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ON THE STRUCTURE OF STATIONARY
STABLE PROCESSES!

By JAN ROSINSKI

University of Tennessee, Knoxuville

A connection between structural studies of stationary non-Gaussian
stable processes and the ergodic theory of nonsingular flows is established
and exploited. Using this connection, a unique decomposition of a station-
ary stable process into three independent stationary parts is obtained. It
is shown that the dissipative part of a flow generates a mixed moving
average part of a stationary stable process, while the identity part of a
flow essentially gives the harmonizable part. The third part of a station-
ary process is determined by a conservative flow without fixed points and
by a related cocycle.

1. Introduction and preliminaries. The purpose of this work is to
establish and exploit a connection between structural studies of stationary
stable processes and the ergodic theory of nonsingular flows. Using this
connection, we obtain a unique in distribution decomposition of a stationary
symmetric non-Gaussian stable process {X,},c, (I'=R or Z) into three
independent parts,

X=, XU+ X® 4 XO,

where {XV), . is a superposition of moving averages [the so-called mixed
moving average in the terminology of Surgailis, Rosinski, Mandrekar and
Cambanis (1994)], {X®},. is a harmonizable process and {X®},., is a
“third kind” of a stationary stable process described by a conservative nonsin-
gular flow without fixed points and by a related cocycle. As we may see, this
situation is quite different from the Gaussian case where all stationary
processes are harmonizable. In this sense the class of stationary non-Gauss-
ian stable processes is much richer than the corresponding Gaussian class.
In Section 2 we recall some results of Hardin (1981, 1982) on minimal
representations of stable processes. These results combined with a result of
Rosinski (1994), quoted below, are the basis for this work. In Section 3, we
establish an explicit form of a spectral representation of a stationary stable
process in terms of a nonsingular flow and a cocycle (Theorem 3.1). We show
that such flow is determined uniquely by the process up to the usual
equivalence relation of flows in ergodic theory (Theorem 3.6). In Section 4 we
prove that a stationary stable process generated by a dissipative flow is a
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1164 J. ROSINSKI

mixed moving average (Theorem 4.4) and show how to extract the mixed
moving average part from a stable process. Section 5 is devoted to stable
processes generated by conservative flows. We prove that harmonizable pro-
cesses are essentially these stationary processes which are generated by
identity flows. We also show how to extract the harmonizable part from a
stable process. In Section 6 we combine some results of the previous sections
and discuss the general structure of stationary stable processes.

We will now provide some basic definitions and facts that will be used
throughout this paper. Recall that a stochastic process {X,}, . is said to be
symmetric a-stable (SaS) if any linear combination Ya;X,, a¢; €R, t; €T
has a SaS distribution. A family of functions {f,}, . € L*(S, &, n), where
(S,%, u) is a standard Lebesgue space [i.e., (S, &) is a standard Borel space
equipped with a o-finite measure w; a standard Borel space is a measurable
space measurably isomorphic to a Borel subset of the real line], is said to be a
spectral representation of a SaS process {X,}, .y if

(L1) (X}rer =d{ i ft(s)M(ds)} ;

te
where M is an independently scattered random measure on % such that
Eexp{iuM(A)} = exp{—lulu(A)}, u€ER,
for every A €% with u(A) < «. We will also consider complex stable pro-
cesses. However, in the complex case, we restrict our attention to those
processes {X,},. p for which all linear combinations Ya,X,, a; €C, t; € T,
have rotationally invariant stable distributions. In such a case, a family of
complex a-integrable functions {f,}, . ; defined on a standard Lebesgue space
(S, #, u) is called a spectral representation of the process {X,},., if (1.1)
holds with a complex independently scattered random measure M such that
E exp{iN(uM(A))} = exp{—|ulu(A)}, ueC.

A stochastic process {X,}, ., is said to be separable in probability if there
exists a countable set T\, C T' such that the set of random variables {X,}, c 1,
is a dense subset of {X,};., with respect to the topology of convergence in
probability. It is well known that every separable in probability SaS process
admits a spectral representation such that S is the unit interval and u is the
Lebesgue measure on S [see Kuelbs (1973) and Hardin (1982) for a discussion
of the history of (1.1) and its extension to the complex case]. Conversely, if
{X,}, < r has a spectral representation defined on a standard Lebesgue space,
then it is separable in probability. Let 7' be a separable metric space. A
spectral representation {f,},c r € L*(S, &, u) of a process {X,},, is said to
be measurable if the map (s,?) — f,(s) is measurable with respect to the
product o-algebra of S X T'. It is known that every measurable SaS process
has a measurable spectral representation [see, e.g., Rosinski and Woyczynski
(1986)]. If {X,},cr is a measurable process, then the map T'>¢—> X, €
L°(Q, P) is Borel, implying that {X,}, . is separable in probability. In this
paper, without further mention, we will only consider measurable stochastic
processes.
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Let {f,};cr € L%(S, &, u) be a collection of functions. By supp(f,: ¢t € T}
(support of {f,},cr) we denote a minimal (modulo u) set A €% such that
wis: f,(s) # 0, s € A°} = 0 for every ¢ € T. The following result, which is a
slight modification of Theorem 3.1 in Rosinski (1994), will be frequently used
in this paper.

THEOREM 1.1. Let {f"},cp € L*(S,, B;, u;), i = 1,2, be two measurable
spectral representations of a SaS process {X,}, . Suppose that supp{f®:
t € T} =S, wy-a.e. Then for every o-finite measure A on T there exist Borel
functions ®: S, - S; and h: S, » R — {0} (C — {0}, in the complex case) such
that

(1.2) () = h(s) fO(D(s5)), A ® pace.

PrROOF. Let T, be a countable subset of T' such that {f®},. 5, is dense in
the Le-closure of {f®},.;. Let A = A + X,cr,8 Applying Theorem 3.1 in
Rosinski (1994), we obtain the relation (1.2) w1th A replaced by A, where A
may vanish on some subset of S,. This clearly implies (1.2) and also that

fB(s) = h(s)fP(®(s)), pyae. foreachteT,.

Thus, for every ¢t € Ty, f* = 0 uy-a.e. on {s € S,: h(s) = 0}. By the choice of
T,, the last condition must hold for every ¢ € T. Since supp{f®: ¢t € T} =
uo-a.e., we have u,({s: h(s) = 0}) = 0. Replacing A by its modification A,
given by h,(s) = 1, if A(s) = 0 and A,(s) = h(s), otherwise, we end the proof.
O

2. Minimal representations of SaS processes. Let {f.},c, C
L*(S, &, u) be a collection of functions. Let p({f,: ¢ € T}) denote the smallest
o-field generated by extended-valued functions f,/f,, t,7 € T. Following
Hardin (1982) we give the following definition:

DEFINITION 2.1. A spectral representation {f,},c; € L*(S, %, u) of a SaS
process is said to be minimal if supp{f,: ¢ € T} =S p-a.e. and for every
B € % there exists an A € p({f,: t € T'}) such that u(AAB) =0

It is rather difficult to verify whether a concrete representation is minimal
(with the exception of some obvious cases). Nevertheless, the results on the
existence and uniqueness of minimal representations due to Hardin (1982)
are very useful in our study of structures of SaS processes.

