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LAWS OF LARGE NUMBERS FOR QUADRATIC FORMS,
MAXIMA OF PRODUCTS AND TRUNCATED SUMS
OF LID. RANDOM VARIABLES

BY JACK CUZICK,! EVARIST GINE2 AND JOEL ZINN3

Imperial Cancer Research Fund, University of Connecticut
and Texas A&M University

Let X,X; be ii.d. real random variables with EX2? = oo. Neces-
sary and sufficient conditions in terms of the law of X are given for
(1/72) maxigcjcn | X: X ;| = 0 a.s. in general and for (1/y,) X1<ixjcn Xi X
— 0 a.s. when the variables X; are symmetric or regular and the normal-
izing sequence {y,} is (mildly) regular. The rates of a.s. convergence of
sums and maxima of products turn out to be different in general but to
coincide under mild regularity conditions on both the law of X and the
sequence {7y, }. Strong laws are also established for X;., X}.,, where X .,
is the jth largest in absolute value among Xi,...,X,, and it is found
that, under some regularity, the rate is the same for all & > 3. Sharp
asymptotic bounds for b7 Y7, X1, X;i<bn» for b, relatively small, are also
obtained.

1. Introduction. In contrast to the situation for sums of independent
identically distributed (i.i.d.) random variables, the law of large numbers for
U-statistics is not equivalent to finiteness of moments of the defining func-
tion A: Let X,X;, i € N, be i.i.d. and let A~ be a measurable function of
two variables; the weakest possible general moment condition on A imply-
ing (1/n%*) ¥1cizj<n (Xi, X;) > 0 a.s. is E|h|* < o0, 0 < a < 2, assuming
Eh=0if a =1 and E[h(X,x) + h(x, X)] = 0 for almost all x (i.e., h degen-
erate) if 1 < @ < 2. However, the following example shows the converse is not
true [Giné and Zinn (1992a)]: Let X satisfy

(1.1) lim #%(log ) P{|X| > t} = ¢,

for some 0 < @ < 2 and ¢ > 0, and assume X is symmetric for 1 < a < 2.
Then E|X|* = oo, but

A

(1.2) % Z Xin—)O a.s.
57 1<igjzn
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As a first step toward understanding the law of large numbers for U-statistics,
and also for its intrinsic interest, we shall restrict attention to the U-statistic
defined by A(x, y) = xy, that is, to quadratic forms in the X;’s.

In the above example, parity is restored if we include the diagonal in (1.2) as
the expression now is the square of a sum of independent random variables
normalized by n!/%, which tends to zero a.s. if and only if E|X|* < oo by
the Marzinkiewicz law of large numbers. Thus, the diagonal has an effect on
almost sure convergence to zero of quadratic forms such as in (1.2).

This is not the case for convergence in probability [Giné and Zinn (1992)].
By decomposing the double sum in (1.2) into four sums with (i, j) both even,
both odd or one even and one odd, convergence of (1.2) in probablhty (or
a.s.) implies £,£;, — 0 in probability (or a.s.), where £, = n~Yeyr X,
and ¢, is defined equivalently for an independent copy { X’} of {X}. Now, if
£,€], — 0in probability, then also £, — 0 in probability since P{|¢,| > /&}2 <
P{|¢,€,| > &} (this is not true for a.s. convergence). Conversely, by the weak
law of large numbers, ¢, — 0 in probability implies nP{|X| > n'/¢} — 0 and
therefore also (1/n%%) 37 ; X% — 0 in pr, yielding (1/n%%) Y1 ;s j<n Xi Xj =
((L/nY*) S0y Xi)? — (1/n2/%) X2, X2 — 0 in pr.

The diagonal is also irrelevant when EX? < 00 and EX = 0 since we can
write the sum in (1.2) as

n 2 n
(13) (Lx) -3x
i=1 i=1

and (1/n) ¥}, X2 — EX? as. by the law of large numbers, but lim sup[1/
(nloglog n)](zl_1 X;)? = 2EX? a.s. by the law of the iterated logarithm, so
that the first term of (1.3) dominates.

However, when EX? = oo (and EX = 0 if E|X| < c0), the lim sup behavior
of each term in (1.3) is the same as that for max;<;<, X f. under weak regularity
conditions, and these terms cancel, offering the possibility of a more rapid
convergence to zero.

These observations determine the main object of this article, which is to
find when the law of large numbers

(1.4) Y XX;->0 as

')’n l<i<j=<n

holds for a general nondecreasing sequence {v,} of positive numbers tending
to infinity. We obtain purely analytic necessary and sufficient conditions for
(1.4) to hold under (mild) regularity conditions on the normalizing sequence
{y=} in two general instances, namely, when X is symmetric and when the tail
probability function of X is (mildly) regular. Along the way, we obtain inter-
esting results of two kinds. Letting X ., denote the jth largest in magnitude

, among Xi,...,X,, we give necessary and sufficient conditions for
’ 1
(1.5) — max |X;Xj|= —leszml -0 as.
Yn 1<i<j<n Yn )



294 J. CUZICK, E. GINE AND J. ZINN
and more generally for

1
(1~6) _IXI:nXk:nI -0 as.

Yn

(without any restrictions on the normalizing sequence vy,  co). We also obtain
sharp a.s. asymptotic bounds for truncated sums, | > ; X;I,x,/<5,|/bx, which
in particular imply a result of Mori (1977) on almost sure convergence to zero
of normalized lightly trimmed sums of independent random variables.

Section 2 contains analytic necessary and sufficient conditions for the law
of large numbers for maxima, (1.5) and (1.6). For instance, it is shown that
(1.5) holds if and only if

) |XY|) 1 1 ]2
(a.7) E[Y ( = ) aqxp " Garn] =%
and
(1.8) ZZkP{lX[ > gUp} < 0

for all ¢ > 0, where Y is an independent copy of X, G(x) = P{|X| > «x},
up = G 1(27%), v, = (y(2%)/uz) and y(t) is a nondecreasing continuous func-
tion such that y(n) = y,. These conditions, unlike those for maxima of i.i.d.
random variables, are difficult to work with; however, they admit simplifica-
tions under reasonable regularity hypotheses on the distribution of X and/or
the normalizing sequence {7y, }. We state a few instances of this, leaving some
of the proofs for the Appendix. For example, if X has a continuous distribu-
tion (or if its jumps are not too large), then (1.5) holds if and only if (1.7) does.
Under further regularity (1.5) holds if and only if

(1.9) Z:n‘l(nan)2 log, na, < oo,

where a, = G(y./*) and log 4+ % = |log x| v 1. Maxima of decoupled products
are also considered.

Section 3 is devoted to the study of truncated and trimmed sums of inde-
pendent random variables. Assuming centerings do not matter and n=%b,
for some B > -;—, it follows from Feller’s (1946) law of large numbers that if
P{|X1.n| > by i.0.} =0, then (1/b,) Y1, X;I,x,<s, — O a.s. This is general-
ized in this section to: If P{|X;.,| > b, i.0.} = 0 and the centerings do not
matter, then

<k-1 as.

1 n
(1.10) limsup —| )" X;I|x, <,
bn i=1
and the bound is sharp. In particular this provides a short proof of the fact
that, under the same hypothesis,

' n
(1.11) 1 Y Xjn—>0 as,
b" Jj=k .
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a result previously obtained, with a different proof, by Mori (1977). Ba-
sic in this section is the following result: Let 2 be a positive integer
and let b(¢) satisfy t7Pb(t) S oo for some B > 1. Then, without fur-
ther restrictions on the distribution of X,¥2 (2"G(b(2")))* < oo implies

:o=1(2nb(2n)_2EX21|X|<b(2n))k < 00. For 2 = 2 and b(¢) = tl/“, O<a<?2,
this result shows that if X and Y are i.i.d., then E(|X| A |Y|)?* < oo implies
E[(IXIA1YD2(1X]| v |Y)¥@ D] < oo, which is quite surprising for 1 < a < 2.

We study the law of large numbers for quadratic forms, (1.4), in Section 4.
Whereas for sums of i.i.d. variables, symmetry of X and regularity of its tail
distribution does not play a role (once some mild regularity for the norming
sequence is assumed), these two factors seem to have some influence in the
case of products (at least in the present study). For symmetric variables in
general (i.e., without regularity assumptions), we obtain two sets of necessary
and sufficient conditions (nasc) for the law of large numbers (1.4) to hold: one
of an analytic character; the other one related to maxima. The analytic nasc’s
for (1.4) to hold are condition (1.7) together with

(1.12) Y 2%P{IX| > ews} < 00

for all & > 0, where w, = y(2*)/[2*E(X? A u2)]*/2. In order to compare
conditions (1.12) and (1.8), note that w; is in general of a smaller order of
magnitude than vg, but that they are comparable if the law of X is regular.
In connection with maxima, we show that (1.4) is equivalent to

n
(1.13) 1 %, Y Xjn—>0 as,

Yn =2

that is, one of the sums in }7_; Z{;ll X;X; can be replaced by a maximum
and still obtain an equivalent statement. These results seem to indicate that,
even for {v,} regular, the laws of large numbers for sums and for maxima of
products (i.e., replacing the two sums by maxima) may not be equivalent (com-
pare with sums and maxima of i.i.d. random variables); however, at present
we have no examples to fully justify this claim. Finally, we prove that if the
tail of X satisfies some mild regularity conditions, even if X is not symmetric,
then the laws of large numbers for sums and maxima of products are indeed
equivalent. We also present analogous results for randomized and decoupled
sums and maxima. The results from Sections 2 and 3 are extensively used in
the proofs of the theorems in Section 4.

Regarding (1.1), we anticipate that the results obtained below show that if
P{|X| > t} ~ 1/(t*(log t)#), then (1.2) holds if and only if 8 > %

2. Maxima of products. In this section we study the almost sure
" convergence to zero of (1/y,)maxi<i<j<, X;X; and, in more generality, of
(1/yn) X 1.0 X p.n, where {X;} is an i.i.d. sequence of nonnegative random vari-
ables, {y,} is a nondecreasing unbounded sequence of positive numbers and
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X4 is the kth largest in absolute value among Xi,...,X,, B <n < co. The-
orems 2.1 (or 2.1’) and 2.10 are the main results. Under regularity of the dis-
tribution of X and/or the norming sequence {y,} the necessary and sufficient
conditions of these theorems simplify; we present some results of this type.
Decoupled maxima (1/y,) maxi<i,j<n X; X, = (1/yn)(max;<, X;)(max;<, X}),
where {X;} and {X]} are independent, are also considered. Convention:
for nonincreasing left continuous functions with right limits, G(x), G~1(x)
is defined as G~1(x) = sup{y:G(y) > «x}; then, if « = G~1(v) we have
G(u+) <v < G(u).

