist x,,x* € F and y,, y* € G such that x, + y, = 2, and x* + y* = z*.
If z = 2*, then [2,2] € F + G. So suppose z # z*. Then 2z, < z < 2*.

CASE 1. x, < sup F. Inthis case we find an element of (F+G)N[ 2, z+Ir] by
incrementing x,: There exists x** € (x,, x.+{r]NF. Since x** > x,, necessarily
x* + y, > z. Therefore, [2,z+ Ir] N (F + G) # ¢.

CASE2.inf F < x* < x, =sup F. Inthis case we show [z, 2+l IN(F+G) #
¢ by shrinking x*: There exists x,, € F N[x* — lp,x*). It follows that

T+ Y <+ y =2
and so in fact x,. + y* < z. Therefore,

-z <x*—xu <lp,
whence [z,z+ ] N (F + G) # ¢.

CASE 3. inf F = x* < x, = supF. By the definition of /[y, there exist
x',x" € F such that x”" = x’' +Ip. Let F; = {x'} U {x"}. Let

¥ =inf{x+y>2: xe€ Fyand y € G},
zw=sup{x+y<z x€Fiand y € G}.

Note that the sets defining 2** and z,., are nonempty under the assumptions
of Case 3. Also 2, < 2, < 2 < 2* < z**. There exist x*,x4 € F; and y*,y: € G
such that x4 + ys = 2., and x* + y* = z**. If x4 < x*, then by Cases 1 and 2
applied to F; and G, 2* — 2z <2* —z <lpand so [2,z+ IF]N(F + G) # ¢.
It may therefore be assumed that x* = x’ < x4 = x”. Consequently, ys < y*.
Now if y* — yy < lg, then

-z < 2™ — 24

=t + 9% — (x4 + 34)

=-lr+lig
‘so that [2,2 + (Ig — IF)] N (F + G) # ¢. Finally, if y* — ys > lg, let ¥y =
inf{y e G: y > ys} and y" =sup{y € G: y < y*}. Since ¥’ < yx +1g < y*, it
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follows from the definition of y” that y’ < y”. Note also that for y € G with
Y > ya,Xs+ y > 2" 80 x4 + y > 2**. Similarly, x* + y” < z,.. Therefore,

-2 < 2™ — 2

<zg+y —(*+y")
sx#—x#

=1lp

and so again [z,z + lp] N (F + G) # ¢. This completes the proof of (2.2) if F
and G are compact.

If F and G are not both compact, let F,, = FN[—n,n] and G, = GN[—n,n].
Then

lpyg < ,}Lngo lr.+G,
< lim max{|lr, - lg,|, min{lr,,lg,}}
= max{|lr — lg|,min{lp,lg}}.

To prove (2.3), assume that [z = 0 and diam F = oo. Then F = (—00,b]
or [a,00) or (—o00,00). Without loss of generality, it may be assumed that
F =[a,00). Let ¢ =inf G. Since F + G = U,gly + a,00), it is clear that

(—00,00), if ¢= —o0,
F+G= [[a+c,oo), if ¢ > —o0
and so lF+G =0.

Now suppose diam F < oo. Then F = [a,b] for some —o00 < a < b < oo.
Without loss of generality, it may also be assumed that a < b and Ig < oc.
Take any z € (inf(F + G),sup(F + G)). Without loss of generality, it may
also be assumed that z ¢ F + G. Let b* = sup{x < b: x + y = z for some
x € F and y € [inf G,sup G]}. Let d* = z — b*. There exists y; € G such that
0 < y1—d* <lg. Clearly a = inf F < b*. The interval [a+ y1,b*+y1] € F+@G,
so necessarily a + y; > 2. Hencea + y1 —2=b0*+y1—2—(b* —a) < lg -
(b* — a). Therefore, if b* = b we are done. If b* < b, then d* = inf G and
50,z = b* +d* € F + G, a contradiction. Therefore, [ 2,2z + (Ig — diam F)*] N
(F+G)#¢. O
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