THEOREM 2.2 [Hardin (1982), Theorems 5.1 and 5.2]. (a) Every separable

" in probability SaS process has a minimal spectral representation. Moreover,
one can always choose S as a unit interval or a countable discrete set or the
union of the latter two and choose u as the direct sum of Lebesgue measure
acting on the unit interval and a counting measure acting on the discrete part

of S.
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() Let {(f"), <7 € L*(S;, ;) be minimal spectral representations of a SaS
process {X,},cr, i =1,2. Then there exist unique modulo p, functions
®: S, > S, and h: S; » R — {0} (C — {0} in the complex case) such that ® is
one-to-one and onto and, for eacht € T,

(2.1) fB(s) = h(s)fP(®(s)) for uya.a.s €8,,
and

d(py° @) «
(2.2) _dM_ = |h| . Mo-@.e.

REMARK 2.3. Hardin (1982) states (2.1) and (2.2) in terms of a linear
isometry between the L%(S;, u;) spaces, i = 1,2. Every such isometry is
generated by a regular set isomorphism [see Lamperti (1958)], which, under
our assumptions, acts between Boolean o-algebras of Borel o-fields modulo
null sets. By Theorem 32.5 in Sikorski (1964), every such set isomorphism is
generated by a point isomorphism. This makes it possible to express (2.1) and
(2.2) in the terms of a point mapping ® instead of a set isomorphism.

REMARK 2.4. Relation (2.1) can be obtained under weaker conditions than
minimality [see Rosinski (1994)]. However, further properties of ® such as
uniqueness, invertibility and (2.2) require the minimality of both representa-
tions.

REMARK 2.5. Suppose that in Theorem 2.2(b) the assumption of minimal-
ity of {f®},.r is replaced by the condition supp{f®: t € T} = S, u,-a.e.
Then (2.1) holds for some nonvanishing function % and a measurable but not
necessary invertible ®: S, — S;. Instead of (2.2) we now have

(2.3) M1 = Ha o @7t on B(S)),

where p, ,(ds) = |h(s)|uy(ds). This result follows by Theorem 4.2 in Hardin
(1981) combined with the above quoted Theorem 32.5 in Sikorski (1964).

3. Spectral representations of stationary processes. From now on T
will denote either R or Z. A stochastic process {X,}, - 1 is said to be stationary
if for every 7€ T, {X,, },er =5 {X,};cp. Our first goal is to establish a
spectral representation of stationary SaS processes.. To this end we will need
several definitions.

Let (S, &) be a standard Borel space. A family {¢,}, . ; of measurable maps
* from S onto S is said to be a flow on S if ¢, .. (s) = ¢, (¢, (s)) and ¢y(s) =5
forall s € S and ¢,,¢, € T. A flow {¢,}, < 1 is said to be measurable if the map
T xS >(ts)— ¢(s) €S is measurable. Given a o-finite measure u on
(S, &), a flow {$,), < ¢ is said to be nonsingular if u(p; *(A)) = 0 if and only
if u(A) =0forevery t €T and A € &B.
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Let A be a locally compact second countable group. A measurable map
TXxS>(ts)>als) €A is said to be a cocycle for a measurable flow
{¢,), cp if for every t,,t, € T,

(3.1) @ +1(8) = a,(s)a,(¢,(s)) foru-aa.ses.

A cocycle {a,},cr is said to be a coboundary if there exists a measurable
function b: S — A such that a,(s) = b(¢,(s)b(s)™! u-a.e. for each ¢ € T. The
notions of cocycles and coboundaries come from cohomology theory; every
L°(S, w; A)-valued cocycle corresponding to an action ¢s := ¢,(s) of the group
T on S has jointly measurable realization satisfying (3.1).

In the case T = Z, every nonsingular flow is generated by a nonsingular
Borel isomorphism V of S such that

¢’n(3) =V"(s), neZ,seS.

Thus any cocycle {a,}, . ; for {¢,}, o 7 is determined by a measurable function
u: S - A such that

u(8)u(Vs) - u(Vvr-ts), forn=>1,
a,(s) = { 1 (the identity of A), forn =0,
w(V-1s) "' u(Vrs), forn < 0.

Hardin (1982) expressed a minimal representation of a stationary stable
process using a group of linear isometries on the L*(S, u) space. We will
write such representation in more explicit terms of a flow and an associated
cocycle. The following result strengthens Theorem 5.1 in Rosinski (1994).

THEOREM 3.1. Let {f,},c7 € L*(S, u) be a measurable minimal spectral
representation of a measurable stationary SaS process {X,}, . r. Then there
exist a unique modulo p nonsingular flow {¢,),cr on (S, u) and a cocycle
{a},cr for {d),cr taking values in {—1,1} ({lz| = 1} in the complex case)
such that, for each t € T,

duo ’ 1/«
(3.2) ft=at{ 'L;Md)} (foe o) m-a.e.

PROOF. Since {f,},cr is minimal, then, for each 7 € T, {f,, ,},r is also a
minimal representation of the same SaS process. Applying Theorem 2.2,
there exist a one-to-one and onto function ®.: S —»S and a function
h.: S — R — {0} (C — {0}, resp.) such that, for each ¢t € T,

(33) ft+7’ =—(h‘r)(ft°(b7)’ um-a.e.,
"and
(34) M =|hl%  p-ae.

du
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Since, for every ¢, 1,7, € T, it is true that, u-a.e.,
ft+‘rl+72 = ﬁt+11)+72 = (hfz)(ft+71°q)72)
= () (o @, )(fro @, 0 D)

and f,,, ., =, ., Xf,e® .. ) we infer from Theorem 2.2 that, for
every 7,7, € T,

(3.5) Byiin, = (R )(B, o®,), nae,

and

(3.6) @ ,=d D, u-a.e.

If T = Z, then one can obviously modify ® to have (3.6) everywhere for all
7, and 7,. Therefore, ¢, = ®, is a flow and putting @, = k,/|h,| ends the
proof. To obtain a modification of {®,} to a flow in the continuous case
(T = R), we will use a theorem of Mackey (1962). To this end we will verify
that the o-Boolean algebra &, of the classes [B] = {A € %: uw(AAB) = 0}
together with the map

R X%, > (t,[B]) » [®;'(B)] €4,
is a Boolean G space [G = R; see Mackey (1962)]. By (3.4), [B] - [®; '(B)] is
a Boolean-algebra isomorphism and by (3.6), &, is a G space. Therefore, we
only need to check that the map
t - v([21(B)])

is measurable for every finite measure ¥ on %,. Hence 7 defines a finite
measure v on & such that v(B) = ¥»((B]) and we have v < u. Put £ =
dv/du. It is enough to show that

(3.7) t = [ 1a(®.())k(s) u(ds)

is measurable for each Borel set B €%. Choose a function g € sp{f,: t €
T+, », Whose support coincides with S. Choose g, € sp{f,: teT}, g, =
Yic [, ,suchthat g, > g p-ae. Inview of (3.3), foreach r€ T,

h.(3)8.(®,(s)) = chiftm”( s) foru-a.a.s€S.