2.1. The general result for maxi<;<j<, X;X; Of course the problem re-
duces to finding necessary and/or sufficient conditions for P{maxi<;<j<, X; X
> gvn 1.0.} =0 for all £ > 0. This is done in the following theorem.

THEOREM 2.1. Let X,Y be nonnegative, independent random variables
having the same distribution, characterized by G(x) = P{X > x} and let
ur = G Y(27%), k € N. Let {y,} be a nondecreasing sequence of positive
numbers tending to infinity and let y; = v(2%), B € N. Let {X 132, be i.id.
with the same distribution as X. Then

(2.1) P[ max X;X;> vy, i.o.}=0
1<i<j<n
if and only if both
(2.2) Ezsz{XY>yz; X >upY >upt <o
k=1
and
00 v
(2.3) 2kP[X > -i} < oo.
k=1 Uk

Condition (2.2) can be written in integral form: if y(¢) interpolates y(n)
linearly and if y~1(¢) denotes its left continuous inverse, then condition (2.2)
is equivalent to ’

- 1 1 7
(2.4) E[‘y I(XY)/\W/\TY)] < OQ.

Also, if the function v(t) := y(t)/G~1(¢~1) is monotone and v=1(¢) denotes its
left continuous inverse, then condition (2.3) is equivalent to

(2.5) Evi(X) < oo.

PROOF. We assume X unbounded; otherwise there is nothing to prove.
S}ibpose (2.2) and (2.3) hold. Since 2* P{X > u;} > 1, condition (2.3) implies

(2.6) Vi = ui eventually.
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In order to prove (2.1) it suffices to show

(2.7) P| max X.X;>y;,io}=0.

1<i<j<2*k
To prove this, we first observe

max X,'Xj

1<i<j<2*k
= [max XiIXisuqujIstuk-1] \% [maX XiIXisuk_l XjIX,~>u;._1]
Vv [max XiIXi>u1,._1 XjIXjSu;._l] % [max XiIX,'>uk_1XjIXj>u1._1 ]'

Then (2.7) will hold if the probability that each of these max’s is larger than
¥} infinitely often is 0. This is trivial for the first max since, by (2.6),

max X;Ix <y, , X;Ix;<u,, < vj_, eventually.
1<i<j<2*k

Condition (2.2) implies control of the fourth max since

ZP[ max XiIXi>uk_1XjIXj>u1¢_1 > 72—1]

1<i<j<2*
< ZszP{XY > Yi-1 X, Y >up_1} < o0.

The second and third max’s are similar, so we just work with the second. For
n large we have

00
Z PI max XiIXiSuk—lXjIXj>uk—1 > 72—1]
k=n

1<i<j<2*k

o0
=2 P[uk—lr}nsg} Xj> 7}2_1]

k=n

< Y 2*P{X > vj_y/us-1},
k=n

which is finite by (2.3). Hence P{max; ;. j<ot XiIx;<uy, XjIx;>u;, > Vj_q 1.0.}
= 0. (2.7) is proved.

We now assume (2.1) holds. Then P{maxgi-1;.j<ot X;X; > v} i.0.} =0,
and it follows, by independence of the blocks and Borel-Cantelli, that

ZP{ max X;X;> 'y’,';} < oo.

1<i<j<2k-1
Since {(i, j):1 <i < j < 21} 5 {(i,j):1 < i < 2¥2 < j < 251}, letting

Xoi-2,, = X, we obtain

(2.8) i P{ max X;X, > y;} < 0.
k=2

1<i,j<2k-2
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The following estimates show that (2.8) implies (2.3):

%

P[ max XiX}>yZ]zP{maxXi>ﬁ}P{maxX,-zuk}

1<i, j<2#-2 i<2k-2 up i<2k-2
- 2F2P(X > Yi/ur} 2F2P{X > us}
T 14282P{X > yi/up} 1+ 2F2P{X >u;}
1 25 2P{X > y}/u}
514 282P{X > vi/up}

z

Finally, we show that (2.2) also follows from (2.8). Let M; = maxi<s<; Xs,
i <282 and 7, = inf{i < 2*2: X; > u;}, with inf @ = 0o, and define M, and
7}, by analogy. We then have

P[ max XX > 72] > P{r} < 00,7}, < oo,XT,,X’T; > v}

1<i,j<2k-2

= Y P{XiX)>vi Xi, X > up; My, M), < up}
2.9) L5

2
=P{XY>’yZ; X,Y> uk}( Z P{Mi 5uk}> .

i<2k-2
Since
PAM; sw}=[1-P{X >uw}l 'z (1-27h)i1> (12702 2 L,

(2.9) gives

28 S 2% PIXY > vl X > up, ¥ > un} < i P| max XX)> 7i} <o,
k=2

k=1 15i,j52”‘2
that is, (2.2), concluding the proof of the theorem. O

In all that follows the sequence {vy,} is nondecreasing and tends to oo, and
73 {Xi}, X, Y, G and u, are as defined in Theorem 2.1.
Let us consider the condition

(2.10) Zzsz{XY > ¥h X >up,Y > up} < oo.
k=1 .

Inequality (2.10) is obviously stronger than (2.2). It also implies (2.3). To see
this we observe first that it implies (2.6). Otherwise, there is a sequence {%(¢)}
such that {X,Y > uzy} = {XY > Yhieys X,Y > upp}, hence, by (2.10),
Y(2HOP{X > upy})? < oo, in contradiction with 2*P{X > u;} > 1. Now,
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(2.6) and (2.10) give that for some k¢ < oo,

Y 2*P{X > yj/u} = Y 2*P{X > yj/us}2*P{Y = us}

k>ko k>ko
=Y 2%P{X > y}/us, Y = up}
k>ko
< Z 22kp{XY > Vi X >up, Y > up} < oo.
kzko

We have thus proved the following corollary.
COROLLARY 2.2. (2.10) = (2.1).

We may ask whether the converse to Corollary 2.2 holds, and whether con-
dition (2.3) is redundant. The following example answers these two questions
in the negative.

EXAMPLE 2.3. Let b, > 0, n € N, be such that b,,1/b, / oo strictly (so
that, in particular, b2, < bbn42) and let a; = ¢* for some a > 1 and all
t > 1. Let X be a random variable concentrated on {b,} and such that P{X >
b,} = 1/a,. Note that a, grows fast enough so that P{X =b,} ~ 1/a,. Then
up = G"1(27*) = b, for k such that a, < 2* < a,,1. For a sequence of positive
numbers 8, — 0 with 8, < byb,42 — b2, and for k > 1, we let

N {bnbn+l —8,, ifa,< 2k < An+1/2
Yr =

bnbniz — 8n, ifan+1/2 =< 2k < Anil.

Then, at least for n large,

1
P for a, < 2% < any1p2,
n%n+
PIXY > v X,Y zu}={ ™
k
tas’ for a,i1/2 <2 < apq1.
n“n+

So, the series in (2.10) is convergence equivalent to the series

2 2
Z Qni1/2 +Z ani1
b
AnQn+1 AnQni2

which is divergent. Similarly, the series in (2.2) is convergence equivalent to
the series

a? 1

2
Z an;q/z + Z n+1 ~ Z ;';’

a1 An+1Qn+2
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which is convergent, and the series in (2.3) is convergence equivalent to

a a 1 1
Z n+1/2+Z n+1 :Zna/2+z;¢_a’

An+1 An42

so that (2.3) holds iff @ > 2. Then, by Theorem 2.1, (2.1) holds iff « > 2. Hence,
in this example (2.1) is equivalent to (2.3), which is strictly between (2 2) and
(2.10).

Theorem 2.1 translates directly into a result on a.s, convergence to zero of
normalized maxima:

THEOREM 2.1'. In order that

(2.11) hml max X;X;=0 a.s

n—00 Yy l<i<j<n

hold, it is necessary and sufficient that

o0
(2.2) ZZZkP{XY > eyy; X > up, Y > up} <00
k=1
and
o ok £V
(2.3) Z2PX>— <00
k=1 Uk
for all £ > 0.

Theorem 2.1’ is not redundant: we may have conditions (2.1) and (2.2) sat-
isfied and yet the lim sup of the normalized maxima be different from zero,
as in Example 4.4 below.

It is worthwhile to observe that the above results also apply to decoupled
maxima. In the following corollary, we let {X;} denote a sequence of i.i.d.
random variables also with the distribution of X, independent of {X;}.

COROLLARY 2.4. Theorems 2.1 and 2.1’ also hold if (2.1) and (2.11) are
replaced, respectively, by

(2.1) P[lgll?.)((nX X > Yy L.0. ] 0
and
(2.11) lim i max X; X =0 a.s

n—->oo ‘yn 1<i ,Jj<n

* PROOF. If(2.1) holds, theli we obtain (2.8) by blocking and Borel-Cantelli,
‘as in the proof of Theorem 2.1, and the second part of the proof of this the-
orem shows that (2.8) implies (2.2) and (2.3). The first part of the proof of
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Theorem 2.1, with obvious trivial changes, shows that (2.2) and (2.3) imply
2.1). o

2.2. Maxima of products under regularity conditions. Conditions (2.2') and
(2.3) are difficult to verify. Here we present simplifications under increasing
degrees of regularity for the tail of X. The proofs of Corollaries 2.5 and 2.7
are omitted. The proof of Carollary 2.8 is given in the Appendix since this
corollary is used in the next subsection and is handiest for the computations
that produce the examples.

COROLLARY 2.5. If the distribution of X satisfies the regularity condition
(2.12) sup2*P{X > u3} < oo,
then (2.1), (2.2) and (2.10) are all equivalent.

REMARK 2.6. Note that (2.12) is satisfied if X has a continuous distribution

or if the tail distribution G of X is regularly varying. The stronger condition
(2.13) below is also satisfied by these two types of distributions.

Condition (2.2) or, equivalently, (2.4), requires double integration with re-
spect to P, Under extra, but mild, regularity conditions on y and G it can be
simplified. Here are two instances.

COROLLARY 2.7. Suppose that
(2.13) li’raninf 2 P{up_1 < X <up} >0,
— 00

that there exists 0 < ¢; < ¢z < 1 such that c1ysn < ¥Yn < C2y2n forall n e N
and that the sequence vy, := v(2*%) = v} /ur is eventually nondecreasing, Then
(2.1) holds if and only if both

(2.14) lim =% =0
k—o00 Up
and
21
(2.15) Z EI;E[')‘_I(ukX)]zluﬁXSvk < 0.
k=1

Note that if y(¢) = t¥/¢, then condition (2.15) becomes

o0 ua .
Z E}%EXaIuk<Xﬁvh < O0.
k=1
COROLLARY 2.8. Suppose G and {y,} satisfy the following conditions:
(a) G is regularly varying with exponent —a, a > 0, and there exist p €
(1/2a,00), x9 < 00 and 0 < K; < K3 < 0o such that the slowly varying factor
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L of G satisfies
(2.16) KL%(x) < L(ax)LG) < K,L2(%)

for x > xg and 1 < a < (log x)>.
(b) yan < Cy, for some C < oo and from some ng on.
Then (2.1) holds if and only if

o0
(2.17) Z n~Y(na,)? log, na, < oo,

n=1

where a, = G(y}/z).

