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THE HAUSDORFF MEASURE OF THE SUPPORT OF
TWO-DIMENSIONAL SUPER-BROWNIAN MOTION

By JEAN-FRANGOIS LE GALL AND EDWIN A. PERKINS'

Université Paris VI and University of British Columbia

We show that two-dimensional super-Brownian motion is a multiple
of the h-Hausdorff measure on its closed support, where h(r) =
r?log* (1/r)log* log* log* (1/r). This complements known results in di-
mensions greater than 2.

1. Introduction and statement of result. The goal of this work is to
find an exact Hausdorff measure function for the support of two-dimensional
super-Brownian motion at a fixed time. The corresponding result in higher
dimensions was proved by Perkins (1989) and refined in Dawson and Perkins
(1991). Before stating our main result, we introduce the relevant notation.

We denote by M;(E) the space of finite measures on a measurable space
(E, &). The integral of a function f: E — R with respect to a measure u is
written as ( u, f), or in the case of a probability, u(f). For y >0, let Q
denote the law on (Qy,Fy) = (C(0,®), Mz(R9)), #(Qy)) [where B(Qy) de-
notes the Borel subsets of Q] of d-dimensional super-Brownian motion with
branchmg rate y. That is, 1f Y (w) = o(t) on Qy, then under Q}, Y is an
M ;(R%)-valued diffusion such that, for all bounded measurable ¢: Rd [0, =),

(11) Q1 (exp(—(Y,, 8))) = exp(~{ u, U$)),

where Uy = U}¢ is the unique solution of (the weak form of)

A Y 2
(12) x) = U (=) = S (U (%)), Ui=e

[see Dawson (1993), Chapter 4].

We denote by & — m(A) the Hausdorff h-measure of a set A in R¢ and by
S(Y,) the closed support of Y,. If ¢(r) = r? log* log*(1/r), then Dawson and
Perkins [(1991), Theorem 5.2] state that for d > 3 there is a constant
co(d) € (0, ) such that

(13) Y,(A)=co(d)yp—m(A N S(Y))),

The extension to general y > 0 is trivial because the scaling properties of
(1.2) show that

(1.4) QY €A) =Q}, (yY €A).
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The two-dimensional case is more delicate because the recurrence of planar
Brownian motion leads to a longer range dependence in the local structure of
Y,. A less precise result for d = 2, which implies S(Y,) is a Lebesgue null set
of dimension 2, or empty, for all £ > 0 a.s., may be found in Perkins [(1989),
Theorem 2]. Our main result is the analogue of (1.3) for d = 2.

For the rest of this work we will assume d = 2.

NoTATION. Let A(r) = r2 log*(1/r)log* log™ log*(1/r).

THEOREM 1.1. There is a universal constant c, in (0,%) such that
Y,(A)=coyh—m(A N S(Y,)),

(1.8) VAE(@(RZ),@z-a.S., V ¢>0,v>0, pe My(R?).

This result was conjectured in Perkins (1988). It is interesting to observe
that the function A is the same as the one that gives an exact Hausdorff
measure for a planar Brownian path [Taylor (1964)].

In view of (1.4) it suffices to prove the theorem for y = 4, a value which is
well suited to the path-valued process of Le Gall (1993) and so we set
Q, = @/‘f. This path-valued process W is our main tool, and in Section 2 we
describe the main features of this process that we will need, including its
associated exit measures and the special Markov property for the excursions
of W outside of a set. Exit measures and the special Markov property were
introduced and studied by Dynkin (1991) for general superprocesses. The
upper bound on the Hausdorff measure of the support is established in
Section 4. The key technical ingredient is a precise lower bound for the pth
moment of the mass in a small disk, under the excursion measure for W
(which corresponds to the canonical measure for Y'). This result is proved in
Section 3 (Corollary 3.3) along with several other bounds for the excursion
measures.

The lower bound for the Hausdorff measure of the support is more in-
volved. An outline of the proof is presented in Section 5 along with some
technical preliminaries, including a well-known representation of the associ-
ated Palm measure and a version of the special Markov property under the
Palm measure from Le Gall (1995). The proof of the lower bound is given in
Section 6, and a simple zero—one law is used to show that the upper and
lower bounds coincide in Section 7.

We do not know if (1.3) (for d > 3) or (1.5) (for d = 2) is valid for all ¢ > 0
outside a single null set. Equation (1.3) is valid for all ¢ > 0 (and d > 3) a.s. if
different constants are used in the upper and lower bounds, but for d = 2
such a global (in ¢) result is only known with different Hausdorff measure
functions [¢ and A,(r) = r2(log*(1/r))?] in the lower and upper bounds for
Y,. These results are given in Perkins (1989).