Since the right-hand side is a measurable function of (7, s) and the left-hand
side converges u-a.e. as n — ©, we infer that there exists a measurable
function (7, s) = g.(s) such that

(3.8) h,(s)g(®,(s)) =g.(s), pae.for ;ach reT.

+ Since {f,};cr is minimal, for every B €% there exist t,,t,... € T and
A c R” such that B = {s: (ftl(s)g(s)_l, ftz(s)g(s)'l,...) € A} modulo u. In
view of (3.3) and (3.8),

1(®,(5)) = 14 () [£,()] " Frr () [£()] oot
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for u-a.a. s € S. Since the right-hand side is measurable in (7, s), we infer
that the map in (3.7) is measurable. Applying Theorem 1 in Mackey (1962),
we get that there exist a Borel G space ((S’, u'), {¢;}) (n' is a finite Borel
measure on S’) and a Boolean-algebra isomorphism 7: %, = %, such that,
for every B’ € %',

[®;(T[B'])] = T([#:'(B")]).

By Sikorski (1964) there exists a Borel isomorphism ¥: § — S’ such that
T[B'] = [¥~1(B")]. Hence ¢, = ¥ !0 ¢, ¥ is a measurable flow on S and
¢, = ®, p-a.e. for each ¢ € T. One can now replace @, by ¢, in (3.3)~(3.5) and
(3.8).

It now follows from (3.8) that (r,s) — &, (s) has a jointly measurable
modification. Taking (3.3) with ¢ = 0 gives

fi=(h)(foo o), u-a.e.foreachre€ T.

Define a, = h,/|h,|. Then (3.5) shows that {a ), is a cocycle for {¢,}, . and
(3.4) completes the proof. O

For any measurable nonsingular flow, a related cocycle and an arbitrary
function f € L*(S, w), (3.2) defines a stationary SaS process. In this case, a
representation need not be minimal. Given such a representation, one can
change a flow and a cocycle to obtain other representations of the same
process which may be more convenient to work with. To this end we will
introduce an equivalence relation between pairs consisting of a flow and a
cocycle.

DEFINITION 3.2. Pairs (¢, a®) and (¢®, a®), where {a{"}, . 1 is a cocycle
for a measurable nonsingular flow {¢{"}, . on (S;, u,), ¢ = 1,2, are said to
be equivalent [(a®, o) ~ (a®@, ¢®)] if there exists a measurable map
®: S, —» S, with the following properties:

(i) There exist N; c S; with u,(N,) = 0 (i = 1,2) such that ® is a Borel
isomorphism between S, — N, and S; — N;.
(ii) p, and w, o @' are mutually absolutely continuous.
(iii) ¢V * D = Do p u,-ae. foreach t € T.
(iv) The cocycle {a{V o @}, is cohomologous to {a®},. ;. That is, there
exists a measurable function b: S, — {|z| = 1} ({—1, 1} in the real case) such
that for each ¢t € T, al o ® = aPX(b o $>)/b py-a.a.

Conditions (i)—(iii) describe the usual equivalence of flows ¢’ and ¢® in
ergodic theory. Condition (iv) is trivially satisfied if a® = a® - .
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ProPOSITION 3.3. Let {X,),c; be a measurable stationary SaS process
with a spectral representation {f{), . such that, for everyt € T,

d o D 1/a
1

where f® e L*(S,, u,) and a® is a cocycle for a nonsingular flow ¢ on
(S,, ny). Suppose that we have another pair (¢6®,a®) defined on (S,, uy)
such that (¢@, a®) ~ (¢V, a®) and let ® and b be the functions specified in
Definition 3.2. Put

d(pyo®

1/a
(3.10) f‘2’=b{ i )} (fQe@)

and let

d( Mg © ¢§2))

1/«
@6 p®@), ae,teT.
sz } (f ¢t ) M2

(3.11) f® = ag2>{

Then { @), < ¢ is another spectral representation of the process {X,}; c 7. More-
over, if {fV), < ¢ is minimal, then {f®}, o is minimal as well.

Proor. First we notice that for each ¢t € T,

d(mze¢®) d(py°®)
dpy dpy

Ao d?) o, dm
dp,y d(M2°(D )

(3.12) o p® =

holds w,-a.e. Then a proof of the first part of the proposition follows by a
simple verification of the equality

(2) = yey)
II chftj LSy, png) ” Zc-’ ft]

for all cj,cy,... € C (R, fesp.), t;,ty... €T and n > 1. The second part
follows by an observation that f2/f® = (f/f1)o ® u,-a.e. for every ¢,7 €
T. O

L*(8y, py)

One can view (3.10) and (3.11) as change of flow and cocycle formulas in
the spectral representations. They can be used to simplify a representation of
a stationary Sa'S process as is indicated in the following example.

ExampPLE 3.4. Let f e L*(0,%), Leb) and B # 0. It is easy to see that
fi(s) = eB/Vf(sef’), s€(0,»),teR,

is a spectral representation of a stationary SaS process, say, {X,}; cg, which
is of the form (3.9) with ¢M(s) =seP’, s €(0,9) =S;, t €R, a cocycle
a =1 and pu,; = Leb.
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Let ®: R — (0,>) be given by ®(x) = e”*. Define ¢ = ®~ 1o ¢V o d and
a® = 1. Then ¢*(x) =¢ + x is the usual translation flow on (S,, u,) =
(R, Leb). Applying Proposition 3.3, we get that

g:(x) =g(t +x)
is another representation of the process {X,}, where g = | B/ “e#*/«f(eP*).
Thus {X,}, . g is a moving average process.

REMARK 3.5. One can always select a minimal representation with f, > 0
(even when the representation is complex-valued). Indeed, let {f,},cr be a
minimal representation satisfying (3.2). Define

b(s) = {|f0(3)|/f0(s), if fo(s) # 0,

1, otherwise
and
b(s)
u,(s) = at(s)b(Tt('s—)—)"

Clearly (¢, u) ~ (¢, a) (the equivalence holds with respect to the identity
map), so that by Proposition 3.3, {g,}, c r is also a minimal representation and

8o = bfy = fol 2 0.

The following theorem shows that a stationary stable process determines a
flow and a cocycle in its minimal representation up to the equivalence
relation.

THEOREM 3.6. Let {f("),cr and {f®)},cr be minimal measurable repre-
sentations of a stationary SaS process {X,}, . satisfying (3.9) and (3.11),
respectively. Then (¢®, a®) ~ (¢@, a®).

Proor. By Theorem 2.2,
@ = (h)(ft(l) 0 CD), uo-ae,teT.
Put :
YO) 1/a
g = g d(m° %) reT,
! ! dp; ’
i =1,2. For every t,7 € T we have u,-a.e,
£ = (D19, 2 ®) = () (82> @) (< 7+ ®)

= () (gD @[50t 40 0] (FD0 07T 402 0).

Since we also have 2, = (g®)f® o ) uy-ae., for each v and all ¢ € T, by
the uniqueness result of Theorem 2.2 we obtain u,-a.e.,

o = 07lo gD o0
and
g = (h) (8P @) [ho@ 1o gDo@] ",
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Since a) = g /|g®|, a® o ® is cohomologous to a®. O

We conclude this section with an example of cocycles for a flow in continu-
ous time.