Note that condition (2.21) holds for many slowly varying functions. For
instance, it holds for L(x) ~ log” x for any y as well as for L(x) ~ exp(a log? x)
forany ¢ and 0 < B8 < 1.

Deheuvels and Mason [(1988), Corollary 2] have a criterion for P{(Uy., - --
Uin)Y* < (na,) 1io.} to be 0 or 1, where U;., are the order statistics asso-
ciated to a sequence of i.i.d. random variables uniform on [0, 1]. Translation
into a result for max;<;<j<, X;X; requires G to satisfy G(X1.,)G(X2:n) >~
[G((X 12X 2:)Y2)]? a.s. The hypotheses on G in Corollary 2.8 give this rela-
tionship for (X1.,/X2.,)/2 < (logn)?, p > 1/2a, and can also be used along
with Kiefer’s theorem to check that (X 1.,/ X2.,)Y2 = o(logn)? a.s., p > 1/2a;
therefore this corollary can be seen as a translation of the Deheuvel-Mason re-
sult to nonuniform random variables. However, their approach does not seem
to yield any of the other results in this section, since they are too general for
reduction to the uniform case.

Theorem 2.1’ can be simplified if we require some extra, mild regularity on

{vn}:

COROLLARIES 2.5/, 2.7, 2.8'. Suppose there exists 0 < ¢ < 1 such that vy, <

¢yan, n € N. Then:
(a) If X satisfies (2.12), then (2.1), (2.1), (2.2), (2.10), (2.11) and (2.11’) are

all equivalent. .

(b) If X and {y,} satisfy the hypotheses of Corollary 2.7, then the conditions
in part (a) are also equivalent to (2.14) and (2.15).

(¢) If X and {y,} satisfy the hypotheses of Corollary 2.8, then these condi-
tions are also equivalent to (2.18).

ExaMPLE 2.9. The following can be easily verified using, for example,
Corollary 2.8: Let a > 0 and let the law of X have tails
1
x%(log x)B’
1
x*(log x)1/2(logy x)1/2+B

G(x) ~

G(x) ~
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or

1
x*(log x)'/2(log, x)(logg x)1/2 - - - (log;_; x)*/2(log), x)B’

G(x) ~ k>3,
where log;, x := log, (log,_; x), # > 1. Then, (1/n?*)max;.j<, X;X; — 0 a.s.
if and only if 8 > 1.

2.3. Other products of order statistics. The expression max;. <, |X;X ;|
can also be written as | X;., X2.,|, where X ., is the jth largest in magnitude
among X1,..., X, (more precisely, X ., = X, if and only if there are exactly
J—1 X;’s, i < n, such that either | X;| > | X,| or | X;| = |X,| and i < £). This
gives another interpretation of the results in this section as strong laws for
the product of the first two order statistics. It is also of interest to examine the
lim sup behavior of products of other order statistics, in particular of X;., X,.,.
The following approach provides an alternate way of developing the material
in this section and also yields a surprising result for £ > 3.

THEOREM 2.10. Under the conditions of Theorem 2.1 and for £ > 2,
(2.18) P{X1.,Xen>vn i.0}=0
if and only if, letting F(x) = 1 — G(x),

(2.19) 3 gkt f ” G(ﬁ+)G‘—’-2(x)dF(x) <o0
=1 Jwt A X
and
o0 ,y*
(2.20) szG(——’i+) < 0.
k=1 Uk

Under the assumptions of Corollary 2.8, (2.18) holds for £ > 3 if and only if
(o)
(2.21) Z n~Y(na,)? < oo,
-n=1

where a, = G(y,lb/z).

When £ = 2, (2.19) and (2.20) reduce to the conditions for Theorem 2.1.
Condition (2.3) is retained for £ > 2, but (2.2) is strengthened to (2.19). Under
the conditions of Corollary 2.8, (2.19) does not depend on £ for £ > 2 and
reduces to (2.21). Condition (2.21) is Kiefer’s (1972) necessary and sufficient
condition for P{X3., > y,lb/z i.0.} = 0, so that in that case (1/y,) X1 X¢n — O
a.s., £ >3, iff ]

. 1
' —T/_2X2:n — 0 a.s.
n
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PrROOF. When no confusion arises we write X(; for X;q:. We also let
F(x) =1— G(x). As above, (2.20) implies y} > u? eventually and

,y*
P{X(l) > k-1 i.o.} =0;
Up-1

in fact, P{X (1) > v}_,/ur—r i.0.} = 0 for all r < co. Also, (2.19) implies
o0
Y26y [ GHx) dF ()
) b+
< sz‘ foo G(—y—k+)Gl‘2(x)dF(x) < 00,
) b+ x
where b} = (y’,:)l/ 2, Now, since G is left continuous and decreasing,
(o)
|, 67 @) dF () = (€= )76 bj+)
0+

so that

Y (2FG (B +))* < oo,
k

implying [Kiefer (1972)]
P{X(g) > bz_l i.O.} =0

(in fact, P{X () > b;_, i.0.} = O for all r < o0o). Thus, it is enough to show
P{X X« > vi_1pur-1 < X < b}_;, i.o.} = 0 or, by Borel-Cantelli, that
Y P{X1)X () > vi_1ur-1 < X(¢) < b}_;} < oo, which can be rewritten as

b *
(2.22) Z/ ! P{X(l) > E,X(zz) € dx} < oo.
% Jur-1 x

Now, in general, by counting the ways in which one X; isin (x, x+dx), another
is greater than y}_,/x, another £ — 2 are greater than or equal to x and the
rest are less than or equal to x, we have

*

P{X(l) > 7’;-1,X(¢) € dx]

2k —2

<@t -1},

)G(%O G*2(x)(1 - G(x+))* " dF(x).
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Likewise, by requiring all the remaining 2% — ¢ variables to be strictly less
than x gives

*

P[ Xy > 2L X e dx}

X

k _ *
(2.23) > (£—1)"22k(2k - 1)(2,3 _ 22)G(71;_1 +)

x G 2(x)(1 - G(x))* "t dF (),

where the factor (¢ — 1)~2 is included to account for the possibility that as
many as £ — 1 variables could be greater than y;_;/x and as many as £ — 1
could equal x. Now on the set for which either x > u;_1 or x = ug_1, but
2¥AF (up_1) < %, these bounds are of the same order of magnitude and the
right-hand sides are convergence equivalent to

2"”G(%+)G“2(x) dF(x).

In general, when x = u;_; the left-hand sides are less than or equal to P{X 1
> vh_1/ur-1} = 28G((v}_1/ur-1)+). When x = up_; and 28AF (up_1) > 1, by
considering the ways in which one X; is greater than y}_,/u;_1, atleast (£—1)
of them are equal to u;_; and the rest are less than u;_;, we have

*

Yi_
P[Xu) > & 1,X(e)=uk-1}
Up-1

* 2k_1 k_
>26(Bt) 3 (T )ana - A= Gl

Uk-1 m=(—1

- zka(ﬁ+)(1 — Glupi+))?

Up-1

A k
“PB(rgtme? 1) =}

where A = AF(uj_1) and B(p,n) is a binomial (p,n) random variable. Since
this expression is increasing in A we can replace A by 2~*-1. The binomial
probability is then seen to be bounded below as &2 — oo by a positive constant,
and since G(ur-1+) < 27%t1, the whole expression is bounded below by a
positive constant times 2kG((yz_1/uk_1)+). Thus (2.18) follows from (2.19)
and (2.20). To prove the converse, (2.18) implies (2.22) (with & replacing & —1)
by the usual exponential blocking and Borel-Cantelli lemma. Equation (2.18)
also implies P{X 4 > (y})!/2 i.0.} = 0, so (2.22) (with & + 1 replacing k& — 1)
also holds when the upper limit of integration is changed from b} to oc. The
préviously established lower bounds on the integrand can now be used to
verify that (2.19) and (2.20) hold. We defer the proof of the last statement of
the theorem to the Appendix. O .
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ExaMPLE 2.11. If we modify the definitions of G in Example 2.9 by replac-
ing (logy x)1/2+8 by (log, x)# and log, x by (log, x)1/2, then Theorem 2.10 gives
that, for £ > 3, nz—l/aXl;nXe;n — 0 a.s. if and only if 8 > %

3. Truncated and trimmed sums. Kiefer [(1972) Theorem 1] observed
that, for b,, 7 oo,

if and only if
(3.2) ’; %(nG(bn))k < o0,

and Mori (1977) proved that, under mild regularity on the sequence {b,} and
if n=#b, /' oo for some B > %, this condition is also necessary and sufficient
for the existence of a numerical sequence {c,} such that

1 n
b_ZXﬁ"_cn_’O a.s.
nj—k

and that c, can be taken to be (n/b,) EXI|x<p,. The sufficiency part of Mori’s
theorem can be obtained as a corollary of the main result of this section, which
is a sharp a.s. bound for truncated sums of ii.d. random variables whose
distribution satisfies condition (3.2) for some k& > 1. For k =1 it is essentially
Feller’s (1946) law of large numbers, whereas for %2 > 1 the levels of truncation
b,, are smaller than the usual in proofs of laws of large numbers. The result,
Theorem 3.2, is just a consequence of a simple exponential inequality of Klass
and Teicher (1977) if G is regularly varying. However, in the general case it
also relies on the surprising fact that condition (3.2), which can also be written
as

(3.2) 12" GoEM) 1 < oo,
n=1

implies

© (2"EX2I|X|<b(2n))k o
1

(3.3) 252"

n=

for b, as above and for any random variable X (Theorem 3.1). This is an
integrated one-sided analogue of the equivalence x*G(x) ~ EX2I x<x (as
x — 00), valid only for regularly varying functions G with exponent —a, 0 <
a < 2. Although the law of large numbers for quadratic forms in Section 4
will only be proved under some (mild) regularity on G, Theorem 3.1 will allow
us to complete a substantial part of the proof without using regularity. [To
see that (3.2) and (3.2') are equivalent, just note that, since b / and G \, if
o <n< 2r+1, then 2r(k+1)G(b(2r+1))k < nk_lG(b(n))k < 2('+1)(k_1)G(b(2’))k.]
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At the end of the section we discuss the regularity conditions for G and b,
that are required in Section 4.

It will be useful to rewrite conditions (3.2) and (3.3) in mtegral form. Let
b(t), t = 0, be a positive increasing function. We will write b, := b(n), b} =
b(2"), n € N, and, in general, b*(¢) := b(2¢!), ¢ > 0. Since b is increasing,
condition (3.2) is equivalent to (3.2'), hence to

(3.2") fo *(2'G(B*(£)))* dt < oo

By writing I, x<p; as
[e]
Z IZ-("+1)b;;5|X|<2—kb;;,
k=0
so that
o0
(b:)_zEX2[|X|<b; <4 Z 272kG(27*by),
k=1

and then expressing the sums as integrals, (3.3) turns out to be implied by
[’ 1 k
(3.3) /1 (2‘ [0 uG(ub*(t)) du) dt < oo,

THEOREM 3.1. Assume 27P'b*(t) ' for some B > % and that G(x) is
bounded, nonincreasing and left continuous. If (8.2") holds for some k > 0
(not necessarily an integer), then so does (3.3') (for the same k).

PROOF. Define G(x) = sup, <1 u?¢G(ux) for 0 < £ < 2 to be specified
below, and note that G is continuous, nonincreasing and

1 1
f uG(ux)du =f 2- EG(ux)— < G( ).
0 0
So it is enough to show
.
/1 (2!G(b* (1)) < oo.

Now S = {z: G(2) > G(2)} is open since G is continuous and G is left contin-
uous and nonincreasing. Thus S consists of a union of disjoint intervals. Let
(%, y) be such an interval. Then for z € (x,y), G(2) = (x/2)>"°G(x). To see
this note that G(2) = (w/2)?* ¢G(w) for some w < z since G is left continu-
ous and nonincreasing, and z € S. If G(2) > (x/2)2¢G(x) and w < x, then
(w/x)f‘gG(w) > G(x), implying x € S, which is a contradiction. If w > «x,
‘then G(2) = (w/2)*¢G(w) > (t/2)2~°G(t) for all ¢ < z so that

¢ 2—¢
Gw) > sup(;) G(),

t<w
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implying G(w) = G(w), which contradicts w € S. Now, for every defining
interval (x, y) of S define (u, v) by b*(u) = x,b*(v) = y and write

e [@eeontd=[ (2‘(12((‘:)) )2‘3G(b*(u)))k dt

Since 27Pb*(t) /' oo for some B > i, we can choose & > 0 so that
2¢(b*(t))~2-8) < 2to(b*(4))~(2-2)2¢(t~2) for ¢t > to, implying that the quantity
in (3.4) is bounded by a constant times

(24G(b*(1)))* min(1,v — 1) < f (2Gb (t - 1))t dt foru > 1.

Thus
[ @eew)rd s [ T (@G (¢t - 1))t dt
Sn{t>1} 1

LA

ok fo Z (2t G(B* (1))t dt < oo

by (3.2'). The finiteness of the integral of (2!G(b*(2)))* over 8¢ is trivial since
G = G on this set. O

By way of illustration, we give a version of the statement of this theorem
in the particular case £ = 2 and b(¢t) = t1/%, 1 < a < 2. Note that if Y is an
independent copy of X,

222"(P{IXI - 2n/a})2 ZzanI,X|>2n/a |Y|>20a = E[ Z 2271]’
n: (| X|A|Y|)e>2n

Whlch is equivalent to E(|X| A |Y|)2* up to fixed multiplicative and additive
constants. Similarly,

[ 2"EX%] g <qme |2 )
Z(“‘—zﬁx'z—/) ~ E(X| AIYDX(X| v [Y))eD

(up to multiplicative and additive constants). Therefore, Theorem 3.1 shows
that, without any assumptions on the law of X,

(85)  E(X|IAYD*¥ <00 = E(X|IAIYP(X|VIY])HD <o,
as mentioned in the Introduction.

Here is the result for truncated sums:

THEOREM 3.2. Assume X,X;, i € N, are i.i.d. and let G(x) = P{|X| > x}.
Let b(t), t > 0, be a positive functzon such that t~Pb(t) / for some B > §, and
let b, = b(n). If

(36) lim —-E'AYI|X|<3[,,l =0

n—»oo
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for all small enough & > 0, and
(3.2) Z (nG(bn))k < 00
n—l

for some positive integer k, then

ZX IIX,|<b,, <k 1 as

i=

3.7 lim sup —

n—oo n

PROOF. Since t~#b(¢) is increasing, for any & > 0 there is m(g) < oo such
that b, > b,_m(.) and therefore Y (1/n)(nG(eb,))* < cc. Thus, by Kiefer's
theorem, P{|X}.,| > &b, i.0.} = 0. Hence,

ideb,<|X;1<bn| = k-1
n—>oo
and it is enough to show
i|<ebn| = 3ke.
n—-oo

So, redefining b, as £b,, the proof of the theorem reduces to showing that the
conditions

(38) lim _EXI|X|<b,, =0
n—>oo b,
and (3.2) imply
(3.9) ‘ lim sup — Z X Ix,<,| <3k as.
n—->oo bn i=1

Letting b, = b(2¢) for 2¢ < n < 2%*1, we also have Y (1/n)(nG(b,))* < oo so
that by Kiefer’s theorem, lim sup,,_, ., (1/5,)| Y XiI; b<|X;|<b,] < B—1. Hence,
proving (3.9) further reduces to showing

Z X IIX |<b

=1

3.9) lim sup — <2k as.

n—00 bn

Also, since 2¢G(b(2¢)) — 0, (n/bn)EXI; %o, < nG(I;n) — 0 or, by (3.8),
lim,_, o (n/b,) EXI 1x1<5, = 0; hence, we can center in (3.9'). Then, by the Borel-
Cantelli lemma, it suffices to prove

v

£

Z P[— max > M} < 00
b* g<2n+1 \
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for all M > 2k, where Y; = X;I x, <t — EX;I|x;<; and b}, = b(2"). By the
exponential inequality in Klass and Teicher [(1977), Lemma 1] it is enough to
show

Zexp{—-Mt,,b;; + 15242 exp(£,0})} < 00

for some sequence {¢,} of positive constants, where s = ortlEX2] 1xi<bs. If we
set x, = t,b% and C, = 2M(b})?/s2, the expression at the left side becomes

Sew|3(2 )[ ~Con + 21,

The x,, which minimizes the nth exponent satisfies

Cn

Xn — .
(3.10) e S+ 22

Thus, we must show that
1/s, 2 1
Tew|5(3) [-0m(1- 775 J} <=
which, since x, > 0, reduces to showing
1(s,\2 1
Zexp{—z(a) C,,x,,] = Zexp{—-z—Mx,,}

Cn -M/2
(3.11) = Z(m)

Cn -M/2
I(asr) <
By Theorem 3.1, condition (3.2) implies

(3.12) Y Crk<oo

Since, by (3.10), x, ~ log C,, [note that C,, — oo by (3.12)], (3.11) follows from
B12)if M =2k +¢e, £>0. O

The following example shows that the bound % — 1 in (3.7) is in general the
best possible.

ExAMPLE 3.3. Let X > 1be suchthat P{X > x} = 1/(x*(log x)?), for some
0<a<1land 1/k < o < 1/(k—1), and let b, = nl/*, so that G(b(2")) ~
1/2"n°. Then the conditions of Theorem 3.2 hold (this only requires o > 1/k).
. However, for all £ > 0, )

lim sup Z I X,e[(l—s)bmbn) k-1

n—oo i=1
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by the Borel-Cantelli lemma since

2(
ZP{ > Ix-e)bun) = k- 1]
L

i=20-141

> ) (2UG((1 - £)b(2) - G(B(2)))*
£

k-1

_ 1
~2 kzg:('z;) = OQ.
Thus
limsupzl—- > Xilixy<b, > (1—¢e)(k—1) forall &> 0.
n

n—oo

The sufficiency part of Mori’s (1977) theorem on lightly trimmed sums fol-
lows very easily from Theorem 3.2. Here we state this theorem and give a
proof, different from Mori’s, of its sufficiency part in the case ¢, — 0.

THEOREM 3.4 [Mori (1977)]. Let b(t), b, be as in Theorem 3.2 and let
X,X;,ieN, beiid. with G(x) = P{|X| > x}. Then conditions (3.2) and (3.6)
are necessary and sufficient for

.1
(3.13) ’}g& = Y Xjin=0 as

n j=k

PROOF OF SUFFICIENCY. Assume the limits (3.2) and (3.6) hold. Then, by
the result of Kiefer (1972), mentioned above,

P{|X}.,| > &b, i.0.} =0.

Hence, given & > 0, there is n(w) a.s. finite such that, for n > n(w),

k-1

n n —
Xj:n =Z XiIIXi|<sbn - Z Xj:nI|Xj;,,|<sb,.
=k i=1 Jj=1

J

and, therefore,

n

Z Xj:n

=k

This and Theorem 3.2 give

1 <o 23 x1 +(k—1)]
bn = abn — id|X;|<eby, .

n

z Xj:n

=k

for all £ > 0, and (3.13) follows. O

<2e(k—1) as.

lim sup —
! n—»oop bn
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REMARK 3.5. It follows from the above proofs that the condition ¢=Ab(¢)
00 is not required for the validity of Theorems 3.2 and 3.4 if either G is regu-
larly varying with exponent —a, 0 < a < 2, or b(¢) is regularly varying with
exponent A > 1.

Actually, the centering condition (3.6) holds automatically under regularity
of G and/or b(t), as we show next. It is convenient to formally define the
required regularity since it plays a role in the next section.

DEFINITION 3.6. In the context of this article, a random variable X, or its
tail probability function G(x) = P{|X| > x}, x > 0, is said to be regular if
either:

(a) G is regularly varying (at infinity) with exponent —a, 0 < @ < 2, and
additionally EX =0 for 1 < @ < 2 or X is symmetric for o = 1.

(b) t*G(t) / for some 0 < a < 2 and X is symmetric.

(c) t*G(t) / for some 1 < a < 2, G(2t) < 2-1-°G(¢) for some § > 0 and all
t large enough, and EX = 0.

(d) t*G(t) / for some 0 < @ < 1.

DEFINITION 3.7. In the context of this article, a positive continuous func-
tion b(t), ¢t > 0, such that b(¢) / oo is said to be regular for X if either:

(a) b is regularly varying (at infinity) with exponent B satisfying:
(a.1) B > }if X is symmetric,
(a.2) B> 1, B#1,if X is not symmetric, but E|X| < o0 and EX =0,
(a.3) B > 1 otherwise.
(b) t~Bb(t) / for some exponent B satisfying:
(b.1) B> 1 if X is symmetric,
(b.2) B > 1 if E|X| < oo, EX = 0 and b(2¢) < 2!-°b(t) for some & > 0
and all ¢ large enough,
(b.3) B > 1 otherwise.

These definitions are motivated by the following elementary propositions.