ExamMpPLE 3.7. Let k: S > R be a measurable function such that
N 1k(¢,(s))] dt < o« for every N > 0 p-a.e. Then

a,(s) = exp{i/:k(¢u(s)) du}

is a cocycle for a flow {¢,}, c g. More generally, if F: R X S - R is an additive
process (in the sense of Kingman), that is, F is jointly measurable and for
every t,,t, € R, F(¢; + ty,8) = F(ty,s) + F(¢, ¢,(s)) p-ae., then

a,(s) = exp{iF(t,s)}
is a cocycle for {,}; c g-

4. Decomposition of stationary processes: dissipative and conser-
vative parts. We will say that a stationary SaS measurable process {X,},c 1
is generated by a nonsingular measurable flow {¢,},cr on (S, p) if it has a
spectral representation of the form

f, = t{d(IJJ°¢t

) 1/«
(4.1) n } (fod,), u-a.e.,

where f € L*(S, p), {a,),cr is a cocycle for {¢,}, . r taking values in {|z| = 1}
(or {—1, 1} in the real case) and

(4.2) supp{fe¢,:t €T} =8, u-a.e.

In view of Theorems 3.1 and 2.2(a) every measurable stationary SaS
process is generated by a nonsingular flow. Our main goal is to show that
certain standard decompositions of flows in ergodic theory induce natural
decompositions of stationary SaS processes. To this end we will recall basic
definitions and facts concerning nonsingular maps and flows.

A nonsingular map V: S - S is said to be conservative if there is no
wandering set of positive u measure (a set B is called wandering if the sets
V*B, k > 0, are disjoint). Given a nonsingular map V, there exists a
decomposition of S into two disjoint measurable sets C and D—the conserva-
tive and the dissipative parts—such that: (i) C and D are V-invariant, (ii) the
restriction of V to C is conservative and (iii)) D = U%_ _.V*B, for some
wandering set B. The decomposition of S into C and D is unique (modulo )
and is called the Hopf decomposition. Given a nonsingular flow {¢},cr
(T =R or Z), for each ¢t € T — {0} one has the Hopf decomposition of S,
S = C, U D,, generated by the map ¢,. Since all C, (D,, resp.) are equal to



STATIONARY STABLE PROCESSES 1173

each other modulo u [see Krengel (1969, 1985)], one can choose a set C that
is invariant under {¢,}; . r and such that C = C, and D := S — C = D, mod-
ulo u for every ¢t € T — {0}. This is the Hopf decomposition of S correspond-
ing to the flow {¢,}, c 7. A flow is called dissipative if S = D and conservative
if S = C (modulo w).

THEOREM 4.1. If a stationary SaS process {X,},.r is generated by a
conservative (dissipative, resp.) flow, then in any other representation (4.1)
and (4.2) of {X,}, < 1, the flow must be conservative (dissipative, resp.). Hence
the classes of stationary SaS processes generated by conservative and dissipa-
tive flows are disjoint.

PROOF. Suppose that {X,}, . is generated by a flow {¢,},c . Let S = C U
D be the Hopf decomposition for {¢,},. . We will show that the following
equalities hold u-a.e.:

(4.3) C= {s esS: quf((ﬁt(s))I“wt(s)A(dt) = oo}
and
(4.4) D= {s esS: quf(¢t(s))|awt(s)A(dt) < oo},

where w, = d(pe° ¢,)/du and A is the Lebesgue measure if T = R and the
counting measure if T' = Z. Let us denote the sets on the right-hand sides of
(4.3) and (4.4) by C, and D,, respectively.

We first consider the case T = Z. Since ¢, is dissipative on D and
|fol* € LS, w), we have D = U, ., ¢, B for some wandering set B and

fZ'f o wy, dp = flfl du < o,

Brez
Hence L, . 7|f° ¢,|“w, < © a.e. on B. The same argument holds when B is
replaced by ¢;B, j € Z. This proves that Yrezlfodplw, <> ae. on D,
implying D C DO u-a.e. Let now p € L(S, n) be a strictly positive function.
By a result of Halmos (1946), L, . ,(p ° ¢,)w, = © p-a.e. on C, and by the
Chacon—Ornstein theorem [see Krengel (1985)],

lim Lin<n(podp)wy
n—oo L <nlfodpl“wy
exists and is finite on {¥, . ;1f° ¢,|*w, > 0} N C. By (4.2) this intersection
equals C p-a.e.; hence, C ¢ C, p-a.e. This completes the proof of (4.3) and
(4.4) in the case T' = Z.
. We will now consider T = R. First we will prove that
(4.5) C N supp{f} cC,

and
(4.6) D c D,
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w-a.e. By a version of Wiener’s local ergodic theorem for nonsingular flows
[see Krengel (1985)],

. -1 2 a — @
Jim 70 [1((x))|"w,(x) ds = |f()
u-a.e. Therefore, for p-a.a. x € supp{f},
g(x) = [1f(9(2))“w,(x) ds > 0.
Clearly g € LX(S, ) and

I g(du(x)wi(x) = J (g2 "w,(x) dt
e — 00
u-a.e. By the first part of this proof the series on the left-hand side is finite
u-a.e. on D (dissipative part of ¢,) and infinite u-a.e. on C N supp{feo ¢;:
k € 7). This proves (4.5) and (4.6). Now one can replace f by (fo ¢, )wl/ * in
the above argument and (4.5) yields C N supp{(f - ¢,)wl/ *) c C, up-a.e., for
any fixed u € T. Using w, > 0 p-a.e. and (4.2), we get C C C, p-a.e. This and
(4.6) complete the proof of (4.3) and (4.4) in the case T' = R.

Suppose now that the process {X,}, . is generated by a conservative flow
{¢,};c 7 on (S, w) and let {y,}, c 7 be another flow defined on (Y, ») which also
generates {X,}, . ;. Therefore,

d(ved, e
gt=ut{2—v)} (g°4)

is another representation of {X,}, . » satisfying (4.1) and (4.2) and {u,},.; is a
cocycle for {¢,}, c 7. We will show that {¢,},c r must be conservative as well.

Since {¢,}, < 7 is conservative, we have u(C — C,) = 0, where C, is defined
by the right-hand side of (4.3). Let £,° be the restriction of f, to Cy, t € T. By
Theorem 1.1 there exist measurable functions ®: Y —» C; and A: Y - R — {0}
(C - {0}, resp.) such that

g.(y) =h(»)FA(®(y)), A ® ra.e.

Because ®(y) € C,, we obtain r-a.e.,

d(vey,
[1s(n(I* = () acan

= [le()In(dt)

, = Ih(y)I“fTIf(¢t(‘D(y)))l"wt(q’(y))A(dt) = .

Hence {¢,},c r is a conservative flow by (4.3) and (4.4).
A proof in the case when {X,},., is generated by a dissipative flow is
similar. O
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The following corollary gives a simple criterion to identify SaS processes
generated by conservative and dissipative flows.