PROPOSITION 3.8. (a) If G is regular, then there exist C < oo and xo < 00
such that for all x > xo,
(314) |EXI|X|5x| < CxG(x) and EXZI|X|5x < CxZG(x)

[|X| < x can be replaced by | X| < x in (3.14).]
(b) If b is regular for X and tG(b(t)) - 0 as t — oo, then, with b, = b(n),

n
bn
for all £ > 0. [|X| < &b, can be replaced by |X| < &b, in (3.15).]

(3.15) EXI xi<eb, > 0 and I%EXZL Xi<sb, = 0
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PROOF (Sketch). Statement (3.14) follows from Definition 3.6(a), by the
asymptotic properties of regularly varying functions [Feller (1971), VIIL.9, The-
orem 1]. The second inequality in (3.14) follows immediately from t*G(¢) /
for some 0 < a < 2, and so does the first if « < 1. We prove only the first
inequality in (8.14) under condition (c¢): since E|X| < oo and EX = 0, we have

|EX x\e| = |EXix2| < 2G(x) + [ G(t)dt

and, since G(2t) < 2-17%G(¢),

k+1 [o/e) oo
f G(t)dt = Z / TG de < 3 212G (2t < 2( 3 2—5k)xG(x).
k=0 k=0
For part (b) note that £b,, is regular so that tG(eb(¢)) — 0 if tG(b(¢)) — O,
and thus it suffices to prove (3.15) for ¢ = 1. The second limit in (3.15) re-
quires only that b be regularly varying with exponent B8 > % or that ¢t=#b(¢) /
for some B > % The proofs being similar, we prove it only under the sec-
ond hypothesis. Let g € (3,8). Then 7, := blY28 . oo, so that &, =
sup,,, b~1(¢)P{|X| >t} — 0. Note also t/#/b~1(¢) /. So, we have

bn  tdt
2 EX*L x5, < 2572 + 2600 /

b2 _b2 b2 J., b7L(t)

n 1/8-2 /b” 1-1/8
< —(bn)l/ﬁ + 2¢,b; . t dt
n 2B
=GP " 2p-1
Suppose now E|X| < oo, EX = 0 and b(2¢) < 21-%b(¢) and let us prove the first

limit in (3.15). For simplicity, set ¢ = 2!~% > 1 and &, = sup,,; b~ (¢)P{|X| >
t}, which tends to zero. Then

&n — 0.

n n [ dt
EIEXI|X|>bn|SnP{|X|>bn}+8n'b_ . 5'_1_(5
by,
_0(1)+8nb Z rlb b l(t)

n r=1
and the limit is zero because
<bn ¢ c"by 21-9)rp, 2 b,
/b 10 = bl 1b,) < b)) | Pra
The rest of the cases are treated similarly, and they are even easier under
regular variation. O

Theorems 3.2 and 3.4, Remark 3.5 and Proposition 3.8 give the following
corollary.
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COROLLARY 3.9. Ifeither G is regular or b is regular for X, condition (3.2)
implies (3.7) and is necessary and sufficient for (3.13) to hold.

PROOF. In view of the previous observations it is sufficient to check that
(3.2) implies tG(b(t)) — 0 as t — oo. This follows from (3.2”), monotonicity of
b(¢) and the obvious inequality

2 aeyt <2 [ er )t 0

Finally, combining Proposition 3.8 with the general weak law of large num-
bers for triangular arrays [e.g., Araujo and Giné (1980), Theorem 2.4.7, case
of degenerate limits] yields the following fact that we will use below.

PROPOSITION 3.10. If either G is regular or b is regular for X and if

(3.16) nG(b,) — 0,

then

(3.17) i X;—> 0inpr
bn =

4. Quadratic forms. Finally we consider a.s. convergence to zero of nor-
malized sums of products of independent random variables. The first two re-
sults give necessary and sufficient conditions for symmetric variables, whereas
the third shows the equivalence of the law of large numbers for sums and for
maxima when the variables are regular (in the sense of Definition 3.6), but not
necessarily symmetric. Only regular normalizing sequences are considered.

THEOREM 4.1. Let Y,X,X;, i € N, be i.i.d. symmetric random variables
and let y(t), t > 0, be a continuous function increasing to oo such that b(t) =
(y(2))Y2 is regular for X and y(2t) < Cy(t) for some C < o and all t large
enough. Let, as usual, vy, = y(n), v} = v(2%) and uy, = G~L(27%), with G(x) =
P{|X| > x}. Then, the law of large numbers

(4.1) lim > XiX;=0 as

e
"0 Yn 1<i<j<n

holds if and only if the following two conditions are satisfied:

[oe]

(4.2) Y 2% P{IXY|> ey}, |X| > us, |Y| > up} < 00
k=1

and

(4.3) Y 2*P{|X| > cwp} < o0

k=1
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for all & > 0, where

Yk
T [2ZFE(X| Aup)? 2

In fact conditions (4.2) and (4.3) are necessary for (4.1) without any regulanty
assumptions on the nondecreasing normalizing sequence yp,.

(4.4)

While (4.2) simply reiterates (2.2'), condition (4.3) may be stronger than
(2.8') since wy, < vy, := y}/u. These conditions are equivalent when X is reg-
ular [Proposition 3.8(a)], but it is not difficult to construct examples for which
lim sup (vi/wr) = oo. Whether (4.3) is stronger than (2.3’) when (4.2) holds
and b(¢) is regular is unclear, but the possiblity remains that replacing both
sums in Y7_, Y/ XX, j by maxima may change the rate of a.s. convergence
when the tail probablhty of X is not regular. In any case, the following result
shows that if only one sum is replaced by a maximum, then the rate is un-
changed, at least for symmetric random variables. Here, the order statistics
X 1., are as defined in Section 2.

THEOREM 4.2. Let X; be i.i.d. symmetric or nonnegative random variables
and let y satisfy the same regularity conditions as in the previous theorem.
Then the law of large numbers (4.1) holds if and only if

(4.5) in:n Z Xpn =0 as

The following theorem gives the equivalence between the laws of large num-
bers for sums and maxima in the case of regular tails.

THEOREM 4.3. Let X,X;, i € N, be i.id. and let y(t) / oo, vy, = y(n).
Consider the statements

(4.6) 11ml max |X;X;|=0 a.s
n—>00 iy, l<i<j<n

and

(4.1) hm— Z X, X;=0 as

n—>00
Yn 1<i<j<n

Then (4.1) implies (4.6). If moreover G is regular, b(t) := y(t)¥? is regular
for X and y(2t) < Cy(t) for some C < oo and all t large enough, then (4.6)
implies (4.1).

The assumption that X is syinmetric when a = 1 in Theorem 4.3 can
be relaxed at the expense of extra technical detail. The problem arises in
the proof of Theorem 3.2 where the centering of truncated sums must be
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accommodated as assumed in (3.6) (or, what is the same, in symmetrization—

see Propositions 4.7 and 4.8 below). Use of the methods of Feller (1946), will

improve these results, but we prefer to avoid the added complications induced.
As the following example shows, (4.6) does not imply (4.1) in general.

EXAMPLE 4.4. Consider Example 2.3 with 1 < a < 2 so that

1
limsup— max X;X;>1 as.
Yn 1<i<j<n
The computations for this example also show that
1
li —_ X;X;i<1l as.
1msup(1+a)7n 1213}(9 i Xj<1 as
for all £ > 0. Thus,
1
limsup — max X;X;=1 as.
n—oo Yn li<jsn

With the same notation as in Example 2.3 (so, b, here has a different meaning
than in Section 3 or in the rest of Section 4) we have that for m, = [@n1/2—1]
and ¢, < m,,

P{Xlzm,, > bn+1, X€n+1:m,, = bn}

_ M Z(mn—l)(_l__ 1 )’-’(l_l)mﬂ-‘-l
T @y (>t 4 an  Qpyl an

Mn mp,—1\/ 1 )f( 1 )'""-‘-1
>(1-¢ =) (1-= ,
= n)an+1 ggz;, ( ¢ )(an an

where &, > 0 tends to zero as n — oo. Now (m, — 1)/a, = api1/2/0n ~ ne/2,
so that for £, = [n*/?],

inf P{B(l,mn — 1) > e,,} > 0.
n a

n

Then, since a,13/2 — n+1/2 ~ Gn+3/2, We can apply Borel-Cantelli to the blocks
[@n+1/2,@n+1+1/2) and obtain

P{X1:m, Xt,+1:m, = bnbpy1 io}=1

This implies

> X;X;>limsup -LXl;m,,Xe,,H:m,, =1

lim sup 5
n—o0o my

n—oo

a/2
ne/ Mn 1<i<j<m,

Replacing vy, by ¢,v, for a sequence c, barely tending to infinity, we see that
the normalized maxima tend to zero a.s. whereas the lim sup of the normalized
sums tends to infinity a.s. Note also that taking b, = a7, 7 > %, gives EX? = 00

and (n/y,)EXIx<,, — 0, but the sequence 'y,ll/ % is not regular. With little extra
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effort one can extend the example to make X symmetric (with the extra factor
in the norming sequence replaced by n*/4) and replace a,1/2 With a4, &£ > 0,
with n~"y, increasing on [@,..,a@,,1], but y is still not regular, although it
nearly is. It is an open question whether an example such as this one is
possible for regular vy.

We are also interested in decoupled versions of the above theorems so, at the
risk of becoming somewhat prolix, we will treat decoupling and randomization
in some detail.

4.1. Some randomization and the proofs of Theorems 4.1 and 4.2. Adapt-
ing some arguments from Giné and Zinn (1994), we first randomize the
sums by products of Rademacher variables and then we conclude that if
(1/¥n) X1<i<j<n €i€; XiX; — 0 a.s., then also (1/92) Pi<i<j<n X?X? — 0 a.s.
giving, in particular, the law of large numbers for maxima. The corresponding
decoupled statement is also obtained. Here is the randomization lemma:

LEMMA 4.5. Let X;, i € N, be i.i.d. random variables and let ¢;, i € N, be
independent Rademacher variables independent of {X;}. Let {y,} be a non-
decreasing sequence of positive numbers tending to infinity. Then

limi Z X,'Xj=0 a.s. limi Z 8,'stin:0 Qa.s.

n—00 e n—»00 ot
Yn 1<i<j<n Yn 1<i<j<n

PROOF. Let A be asubsetof Nandlet A, =AN{1,...,n},n eN. Let

S.(A) =L 3 XX

Yn i jeA,
i<j

with S, = S,(N) and, if B is another subset of N disjoint with A, let

Su(A,B)= L ) XX

YR (i,/)€Anx BuUBnx An
i<j

Assume S, — 0 a.s. Then, for any A C N, S,(A) — 0 a.s. Hence, S,(A, A¢) =
S —Sn(A)—S,(A°) — 0 a.s. Applying this observationto A, ={i e N: ¢g; =
1} and noting that (1/ys) Yy<i-jen i85 Xi X; = Sn(As)+Sn(AS)—Sn(A,, A),
it follows that

1 .
Pyl lim — E g,e;X; X;i=0t =1
X’n—wo 7”,15i<j5n v }

for all fixed sequences {e; = +1}, where Py denotes integration with respect
to the X’s only. Now the result follows by Fubini’s theorem. O
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Let, as usual, {X,} be an independent copy of { X;} and ¢;, &}, i € N, i.i.d.
Rademacher variables independent of {X;, X}. With this notation we have
the following corollary to the proof of Lemma 4.5:

COROLLARY 4.6. Assume y(t) /' oo and y(2t) < Cy(t) for some C < oo and
all t > some finite ty. Let v, = y(n). If the law of large numbers (4.1) holds,
then we also have

1
(4.7) lim — Z X;X;=0 as
n—oo yp, 1<ij<n
and
1
(4.8) lim — Z 8,‘8}X,'X}=0 a.s.

n—oo I
Yn 1<ij<n

PrROOF. Taking A to be the even numbers in the proof of Lemma 4.5 and
noting that {Xo;} and {X9;_1} are two independent sequences, we obtain

(4.9) liml > X X;=0 as. = lim——l— Y. XiX,=0 as.

n—00 Y, 1<izj<n n—>o0 Yo, 1<ij<n

So (4.7) holds. (4.1) also implies

lim—}— Z 8i6‘jX,'Xj=0 a.s.