COROLLARY 4.2. The process {X,}, o is generated by a conservative (dis-
sipative, resp.) flow if and only if for some (any) measurable representation
(e € L*(S, n) such that supp{f,: t € T} = S the integral

[fi(o)1a(de)

is infinite (finite, resp.) u-a.e. Here A is the Lebesgue measure if T = R and
the counting measure if T = Z.

Proor. We apply Remark 2.5 by choosing an arbitrary minimal represen-
tation {f}, < 7 of {X,}, c ¢ (which is of the form (4.1) and (4.2) by Theorem 3.1)
and f?-= f,. By Remark 2.5 the a.e. finiteness of the integral in Corollary 4.2
transfers to the a.e. finiteness of a similar integral with f replaced by f®.
Therefore, we may assume that {f,},cr is of the form (4.1) and (4.2). In this
case, the corollary follows immediately from (4.3) and (4.4). O

Let {X,},c r be a stationary SaS process. Every such process is generated
by some nonsingular flow {¢,}, .7 [Theorems 3.1 and 2.2(a)] on a standard
Lebesgue space (S, u). The Hopf decomposition of S induces the following
decomposition (in distribution) of the process X:

(4.7) X =, XP +X°,
where
xP = | f.dM,
D
x¢ = f f,aM
C

and M is a SaS random measure with the control measure w. Clearly the
processes X” and X are mutually independent and, since D and C are
invariant under the flow, X” and X¢ are both stationary. X” is generated
by a dissipative flow and X¢ by a conservative one.

THEOREM 4.3. Decomposition (4.7) is unique in distribution.

ProOF. We need to show that decomposition (4.7) does not depend on
{f.},cr € L*(S, u). Let {g,},cr be a minimal representation of the process
{X,),cp. Assume that this representation is defined by a flow {,},., on
(Y, v). Denote by C, and D, the conservative and dissipative parts of Y,
respectively. By Remark 2.5 and (4.2) there exist measurable ®: S - Y and
h: S > R — {0} (C — {0}, resp.) such that

fi(s) = h(s)g.(P(s)), u-a.e.foreacht €T,
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and v =, o ® !, where w,(ds) = |h(s)|u(ds). Similarly as in the proof of
Theorem 4.1, we obtain ®~*(C,) c C a.e. and ®~'(D,) c D a.e., which yield
®-'(C,) = C and ®~'(D,) = D, respectively (u-a.e.). Forevery a,,...,a, € R
(C, resp.) and ¢,,...,t, € T, n > 1, we have

[|Zait.| du= [|Las, o] b du
cl ; cl

Rl dp

Zaigtl o d

i

Zaigt,-

i

=fc

v

dv.

Hence the process X has the same distribution as X ¢» [defined analogously
by (4.7) for {g,}, c r]. Similarly, we show that X? =, XPs. This completes the
proof. O

In the next result we will give a complete description of processes gener-
ated by dissipative flows. We will show that such processes are superpositions
of the usual moving averages, or mixed moving averages in the terminology
of Surgailis, Rosinski, Mandrekar and Cambanis (1994). The class of mixed
moving averages was introduced in Surgailis, Rosinski, Mandrekar and
Cambanis (1994) because it nontrivially extends the class of the usual moving
averages while still retaining such important properties as ergodicity. Our
next result and (4.7) show that a mixed moving average is a natural compo-
nent of every stationary SaS process.

THEOREM 4.4. Let {X,}, ., be a measurable stationary SaS process gener-
ated by a dissipative flow. Then there exist a Borel space W, a o-finite measure
v on W and a function g € L*(W X T, v ® )) such that

(Ko = { [, [£(x.t + w)N(dr, du)

Here N is a SaS random measure on W X T with the control measure v ® A
and A is the Lebesgue measure if T = R and the counting measure if T = Z.
Moreover, one can always choose (W, v) and g such that the representation
g.(x,u) = g(x,t + u) is minimal.

teT

PrROOF. By a result of Krengel (1969), for every dissipative flow {¢,}, . r on
(S, w), there exists a finite standard Lebesgue space (W, v) such that the flow
{#,}, c ¢ is null isomorphic to a flow { B,};, . defined on (W X T, v ® A) by

) B(x,u) =(x,t+u), (x,u) eWXT,teT.

That is, there exists a nonsingular invertible map ®: W X T' — S such that
DB, =¢,oP for all t € T. Since d[(v ® Mo B,]/d(v ® A) = 1 for every ¢t €
T, in view of Proposition 3.3 it is enough to show that {a, - ®}, . ; is cohomolo-
gous to 1 [we take f* = f, of the form (4.1) and ¢ = B,].
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Put c(x,u) = a,(P(x,u), t € T, (x,u) € W X T. Since {c,},. is also a
cocycle, we have, for every ¢,,¢, € T,

(4.8) Cre (%, u) =c (x,u)e,(x,ty, +u), v® A-a.e.
By Fubini’s theorem, the set
E = {(x, u):c, . (x,u) =c, (x,u)c,(x,ty + u) for A°%-a.a. (¢, tz)}

is of full » ® A measure. Using Kuratowski’s theorem on the existence of
Borel cross sections, there exists a Borel function 2: W — T such that the set
W, = {x € W: (x, k(x)) € E} is of full » measure. Define

b(x,u) =c,_p(u,k(x)), (x,u)eWXT.
Then we have
b(B,(x,u))b  (x,u) =b(x,t+u)b '(x,u)
= ct+u—k(x)(x’k(x))cz:}k(x)(x’k(x))’

and since for each x € W, ¢, 5 (%, B(x)) = ¢, (x, k(x))c (x,u) for
A®2%a.a. (t,u) € T?, we obtain

(4.9 b(B,(x,u))b " (x,u) =c,(x,u) foralmostall (¢, x,u).

To finish the proof we need to show that the above equality holds for each
t €T, v® Aa.e. To this end, consider the following one-parameter groups of
linear isometries on LW X T, v ® A):

(U,2)(x,u) =b(x,t +u)b Y(x,u)z(x,t + u)
and

(Viz2)(x,u) =c,(x,u)z(x,t + u),
2€ LMW X T, v®)), t €T [the fact that V, satisfies the group property
follows from (4.8)]. Since these one-parameter groups are measurable, they
must be continuous in the strong operator topology. By (4.9) and Fubini’s

theorem, U, =V, for X-a.a. t € T, so that by continuity, U, =V, for all
t € T. This proves (4.9) for each t € T and u ® A-a.a. (x,u). O

ExampPLE 4.5. Let ¢,(s) =seP’, s,t €R and B # 0. Then {¢,},cr is a
nonsingular dissipative flow on (R, Leb). Therefore, a SaS process {X,},c 7
with the representation

fi(8) = e B/Df(seht), s,t €R,

is a mixed moving average process provided f € L*(R). It is easy to see that
{¢,},cr 1s equivalent {(or null isomorphic) to a flow B,(x,u) = (x,t + u)
defined on W X T' = {—1,1} X R equipped with a measure (§_; + §;) ® Leb.
 Hence the considered process is the sum of two independent moving averages.

COROLLARY 4.6. Suppose that a SaS process {X,},cr is generated by a
dissipative ergodic flow. Then {X,}, . 7 is the usual moving average process.
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ProoF. Since a null isomorphism preserves ergodicity and {¢,}, 7 is null
isomorphic to { B}, c 7, specified in the proof of Theorem 4.4, { B,}, . 1 is ergodic
as well. However, this clearly implies that W is a one-point set. O

We note that the converse to Corollary 4.5 trivially holds.

5. Stable processes generated by conservative flows. Now we turn
our attention to processes generated by conservative flows. The identity flow,
defined by ¢,(s) = s for all ¢ € T and s € S, is the simplest conservative flow.
A process {X,}, . ; is said to be harmonizable if it admits the representation

(5.1) (X)ier = { [ Nan)|

S teT
where S =[0,27)if T=7Z and S =R if T =R, and N is a complex-valued
rotationally invariant SaS random measure with finite control measure v on
S. Notice that the representation (5.1) of {X,}, . 7 is minimal. A harmonizable
process is an example of a complex-valued process generated by an identity
flow acting on S [and a(¢) = exp{itx} is the corresponding cocycle]. We will
prove the converse:

PrOPOSITION 5.1.  Let {X,},. ¢ be a measurable complex-valued stationary
SasS process generated by an identity flow. Then {X,}, . r is harmonizable.

Proor. We have f, = a,f p-ae,t €T, and a, ,,, = a,aqa,, p-ae., for each
t;,t, €T. Let

Sy = {s: a;+1(8) = a,(s)a,(s) for \°?-a.a.(t,, tz)},

where, as before, A is the Lebesgue measure if 7= R and the counting
measure if T' = Z. By Fubini’s theorem, u(S — S;) = 0. We will show that for
each s € S, there exists a unique k(s) € R[k(s) € [0,27) when T = Z] such
that

(5.2) a,(s) =e*®) for r-aa.teT.

Fix s € S, and define a continuous linear functional A, on LT, A) by

A(g) = fT g(t)a,(s)A(dt).

Since s € S, we have A (g, *g,) = A (g,)A(g,) for every g, g, € LT, )),
proving that A, is a complex homomorphism of L'(T, ) which yields (5.2)
[see Rudin (1962), Theorem 1.2.2]. This proof of (5.2) was suggested to us by
T. Byczkowski. The measurability of % follows from a measurability of the
map s — A,. Define now a finite measure u,(ds) =|f(s)|u(ds) on S. The
continuity of the group of linear operators U,z =a,z, z € LS, u) and
Fubini’s theorem imply that a, = exp{itk(-)} u-a.e., for every t € T [ n ~ p,
since f # 0 by (4.2)]. Therefore, (5.1) holds with v = p,c k71 O



STATIONARY STABLE PROCESSES 1179

The following proposition shows that there are not many real-valued
stationary Sa'S processes generated by identity flows.

PROPOSITION 5.2. Let {X,}, . r be a measurable real-valued stationary SaS
process generated by an identity flow. If T = R, then X, = X, a.s. for every
t €R. If T = Z, then there exist two independent SaS random variables Z,
and Z, such that X, = Z, + (-1)"Z, a.s. for every n € Z.

Proor. We have f,=a,f and q, ., = a,a;, p-ae. Viewing a, as a
{lz] = 1}-valued function, we get from the previous proof that a, = exp{itk(-)}
u-a.e. However, since a, € {—1, 1}, we obtain £ = 0 u-a.e. when T = R and
k=0or m when T=Z. If T =R, we have f, =f u-a.e. and the proof is
complete. Consider the case T' = Z.

Put

Sy=1{s:k(s) =0} and S, ={s:k(s)=m}.

Since the process Y, = [sf, dM = [s fo dM + (—=1)"[s f, dM, n € Z, has the
same distribution as {X,},cz, the conclusion of this propOS1t10n holds with
= (X, +X,)/2 and Z, = (X, - X,)/2. O

In order to simplify statements of further results, we will call all SaS
processes that are generated by identity flows harmonizable. The next theo-
rem characterizes all possible spectral representations of complex harmoniz-
able SaS processes.

THEOREM 5.3. Let {f,},cr be a spectral representation of the form (4.1)
and (4.2) for a complex-valued SaS process {X,}, cp. If {X,}, <7 is harmoniz-
able, then there exists a {¢,}, c p-invariant function k: S - R such that, for
everyt €T,

(5.3) fi(s) = e 9f(s),  pa.e.

Furthermore, {¢,},c; preserves a finite measure w,(ds) =|f|u(ds). Con-
versely, for any measurable k: S —» R and f € L*(S, w), a family of functions
{f.),cr given by (5.3) is a spectral representation of a harmonizable process.

Proor. Since {X,}, . ; has representations (4.1), (4.2) and (5.1), by Remark
2.5 there exist measurable functions ®: S —» R and A: S — C — {0} such that

(5.4) (s){ e "”’( )} F(8(5)) = h(s)e ™™

. m-a.e., for each ¢ € T. Putting ¢ =0 we get f=h # 0 p-ae. Taking the
modulus on both sides of (5.4) yields

{d(#°¢t)

(5.5) du

} Ifod,l=Ifl, u-a.e.,
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for each t € T. Hence

u(s) = { dped) )}”“ f(9:(s))
f(s)
is a cocycle for {¢,}, . taking values in {|z| = 1}. From (5.4) we have
a,(s)u,(s) =e"®®,  pae,
for each t € T. Also v, = a,u, is a cocycle for {¢,}, ., and
v,(s) =e®®  pae.foreacht e T.

Therefore, for each ¢,,¢, € T we have, u-a.e.,
exp(i(t; + t2)CI)(s)) = vt1+t2(s) = vtz(s)vtl((btz(s))

= exp(itzdl'(s))exp(itld)(qbtz(s))),
implying
exp(it,;(s)) = exp(it (o, ( s))) u-a.e., forevery t,,t, € T.

Hence ®(s) = ®(¢,(s)) p-a.e. for each ¢, € T. By a standard argument, there
exists a {¢,}; . p-invariant modification % of ®. That is, k(¢,(s)) = k(s) for all
teT,s€8 and k = ® p-a.e. Since f, = v,f p-a.e., (5.3) holds. Now we will
show that {¢,}, c 7 preserves u,. Indeed, this follows from (5.5) since for every
measurable set A we have

no( 4 (A)) = fs(le é_ 1" dp = [SlAlf«»w“d( pod) = no(A).

Conversely, (5.3) clearly implies that {X,},. r is harmonizable. The proof is
complete. O

The above theorem indicates that a nonidentity flow can also generate a
harmonizable process. The next example shows that this indeed can be a
case.