"7 Yn 1<ifj<n

by Lemma 4.5. Thus, applying (4.9) with £; X; instead of X;, we obtain (4.8). O

In the next proposition we combine an inequality of Bonami (1970) with an
argument of Paley and Zygmund [e.g., Kahane (1968), page 6] to obtain a.s.
convergence to zero of the normalized sums of products of squares. Bonami’s
inequality can be by-passed at the expense of some tedious computations.

PROPOSITION 4.7. With the notation of Lemma 4.5, the law of large numbers
(4.1) implies

.1
lim — Y X!X?=0 as

n—oo e
Yn 1<i<j<n

and, in particular, the law of large numbers (4.6) for maxima. If, moreover, y(t)
satisfies the conditions of Corollary 4.6, then (4.1) also implies

lim %’-Z X?X?=0 as

i n—->oo e
Yn 1<i,j<n

and, in particular, the law of large numbers (2.11') for decoupled maxima.
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PrROOF. Without loss of generality we can assume X; and ¢;, i € N, defined
on a product probability space ) x ' with X; depending only on w and &;
on w'. E, (P,) will denote integration (probability) with respect to «’ only.
Lemma 4.5 and Fubini’s theorem give that w-a.s.,

1
(4.10) — Z ciejXi(w)Xj(w) > 0 w'-a.s.
Yn 1<i<j<n

In particular, these o'-random variables tend to zero in probability for
almost every w. To ease notation, we fix n € N and @ such that (4.10)
holds, and let a;,; := (1/y,)Xi(w)Xj(®), § = Yi<icj<n €i€jai,j and K :=
E 8% = Yicicj<n a?’j. By developing the power in (Y 1. <, €i€jai,;)* and
using the Cauchy-Schwarz inequality it can be easily (but tediously) seen
that

E.&* < CK?

for some finite, positive constant C independent of » and a;, ;. [For the best con-
stant and a much more general result, see Bonami (1970).] Hélder’s inequality
gives that, for any ¢ > 0,

E & <+ E 810 < 8 + (E£)2(PA1€] > £V
Combining the preceding two inequalities, we obtain

K—¢ 2 K — 12)2 1
P{l§l >t} > (((Egg‘it)l)/;) > ( K2 S > EIszZ-

This implies that (1/72) Y1<;< <, X7 X2 < 2t as soon as

Pg{

which eventually happens for almost every o by (4.10). Hence,

1 1
il Z aing,-(w)Xj(w)‘ > t] < ic’

Yn 1<i<j<n

—15 > XIX250 as

Yn 1<i<j<n

To prove the second limit, we just apply the previous arguments starting with
(4.8) (which holds by Corollary 4.6) instead of (4.10). O

Let us recall from Section 2 that u; = G™1(27%), v = y(2*), b} = (v})?
and vy = v} /up, ke N.

PROOF OF THEOREM 4.1. (a) Sufficiency of conditions (4.2) and (4.3). As
obgerved above, w; < v so that (4.2) and (4.3) imply the law of large

numbers for maxima [that is, (4.6)]. Since vy, < Cy, eventually, it follows
that max;; ;<o | X;X;| < y;_, eventually a.s. Also, condition (4.3) implies
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max; o1 | X;| < wp-1 eventually a.s. So, we can ignore large values in (4.1),
that is, (4.1) will follow if

1
V. Z XiXjI|Xin|<72<ny|Xi|<wk<n),|XfI<w1e(n> -0 as,
Yn 1<icj<n
where k(n) = max{k: 2% < n}. Borel-Cantelli reduces this to proving
o 1
k=1 (2Fl<ns2t Yy

for all & > 0. Thus, decomposing the event {1 XXl < v, 1 X < we, 1Xj] <
wy} into the union of the five disjoint events

{1Xil <b;,1X| < b}, {1Xi] < up, b} < |X;| < we},
{1 Xl < up, b3 < |Xi| <we},
{ur < |Xi| < 83,03 < |1Xj| <w, | X; X;| <vi},
{ur < 1X;| <b;,b; < |Xil <wp, | X Xj| < vi},
the proof of (4.2) reduces to showing that the following three inequalities hold:

>8}<OO

Y XiXiLixx,1<y; I Xil<whr X l<wss

1<i<j<n

> eyz_l} < 00,

> Xil\xy <y Xilix;<p;

1=n<2* 1<i<j<n

@1y 3 P{ max
k=1

Z XiIuk-1<IXi|<b',‘,_1 Xij;_ISIXjI<wb-1

l<i<j<n

iP[ max

1<n<2Fk

x Iix,x1<v;_,

> ay’;_l} < 00,

Z XiIIXiISuk—l Xij;_ISIXjI<wk-1

1<i<j<n

> 372_1} < oo.

(4.13) i P{ max
k=1

1<n<2*k

By symmetry, the sums inside these expressions are martingales relative to
the o-fields & = 0(X},..., X,) so that we can apply Doob’s maximal inequal-
ity and further reduce our problem to showing

00 22k

(4.14) > '('")/*—)Z'E[X2I|X|<b; Y2Iyi<p] < o0,
k=1 \"k
0 92k .
(4.15) > g ELX P L cxi<y Y2 I civi<un D1 X1 <3 ] < 00,
iz (k)
! 0 92k
(4.16) Y s B X2 Lx1<0, Y Iy <v1<un, ] < 00,

iz ()2
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where Y is an independent copy of X. Condition (4.3) implies (2.3'), which, in
turn, implies that sy} > u% eventually (as observed in the proof of Theorem
2.1); this, together with (4.2), gives

(4.17) Z(sz{m > b3 })? < o0.

k=1
Hence, condition (3.2") in Theorem 3.2 holds with 2 = 2 so that, by this the-
orem, (3.3) holds too, giving (4.14). To prove (4.15) first we observe that if
t~Pb(t) , for some 8 > % or if () is regularly varying with exponent 8 > %,
then there is C < oo such that for all x > 0,

- 2
(4.18) 3 2" 50(7 1(")) :

k: 2k>y~1(x) (72)2 x

[We omit the straightforward proof of (4.18).] So, (4.18) holds by regularity of
b(t) and gives

2k
<Cly ' (IXYDP

(4.19) Z Y21 ixy|<y, < X?Y?

1 (73
Now, if up < |X| < b}, |Y| > |X| and |XY| < v} (note upwy < upvp = v}),
then y~1(|XY]) < 2% < 1/(G(|1X|)) < 1/(G(]Y])) so that (4.19) yields

[ 22k

Z( k)zX Liyaixi<t, Y 2 In <y I xvi<y;

2 —
E: 2k>y—1(|XY|)( i)

< Cly M (I XY ) PL1xyn<1/GUxD)AL/GaYD)

and the expected value of this random variable is bounded by (2.4) [i.e., by
(4.2)]. Inequality (4.15) is thus proved.
To prove (4.16) we first perform an integration by parts. Let
22k

S :=EX2I <ups T :=EY2I r<|Y|<we>
k | X|<up h bk Y |<wp g(yj)z (72)2

[where >~ denotes a two-sided inequality up to finite positive multiplicative
constants; see (4.18) for the sum of the series defining @:]. Then the nth
partial sum of the series in (4.16) equals

(4.20) SpTn@n+1—S1T1Q1+ Y (Sk—Sr-1)TrQr+ Y (Tr — Th-1)Sr-1Q%-
k=2 k=2

The definition of wy and the regularity of {y,} give

i
5

. 92(n+1)
(4-21) SnTn Qn+1

o )2EX I|X|<u,.EY Iy cyi<w, S 2"P{|Y]| > b}
n+1



322 J. CUZICK, E. GINE AND J. ZINN

and this last quantity tends to zero by (4.17). So the proof of (4.16) reduces to
showing that

22k
(4.22) Y (S —Sp-1)TrQr=)_ AL EX?Lyy < x1<ui EY? Iy ¥ <uy < 00
and
22k
(423) Z EX I|X|<uk 1E}’ Iwk 1<|Y|<w, < Q.

(v3)?

Note that the series in (4.23) dominates the positive terms in the series
Y 5o o(Tr — Th-1)Sk-1Q4; thus, since all the terms in the series (4.16) are
nonnegative, (4.22), (4.23) and the convergence to zero of the expression in
(4.21) imply (4.16). In order to bound the series in (4.22), let us define &* =
min{k : |XY| < v;, G(IX]|) < 21-%} and k* = oo if this set is empty. Then,
since urwy < urVr = v}, we have, by (4.18),

92k 2 2
ZWEX Iuk_1<|X|5ukEY Ib;<|Y|<w1,

2k
=k [X Y? 2 %]
IX|<IYLIXY|<y;,G(X])<21-* ()

LA

22k* 9
E[ XY Ik*<°°I|X|<|Y|]
('Yk*)

Now, on the set {£* < o0},

-1 2 2k* 4
[y IXYDP <2 < ey

and, therefore, on this set,

1 1
Yy XY A -11XY
(XY A s = 377 (1XYD)
and
2" xy) = yiaxyp e XYL gy Ky (XY,
3 R (-6 1) Rl

[The second inequality follows from the regularity of b(¢): it holds with K; =0
and Ko = 1if t-1y(¢) 7, and is a simple consequence of the representation
theorem for slowly varying functions if vy is regularly varying with exponent
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larger than 1.] Therefore,

22k* 22
[( ” )2X Y Ik*<oo—’|X|s|Y|]

<2K? + 2K3E[y ' (IXY ) Pl ool x1<17|
1
§2K2+8K2E[( 11Xy 2/\—)1 < ]

Now (4.22) follows since this last integral is finite by hypothesis (4.2). To prove
finiteness of the second series, let A be the set of £ € N such that wy > wi_1
[the sum in the series (4.23) extends only over k € A], and let us observe that,
by the definition of w; and hypothesis (4.3),

22k 9 2
ZWEX I|X|Suk—1EY Iwk—1<|Y|<wle

Z ( k)zEX I x1<us lEY Tu, 1 <1¥)<ws
keA

22k
= Z( 2EX Iix)<u, 1)ka{|Y| > Wp-1}
keA ( k)

< 2Z2kP{|Y| > wp} < 00,

proving (4.23), hence (4.16) and the direct part of the theorem.