ExaMPLE 5.4. Let {¢,},c r be a measure-preserving conservative flow on a
finite measure space (S, w). Let k2: S — R be an arbitrary {¢,}, c p-invariant
function. Define

a,(s) = e't*®,

Since a,(s) = a,(¢,(s)) for every ¢,7€ T and s € S, {a,},cr is a cocycle for
{¢,},cr- Let f=g -k, where g is arbitrary measurable function such that
g ok € L}S, w). Then

fi(s) = a () f(di(s)) = " f(s)

is of the form (4.1) and (4.2) and of the form (5.3). Now, if in addition {¢,}, < 1
is a nonergodic flow without fixed points, we may choose a nonconstant
function % in the above construction obtaining a nontrivial harmonizable
process that is not generated by an identity flow.
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Our next goal is to extract the harmonizable part from a stationary SaS
process. Fix a representation {f,}, . r satisfying (4.1) and (4.2) of {X,},r and
set

(5.6) Sy = {s: fro+(8)fo(s) = fi(8)f,(s) for A®2-a.a. (tq, tz)}.
LEMMA 5.5. w(Sy; N{f, =0} =0.

Proor. Let s € Sy and f,(s) = 0. We have
0 = 2°%({(£1,82): Fi(8)Fu(5) # 0)) = A({t: fils) # 0})".

Hence,
[ plls € i 01 {fo = 0): £i(s) # 0} A(dt) = 0.

Consequently, there exists Ty ¢ T with MT — T,)) = 0 such that, for every
teT,,

(5.7) f,=0, u-a.e.on Sy N {f, = 0}.
By the L%continuity of the map ¢ — f;, (5.7) holds for all ¢ € T' In view of
(4.2), we get w(Sy N {fyo=0)=0.0

LEMMA 5.6. Foreveryt € T, u(SyAd; (Sy)) = 0.

PrOOF. Put S% = Sy N {f, # 0}. By Lemma 5.5, we have u(Sy — Sg) = 0.
Let

T, = {t: A ® u({(7,8) € T X SY: fr1(s)fo(s) * Fi(s)f.(9)}) = O}.

By Fubini’s theorem, M(T' — T,) = 0. Now we will show that, for each t € T},
(5.8) fod,#0, w-a.e.on Sy.
Suppose that this is not the case, so that there exist ¢ € T, and a set AcSY

of positive measure such that f, = 0 on A. Then

0= [ A({7: fis () fol8) # Fil&) ()] (o)
= [ M7 for o (5) # O u(s)
= '[TM({S €A:f.(s) # 0})’\(d7)

: = [ p(ls = A £u(s) # 0.

Hence, there exists 7T, c T such that f, = 0 w-a.e. on A, for each u € T,.
Again by the L®continuity of the map u = f,, f, vanishes on A p-a.e., for
every u € T, and that contradicts (4.2). Thus (5.8) is proven.
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Since T, N (—T) is also of full A measure, we may further assume that T
is symmetric about zero. We will now show that w(S;A¢;1(Sy)) =0 for
every t € T,. By the flow property and the symmetry of T}, it is enough to
prove that u(Sy; — ¢;(Sy)) =

Fix ¢t € T,. By (5.8) there ex1sts St c Sy such that w(Sy; — S4) =0 and
fo° &, # 0 on Si. By the definition of T}, there exists B, € S with u(SY —
B,) = 0 such that for every s € B,,

fii(8)fo(s) =fi(s)f.(s) forraa.7€T.

Denote by T, ,, the set of 7’s which satisfy the above equality. We have
NT - T, ,) = 0 for s € B,. Since A is shift-invariant, the set

Ay {(tl’t2) L1 tg,t; Tty €Ty, s)}
is of full A®? measure. Let

ui(s) = ai(s ){ Hepe "")( )} '

Since {u,}, .7 is a cocycle with values in C — {0}, there exists a set E, C S
with u(S — E,) = 0 such that, for every s € E,,

U, ,(8) =u(s)u.(¢,(s)) forraa.reT.

Denote by F, ,, the set of 7’s satisfying this equality. We have NT' — F, =0
for s € E,. The set

G5 = {(21,85): b1, 85,81 + 8, € F, )
is of full A®2 measure, s € E,. Also, by the definition of S;;, we have that
I = {(t1,82) frpve(8) fo(8) = Fi(8)fi(8))
is of full A®2 measure for each s € Sy.

Let K, =Sy NS, NnB,NE,, where t € T,. Clearly K, c Sy and u(Sy —
K,) = 0. We will prove that K, C ¢;'(Sy), which implies that u(Sy —
¢;(Sy)) = 0. Let s € K, and (¢,t,) €A, ,, N G, ,, N I,. We have

ft1+t2(¢t(3))f0(¢t(3)) = ut1+t2(¢t(s))f0(¢t+t1+t2(3))f0(¢t(S))’

and since ¢, + ¢, € F, ,), the right-hand side equals

ut+t1+t2(3)ut(s)_1f0(¢t+t1+t2(3))f0(¢t(3))

= ft+t1+t2(s)ut(s)_1f0(¢t(3))'
Since ¢, + t, € T, ), the right-hand side in the abqve equality equals
FA(8) Fyse(8) Fol8) " u(8) ™ o u(5))
. = () () () fol8) un(8) ™ fo(bu(s)),

because (¢,,t,) € I,. Using the facts that ¢,,¢, € T, ,, and f,(s) # O since
s € S}, the last expression is equal to

£i(8)  Frarl() Frae(8)ui(8) ™ Fo(d(8)),
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which in view of ¢,,t, € F, ;, equals
ft(s)_lut1(¢t(s))f0(¢t+t1(s))ut2(¢t(s))f0(¢t+t2(3))ut(s)f0(¢t(s))

= fu( $()) o (D.(5))-

Since A o) N G, 5 N I is of full A®2 measure, this proves that ¢,(s) € Sy.
We have “established ,u(S uAd;1(Sy)) = 0 for every ¢t € T).

To conclude the proof of this lemma, consider a probability measure w; on
S, which is equivalent to u, and a measurable (thus continuous) group of
linear isometries (U}, . 7 on L'(S, u,) given by

d(pyi° ¢r)
dpy

It follows from the first part of the proof that U(1s ) = [d(,° ¢,)/du,]1g,

for every ¢ € T,. This equality extends to all £ € T' by a continuity argument

since T is dense in T. Therefore, 15 _© ¢, = 15, p-a.e.for every ¢ € T', which
completes the proof. O

U(z) = zo¢,.

In view of Lemma 5.6 we can choose a {¢,},  r-invariant set Sy such that
w(S;AS,) = 0. This leads to the following decomposition of the process
{X,}, . 7 with the spectral representation {f,}, c r:

(5.9) X =, X" + X3
where
= [ f.aM
Sy
and

x={ _fiaM.
Since Sy, is {¢,}; c ;-invariant, both X and X?® are measurable stationary
SaS processes and obviously they are independent of each other.

THEOREM 5.7. The decomposition (5.9) is unique in distribution. More-
over, {XH),.r is a harmonizable process and {X?2},.; does not have a
harmonizable component.

PROOF. A proof of uniqueness is similar to the proof of Theorem 4.3. Let
{g,}, cr be a minimal representation of the process {X,}, c 7. Assume that this
representation is defined by a flow {§,},c on (Y, v). By Remark 2.5 there
exist measurable functions ®: S - Y and A: S —» R — {0} (C — {0}, resp.)
such that '

fi(s) = h(s)g,(®(s)), u-a.e. forevery t € T,

and v = u, o !, where u,(ds) = |h(s)|u(ds). Consider a set Yy defined by
(5.6) for {g,}, c r- We have ®- (Yy) €Sy pae and @ N (Y -Y,)CS - Sy
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u-a.e. Hence ®1(Yy) = S, u-a.e. The rest of the proof of the uniqueness is
identical with the last part of the proof of Theorem 4.3.

Now we will show that {XH)},.r is harmonizable. To this end, define for
s €Sy NSy n{fy+ 0}

v(s) =fu(s)fo(s)™, tET.
Since s € Sy, we have v, ,,(s) = v,(s)v,(s) for A®?-a.a. (¢, t,). Hence, using
the same argument as in Proposition 5.1, we get for every t € T,
v,(s) = exp(t[j(s) +ik(s)]), w-ae.onSynSyn{fy,+0},

where j, k: Sy N Sy N {f, # 0} > R are measurable functions (k takes val-
ues in [0,27) if T = Z). Extending j and % to functions on the whole of S;; by
defining them arbitrarily on the subset of measure zero (see Lemma 5.5), we
have for every t € T,

f.(s) = exp(t[j(s) + ik(s)])fo(s), m-ae.onSy.
We will show that j = 0 u-a.e. Indeed, since S;; is invariant under {¢,}, c 1,

f~ If1*dp = f lfol*du < foreveryte T.
Sy Sy
Hence
[ el dn = [ 1fl"dn,
Sy

Sy

which implies
f~ [cosh( atj) — 1]Ifpl* dp = 0.
Sy
Since cosh(x) — 1 > x2/2, we get
f_ j2|fo|a du =0,
Sy

and since f, # 0 a.e. on Sy (Lemma 5.5), we obtain j =0 p-a.e. Thus
f, = explitk(s)1f,(s), implying that {X[},., is a harmonizable process by
Theorem 5.3.

Assume now that {X?}, ., admits a harmonizable component, that is, that
there exist mutually independent stationary SaS processes {V,},., and
{W,}, c 7 such that

X3=V+W
and {V,}, . is harmonizable. Let £ be the restriction f,to S-Sy, teT.
Using Theorem 1.1, we obtain the equality
(5.10) el = h(x)fA(®(x)), A® rae,

where v is the control measure for the harmonizable process {V,}, .  given by
(5.1). Then v must be a zero measure; otherwise, (5.10) and the fact that
®(x) € S — Sy give a contradiction. O
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The next proposition shows that in the case of minimal representations the
set Sy coincides with the set of fixed points for the flow.

PROPOSITION 5.8.  If the representation (4.1)-(4.2) is minimal, then
Sy ={s€S:¢,(s)=sforallt € T)

p-a.e. In the real case we have the following: If T = R, then SH coincides
modulo p with a one-point subset of S y or with an empty set; if T = Z, then
SH coincides modulo p either with a one-point subset or with a two-point
subset or with an empty set.

ProoF. Notice that if the representation {f;},c, is minimal, then its
restriction to the set S, is a minimal representation for {XH), . r. Since
{X }; < ¢ 1s harmonizable by Theorem 5.7, it has another minimal representa-
tion (5.1), which is given by an identity flow. In addition, in the real case,
such a minimal representation will be defined either on a one-point or a
two-point set (see Proposition 5.2). By Theorem 3.6, the flow {¢,}, . ; restricted
to Sy is equivalent to an identity flow [seg (1)—(ii) of Definition 3.2], which
gives, for every t € T, ¢,(s) = s p-a.e. on Sy. Therefore, the set

B = {s eSy,: ¢,(s) =sfor ra.a.t e T}

differs from S, by a w null set. The set {t € T ¢,(s) = s} is a measurable
subgroup of T'. Since it is of full A measure if s € B, it must coincide with T
for s € B. This proves B = S, p-a.e. O

6. Concluding remarks: structure of stationary SaS processes. In
this section we combine results of the previous sections to discuss the general
structure of stationary SaS processes. Let {X,},.r be a stationary SaS
process. By Theorems 2.2 and 3.1, every such process has a spectral represen-
tation {f,}, . ; € L*(S, ) of the form (4.1)-(4.2). If {f,}, . 7 is minimal, then a
flow {¢,};cr and a cocycle are determined up to an equivalence relation
(Theorem 3.6). Put

D = {s eS: /Ift(s)l"‘)\(dt) < oo}
T
and
C=S-D,

where A is the Lebesgue measure if 7= R and the counting measure if
T = Z. Next we define

Cy ={s € C: firr()fo(s) = F(8)f,,(s) \Pael).

If {f,}, c r is minimal, then Cj; coincides a.e. with the set of fixed points of the
flow {¢,}, . 7 (Proposition 5.8). In addition, if {X,},. ; is a real process and the

'
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representation {f,}, c r is minimal, then C;; is at most a two-point set (modulo
w). Define

x® = [th dM,

x®= [ fdM
Cy

and
x® = f,dM.
S-D-Cy
Since D and Cy are invariant under the flow (see Lemma 5.6), the processes
XD X® and X® are stationary and obviously they are independent of each
other. Combining the results of Theorems 4.1, 4.3, 4.4 and 5.7, we obtain the
following theorem:

THEOREM 6.1. Every stationary SaS process {X,}, .y admits a unique in
distribution decomposition

X =, XU 4 X@ 4 xO3
into three mutually independent stationary SaS processes such that XV is a

mixed moving average process, X® is harmonizable and X® does not admit
a mixed moving average or a harmonizable component.

If the flow {¢,}; c 1 is ergodic, then in the decomposition
S=DUCyU(S—-D-Cy)
two terms on the right-hand side must have measure zero. Hence we obtain
the next theorem.

THEOREM 6.2. Suppose that {X,}, . r is generated by an ergodic nonsingu-
lar flow. Then only one of the following cases holds:

(1) {X,}, <1 is the usual moving average process.
(ii) There exists b € R (b €[0,27) if T = Z) such that, for every t € T,
X, =X, a.s.
(iii) {X,},c; does not admit a mixed moving average or a harmonizable
component.

Proor. If S=D ae, then {X,},.; is the usual moving average by
Corollary 4.6. If S = Cy, then {X,},., is harmonizable and Theorem 5.3
implies that f, = exp(itk)f for some {¢,},c-invariant function k: S —» R
(Theorem 5.3 holds in the real case as well). Since the flow is ergodic, £ is
constant u-a.e. This ends the proof of (ii). Case (iii) follows from Theorem 6.1.

|

Theorem 6.1 indicates that many problems concerning stationary SaS
processes can be reduced to separate studies of the parts X®, X® and X®.
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Moving average and harmonizable SaS processes have been extensively
studied by many authors and many results are known [see Samorodnitsky
and Taqqu (1994)]. An introduction and some basic facts on mixed stable
moving averages can be found in Surgailis, Rosinski, Mandrekar and Camba-
nis (1994). Some processes of type X® have been investigated in the past,
most noticeably sub-Gaussian SaS processes and certain doubly stationary
stable processes [introduced in Cambanis, Hardin and Weron (1987)]. A
systematic study of processes of type X® is needed in order to understand
the class of all stationary SaS processes. In particular, the role and proba-
bilistic meaning of a cocycle term in (4.1) ought to be clarified beforehand.
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