(b) Necesity of conditions (4.2) and (4.3). By Proposition 4.7, the law of large
numbers (4.1) for sums implies the law of large number (4.6) for maxima.
Therefore, Theorem 2.1’ gives convergence of the series in (4.2) and also of the
series in (2.3'). To prove (4.3) we note first that we also have, by Proposition 4.7,

! > X?Y?—)O a.s.,

(4.24)
(7n )2 lsi’an

where we write Y instead of X ; Hence, in particular,

2 2 2
max Yily,<v (XiAuz)—>0 as.
(72)2 ge-icjegr /TS 2&-1%,;521: '

Conditionally on the Y ;’s, this is a normalized sum of independent nonnegative
random variables. Since u;v; = vy} by definition, the normalized summands
are bounded by 1 so that, by bounded convergence,

1
(v3)?
" where E x denotes expectation with respect to the X;’s only. It is also easy to

see that the conditional a-quantiles of the normalized sums tend to zero for
almost every sequence {Y ;}, for every a > 0. Therefore, Hoffmann-Jgrgensen’s

EX[ max YI|Y|<,,,, max X2/\uk]—>0 a.s.,
2k-1c j< J 2k-1j<2k
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inequality [Hoffmann-Jgrgensen (1974); e.g., reproduced in Araujo and Giné
(1980), page 107], which works also for nonnegative random variables, yields

1

(v3)? EX[zk—lnE?;Qk Yilyjco ) (Xin uk)] -0 as;

2k-1<j <2k

that is,

1
2
— max Yily,., —0 as
wi, 2k-1< j<2k

This now yields by Borel-Cantelli that
Y 2% P{|Y |y |<v, > eWi} < 00
for all ¢ > 0. This, vy > wp and Theorem 2.1’ (2.3’) imply condition (4.3). O

PROOF OF THEOREM 4.2. 3,_;_;<, X; X can be decomposed in terms of or-
der statistics, as follows:

n 1 n 2 1.2
(425) Z Xin=X1:nZXk:n+'2'(ZXkln) —'EZX%n
l<i<j<n k=2 k=2 k=2
If the law of large numbers (4.1) holds then, by Proposition 4.7, so does the
law of large numbers (4.6) for maxima. Therefore, the conditions (2.2") and
(2.3) in Theorem 2.1’ are satisfied, implying
(4.17) (2*P{1X| > b}})? < oo,
k=1

as indicated in the previous proof. Hence, the last two summands at the right-
hand side of (4.25) tend to zero a.s. when divided by 7y, by Mori’s theorem
(Corollary 3.9), and therefore so does the first summand that is, the limit (4.5)
holds. Note that this part of the proof does not require symmetry or positivity
of X.

Conversely, if (4.5) holds and X is symmetric, then replacing X; by &; X;,
with X; depending only on' w and ¢; on «’ (as in the proof of Proposition 4.7),
we have that w-a.s.,

1 = / /
Y_Xlzk(w) > ehnw) (@) Xpn(w) > 0,  o'-as.
n k=2

for suitable indices k(n, w). Hence, as in the proof of Proposition 4.7, we also
have

1 n
—ZX%:k Z X2 —0 as.
Yoo k=2

and, in particular, (1/y,) maxi<i<j<n |X;X;| — 0 a.s. (this is obvious if the
variables X; are nonnegative). So (4.17) also holds and, by Mori’s theorem,
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the last two terms at the right of (4.25) tend to zero a.s. when divided by v,,.
Therefore, (4.1) holds. O

4.2. More on symmetrization and decoupling and the proof of Theorem 4.3.
Whereas in the case of sums of ii.d. random variables neither the lack of
symmetry nor the lack of regularity poses any problems for the equivalence
between converge to zero a.s. of normalized sums and maxima, in the case of
products these factors seem to play a role. So we do not know how to desym-
metrize in Theorems 4.1 and 4.2, in general, or how to prove equivalence
between convergence to zero a.s. of normalized sums of products and maxima
of products. In the last subsection we dealt with the regularity problem under
symmetry, whereas here we deal with the symmetry problem under regularity
(of course, as mentioned in the introduction to this section, this leaves some
open questions).

PROPOSITION 4.8. Let vy satisfy the same regularity condition as in Corol-
lary 4.6 and let vy, = y(n).
(a) If

1
(426) lim — Z Sié‘inXj =0 a.s

" Yn 1<izj<n
[which follows from (4.1) by Lemma 4.5), then we also have
1

(4.27) — Z (X - X )(X;—X})—>0 as
m 1<i#j<n
and
.1 ,
(4.28) ' lim — max lXinI =0 a.s

n—=>00 Yp 1<i,j<n

(b) Assume in addition that y(t)Y/? is regular for X. Then if (4.28) holds,
we have

(4.29) lim — Z X;X;=0 as

and therefore the limits (4.7), (4.8) and (4.28) also hold with the diagonal terms
excluded.

PROOF. To prove part (a) we show first that (4.26) is equivalent to

v

(4.'30) lim —-1— Z €i€}Xin =0 a.s.

"0 Y 1<izj<n
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By Fubini’s theorem it suffices to prove this conditionally on the variables X;.
Set a;; = X; X; and, for each n € N, define the following sequences:

a4 a o
Ag.’) = (O, n,0, -2, —”—,) forivj<n,
Yn Yn+l

@i o
Aﬁ'.”:(o,,‘{).,o,l,—ai,...) forivj=4t£>n,
J Ye Ve+1

where 1 < i # j < oo. Note that each of these sequences tends to zero for
almost every choice of {X;}%,, that is, for every such choice they are in the
Banach space ¢y. Also,

1 1
Z aie}Ag.‘) = (O, n.,0, — Z £, —— Z eigiagj,. .. ).
1<izj<co Y 1<izj<n Y+l 1<izjzn+1

So, letting || A|| denote the sup of the terms of any sequence A, we have

1
sup—| > ssia=| Y. 6‘i6‘jAg'l) i=Zn
k>n Yk 1<i£j<k 1<i#j<oo
and
1
sup—| Y sisay|=| > egAY| =2,
k>n Yk 1<i#j<k 1<i#j<oo

By hypercontractivity of Banach valued Rademacher chaos [Borell (1979), The-
orem 1.1, and (1984), Lemma 2.1], the sequence {Z,} converges to zero in
probability (we are now assuming the a;;’s fixed) if and only if it converges
to zero in L2, and likewise for {Z/}. However, by Kwapierr (1987), Theo-
rem 2, Z, — 0 in Ly if and only if Z/, — 0 in Ly. Since (4.26) holds if
and only if Z, — 0 in pr and (4.30) holds if and only if Z/, — 0 in pr, we con-
clude that the statements (4.30) and (4.26) are equivalent. Suppose now that
(4.26) holds and consider the “usual” symmetrization, (1/y,) Pi<izjn(Xi —
X;:)(Xj—X}). Since the sequences {¢;(X;— X))} and { X;— X} have the same
joint distribution, (1/y,) Pi<izjn(Xi = X)X - X;.) — 0 a.s. if and only if
(1/¥n) X1<ij<n €i85( X — X)X — X}) — 0 a.s. and, by the previous argu-
ment, this holds if and only if (1/y,) Pi<itj<n eis}(Xi - X))(X; - X}) -0
a.s. Now

1 4 /A
— Y afi(Xi—-X)(X;- X))
Yn 1<izj<n

1 1

= — Z gie, X, X+ — Z eie; X; X,
’ Yno1<itj<n - Yn 1<izj<n
1 1
-— Y £/ X; X, —— Y eie; X, X;.

Yn 1<izj<n . Ynoi<izjzn
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The first two terms on the right tend to zero a.s. by (4.30), and so do the third
and fourth by Corollary 4.6 applied, respectively, to £X and to £ X’ instead of
X. So (4.27) holds. (4.28) follows from Proposition 4.7 applied to £¢X and from
Corollary 2.4. Part (a) is proved.

In the decoupled case the diagonals are easily treated because the limit
(4.28) gives lim,_,(1/y,) max;<, | X; X| = 0 a.s. so that, by reg'ularlty and
Feller’s theorem [Feller (1946); e.g., Stout (1974), page 132]

and part (b) follows. [The hypotheses of Feller’s theorem are satisfied, even
with room to spare, if y(¢)/t* ~ for some A > 1, but Feller’s theorem also
follows easily if y is regularly varying with exponent larger than one; so,
Feller’s theorem holds with normalizers vy, if y'/2 is regular for (any) X.] O

To prove strong laws of large numbers for sums of independent random
variables it suffices to consider the symmetric case since, as Kuelbs and Zinn
(1979) observe, (1/y,) Y ; X; — 0 a.s. if and only if both (1/v,) >/ ;(X; —
X)) - 0 as. and (1/y,) X}—; X; — 0 in probability. We do not know if an
exact analog of this statement is true for quadratic forms, but we can prove
the following proposition, based on a similar idea.

PROPOSITION 4.9. Let X be a random variable such that G(x) = P{|X| >
x} is regular and let y(t) be a positive function increasing to infinity such
that y1/2 is regular for X and y(2t) < Cy(t) for some C < oo and all t >
some finite to. Let ¢ be a Rademacher variable independent of X. Then, if
e X satisfies the law of large numbers (4.1), so does X.

PROOF. Since X satisfies (4.26) by hypothesis, then it also satisfies (4.6)
by Proposition 4.7, and (4.27), (4.28) and (4.29) by Proposition 4.8. (4.27) and
(4.29) give

Yn 1<iZj<n Yn 1<ikj<n Yn i=1
Since (1/yn) max; j<, | X; X ;.I — 0 in probability [a.s. by (4.28)], (P{max;<, | X;|
> (¥2)2})2 - 0, hence nP{|X| > (y.)Y2} — 0. By Proposition 3.10, this
implies that (1/y,) Y7, X? — 0 in pr and that (1/(y,)"?) Y}, X; — 0 in
pr and therefore that (1/ 7,,) Yizj<n XiXj— 0in pr. It follows from this and
(4.31) that

. n X( n
1 > X;X}—2(—£>ZX,-—>O

(4.32) Yn 1<i#j<n Yn iz
in {X;}-probability, { X }-a.s.
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Define A, = (2/vx) X{—; X and B, = (sign A,)(1/vyn) i j<n X;X;, and note
that A, — 0 a.s. [since max;, | X;| — oo a.s. and, by (4.28),

1 max |X;Xj| = —l—maxlX'ImaxlX | — 0 a.s.,
Yn 1<i,j<n Yn

we have that (1/y,)max;<,|X;| — 0 a.s., which implies A, — 0 a.s. by
Feller’s theorem]. Fix now a sequence { X’} so that A, — 0. Then the sys-
tem {|A,|X;:i < n}%, is infinitesimal and by (4.32), its row sums are shift
convergent (weakly) to zero, with shifts —B,,. Then the converse weak law of
large numbers [e.g., Araujo and Giné (1980)] implies n P{|X| > |A,|"!} = 0
and B, ~ n|A,|EXI(|X| < |A,|"!) as n — oo. The first limit and regular-
ity of G implies [by (3.17)] that the second quantity tends to zero. That is,
(/yn) Xizjen X;X; > 0as. O

PROOF OF THEOREM 4.3. (4.1) = (4.6) by Proposition 4.7. To prove the con-
verse, X being regular, we can assume X is also symmetric by Proposition 4.9.
Proceeding as in the proof of sufficiency in Theorem 4.1, but replacing w; by
U, the proof reduces to showing that the analogues in the series (4.14)—(4.16)
converge. The first two can be dealt with exactly as in the proof of Theorem 4.1,
and we are only left with showing that the third of these series converges, that
is, that

(4.33) Z( )2E[X Iixj<u, Y 21y <pvi<o, ] < 0.
k=1 k

For this we use the regularity hypothesis on X. Note that the series in (4.33)
is dominated by

o0

(4.34) Z E[XzY Iy <iyi<vpixyi<yy -
1

Since X is regular we can apply Proposition 3.8 [the second inequality in
(3.14)] to X and obtain that the series (4.34) is in turn dominated by a constant
times .

ZzzkE[G(l—inl)Ib;qy,@k] = Y 2%*P(XY| = v} b} < Y] < vk}
Y 2% P{|XY| > v}, 1X| > us, Y] > b}}
< Y22k P{XY| > v}, | X1, 1Y | > uz},

where in the last inequality we use (2.6). This last series is finite by
Theorem 2.1. Therefore the series in (4.34) converges, proving (4.33) and the
theorem. O

REMARK 4.10. Another proof of the sufficiency part of Theorem 4.3. The
sufficiency part of Mori’s theorem and Theorem 3.2 provide another proof of

IA
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(4.6) = (4.1) for X regular. However, the above proof, which uses only Theo-
rem 3.1 from Section 3 (in fact not even this if we are willing to use regularity
of G throughout), is more elementary since Mori’s theorem not only requires
Theorem 3.1, but also an exponential inequality (see Section 3, proofs of Theo-
rems 3.2 and 3.4). This second proof is interesting for its use of order statistics,
and we indicate it now. With X ;., as defined in Section 2, we have, by (4.25),

1|2 2 1
+ § ZXk:n + '2‘ ZX%n
k=2 k=2
As observed above, Theorem 2.1’ implies condition (4.17). Hence,
1[& 2
——I:Zka] -0 as.
Ynl k=2

by Theorem 3.4. If b(¢) is regular for X, then vy(t) is regular for X2 and
therefore (4.17) also implies

(4.35)

n
il = ‘Xltn Z Xk:n
k=2

i<j<n

——ZX -0 as.

by Corollary 3.9. So, we only need to show that y;! times the first term at the
right of (4.35) tends to zero a.s. By Theorem 3.4, it suffices to consider this
term over the set | X1.,| > b, for each n and, as observed at the beginning of
the previous proof, large values of the variables X; can be ignored. Thus, the
proof of (4.1) is reduced to showing that

-0 a.s.,

o1 <IX1pl<vp-1

Z Xilix, 2 Xil<vy_,
Ye-1

where, for simplicity of notation, we set X .0+ = X; . By Borel-Cantelli, this
will follow from

2k— 1<n<2’z

m

o0
> P{|X1:k|Ib;_l<|X1:k|<Uk—l X
k=1 ms2 i=1

for all &£ > 0. Now, the left side is bounded from above by

> a‘yz_l} < 0

] > a'yz_l}

m
‘leb <ixii<nn ) Xilixixi<y;

i=2

. *
(<Y1

i Xjl1<¥i

00 m
> P{ma§[IXj|Ib;_l<|Xj|<v»-1 X
=1 Lis2 m<2li=1

o0
<> 2¢p {
k=1
Applying Kolmogorov’s maximal inequality conditionally on X, it follows that
the last series is dominated by a constant times

> e'yz_l}.

2<m

92k .
" (4.34) > WE[X2Y2Ib;<|X|<vk,|XY|<y;]’

which has been shown to be finite at the end of the previous proof.
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The regularity hypothesis on G has been invoked twice in the proof of The-
orem 4.3: first for symmetrization and then to prove convergence of the series
in (4.33). It would be interesting to decide whether it is superfluous.

4.3. Decoupled and /or symmetrized versions of the previous theorems. Col-
lecting Corollary 2.4, Theorem 4.3 and Propositions 4.7 and 4.8, we obtain the
following theorem. '

THEOREM 4.11. Assuming y(t) nondecreasing, y(2t) < Cvy(t) for some C <
oo and all t > some finite to, and y'/2(t) regular for X, then any of the condi-
tions (4.1) or its symmetrized (4.26) or its decoupled (4.7) or its decoupled and
symmetrized (4.8) implies both (4.6) and (4.28). If in addition X is regular,
then conversely any of the conditions (4.6) or (4.28) implies (4.1), (4.7), (4.8)
and (4.26).

Corollary 2.4, Proposition 4.7 and minor formal changes in the proof of
Theorem 4.1 also give the next theorem.

THEOREM 4.12. If y(t) satisfies the usual regularity conditions (as in the
previous theorem) and X is symmetric, then the law of large numbers (4.1) is
equivalent to its decoupled version (4.7).

Using Theorem 4.12 and Lévy’s inequality for necessity, and a slight mod-
ification of the corresponding part of the proof of Theorem 4.2 for sufficiency,
we obtain the decoupled version of Theorem 4.2:

THEOREM 4.13. The law of large numbers (4.1) for X symmetric holds if
and only if

n
in;n ZX; —- 0 a.s.

n i=1

Theorem 4.12 also follc;ws from recent general results on decoupling by
de la Pefia and Montgomery-Smith (1994). (The present manuscript was al-
ready completed when we received their preprint.)

EXAMPLE 4.14. For Example 2.9, assuming X symmetric if « = 1 and
EX = 0 if a > 1, the conditions (4.1), (4.6), (4.7), (4.8), (4.26) and (4.28) are
all equivalent, and equivalent to 8 > % .

. " APPENDIX

"We give the proof of Corollary 2.8 and of Corollaries 2.5, 2.7 and 2.8/, and
complete the proof of Theorem 2.10.
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PROOF OF COROLLARY 2.8. We assume first that G is continuous [and sat-
isfies (a) in Corollary 2. 8] We assume further that:

(c) v3/((log v;)?P) < u? < v} eventually.
Let b} = (yk)l/2 By (a) and (c), for x € [ug,b}],

e\ _ of By . L G0
(A1) G( . ) = G(?bk)G(b*b )/G( )~ G

Hence, letting F(x) = 1 — G(x),
Z22kP{XY >vh X, Y > u}
=2Y 22°P{XY > v}; X >Y > us}

=2222kf°°a(7—7e vx) dF(z)
—222”[ (”)dF(x)JrzZz%f G(x) dF(x)

~ 23 22 G2(b} )f deF((x)) + S 2%G(by)

=2) 2%G2(b})|log(2*G(b}))| + >_ 22 G?(b}).

(A.2)

Therefore, (2.2) [hence (2.1) by Corollary 2.5] is equivalent to both 2*G( b;) —>
0 and Y 22*G2(b})|log(2*G(b}))| < oo. However, these two conditions are
equivalent to (2.17) by regular variation of G and regularity of {y,}.

Now, if we let
1 1 2

with % < r < ap, it is easy to check that y(¢) := 5(¢t) satisfies (b), (c) and
(2.17); therefore, by the previous paragraph, also (2.1). As a consequence, if y
is any function (increasing to infinity and) satisfying (b), v satisfies (2.17) if
and only if y A 8 does and, likewise, y satisfies (2.1) if and only if y A 8 does. So
it suffices to prove the corollary for y A 5. However, if y satisfies (b) and either
(2.1) or (2.17), then y A 6 satisfies (c) and therefore (A.2) gives the result for
v A 8, hence for vy.

The following argument reduces the general case to the case of continuous
G. Let U be a nonnegative bounded (e.g., by 1) random variable with con-
tinuous distribution, independent of X, and let Z = X + U. Then, Gz(x) =
P{Z > x} is continuous and satisfies G(x) > Gz(x) > G(x + 1). So, by reg-
ular variation of G we get Gz(x)/G(x) — 1 as x — oc. It follows that Gz is
regularly Varying, satisfies (A.1) (with the original 4;’s) and (2.17) holds for

a, = Gz('y,, ) if and only if it holds for the original a, = G('yl/z) The same
comments apply to Z’ = (X v 1) — U. Moreover, if Z satisfies (2.1), so does X,
and if X satisfies (2.1), so does Z’. O
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SKETCH OF THE PROOF OF COROLLARIES 2.5', 2.7 AND 2.8'. Parts (b) and (c)
follow from part (a). To prove (a) note that (2.11) implies (2.1) and that, by
Corollary 2.5, (2.1), (2.2) and (2.10) are equivalent. If (2.1) holds then, as noted
above, by monotonicity of the sequence {u:},

Zzsz{XY > Vi X, Y >up} <oo

for all £ € (—o0,00). Given & > 0 there is £ < oo such that y;_, < ey}, for
all £ > £. Hence, Y. 22*P{XY > ey;; X, Y > u} < oo. So, by Corollary 2.5,
P{maxi<j<j<n X;Xj > €y, i.0.} =0 and (2.11) follows. O

COMPLETION OF THE PROOF OF THEOREM 2.10. Only the last statement of
the theorem is left to prove. To establish (2.29), note that, as in the proof of
Corollary 2.8, we can take G to be continuous. Then the lower limit of integra-
tion in (2.19) can be replaced by u; and (2.19) implies (2.20). The equivalence
of (2.19) and (2.21) follows from (2.16) since by (A.1), (2.19) is equivalent to

S GEB;) [ G w) dF ()
% uk

= (£—2)"1) 22G%(b}) ~ ) _n"'(nan)?. O
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