We denote by P*“? the law on C([u,»), R?) of planar Brownian motion
starting at y at time u > 0, and we write P? for P%?. We also denote by P,
and p,(x) the semigroup and transition density, respectively, of planar
Brownian motion.



TWO-DIMENSIONAL SUPER-BROWNIAN MOTION 1721

Let bp& (respectively, p&) denote the space of bounded nonnegative
(respectively, nonnegative) &-measurable functions on a measurable space
(E, &). The symbols c;,c,,... represent fixed positive constants, and ¢ is a
positive constant whose value may change from line to line.

2. The path-valued process and its special Markov property. In
this section we give a rather rapid introduction to the path-valued process of
Le Gall (1993, 1994a) in the time-inhomogeneous setting of Le Gall (1995).
Our goal here is only to introduce the results needed to resolve the problem
at hand.

The state spaces for this process are the spuces

7 ={(w,¢) € C([u,»),R?) X [u,%): w(s) =w({)Vs=¢), u=0,

of stopped two-dimensional paths w on [u,®) with “lifetime” . We will
systematically write w in place of (w, ¢), as ¢ will be clear from the context,
and then write {(w) for ¢ and u(w) for u, the starting time of the path. Let
W = w({) denote the terminal point of w. The space of all stopped paths
7= U, 7™ is a Polish space when equipped with the metric

dlw,w') =lu(w) —u(w")| + s1>1€|w(r Vu(w)) —w'(rVvu(w))|

+{(w) = f(w)l.
We denote by (x, u) (or x if u = 0) the trivial path in 7’ which is constant
at x and has lifetime .

Let O™ = C(R,,7"™) be the space of continuous functions from R, to
7" with the topology of uniform convergence on compact sets. The canonical
process on all of these spaces is denoted by (W,, s > 0), and ¢ is the lifetime
of W,. We denote by Q" the subspace of QO of those W for which ¢, = u for
large enough s. Let Q= U,.,Q§’ and equip , with the topology of
uniform convergence with respect to the metric d and its Borel o-field #°.

For w € 7%, P, denotes the law on (Q,5) = (Q©, B(Q®)) of the path-
valued process associated with planar Brownian motion. Under P,, W is a
7 ©-valued diffusion and (¢, s > 0) is a one-dimensional reflecting Brownian
motion [see Le Gall (1993), Theorem 1.1]. Intuitively, the path W, grows like
a planar Brownian motion when ¢, “increases” and is erased when ¢, “de-
creases.” We denote by (L., s, ¢ > 0) the continuous local time of ¢ at level ¢
and “time” s, normalized to be a sojourn density for ¢.

If w(0) = x € R?, then W,(0) = x for every s > 0, P,-a.s. As 0 is regular for
g, clearly x is a regular point for the diffusion W and so we may introduce
N,, the It excursion measure for excursions from x. The measure N, is a
o-finite measure on , which is supported by Qf’. Normalize N so that it is
the intensity of the Poisson measure, I1*, of excursions from x completed up
to time

7o = inf{t: L > 1}.
For u > 0 define 0,: 7 - 7™ by
0,(w,¢) =((w(t—-u),t>u),{+u)
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and define N, , on (Q,,5°) by
(21) Nu,x(WeA) = Nx(Gu(W) G‘4)
The measure N, , is clearly supported by Qf’. If W€ Q®, let o(W)
=inf{s > 0: {, = u}.

Proposition 2.2 of Le Gall (1994a) shows that N, ({ € ) is the It6 mea-
sure of excursions of linear Brownian motion above « and so the local time of

¢, (LY, t = u, s = 0), is also well defined and jointly continuous under N, ,.
Define a continuous M,(R?)-valued process on (0, %,P,) by

Y(W) = fOT°1(Ws c)d,L,, t>0.

If W € Q, and ¢ has a jointly continuous time (L{: ¢ > w(W), s > 0), define a
continuous My(R?)-valued path by

X, (W) = fo"(Wﬁ(Ws e )d,L, t>u(W).

In particular, (X,, t > u) is a continuous My(R?)-valued process under each
N,. - Theorem 2.1 of Le Gall (1993) (with p = 7) and (1.4) show that if 5,
denotes point mass at x, then

(2.2) P(Ye)=Q,(), VxeR

Decompose Y, according to the contributions from the individual excursions
of W from x to see that

(2.3) Y, = [ X(W)dII*(W), Vi¢>0,P-as.
Q, =
This and (2.2) show that, for ¢ € p B(R?),

(24) @ exp( () = oxo - [,

=em%—jkl—emx—<Xb¢)»NAdW)y

REMARK 2.1. Equation (2.4) shows that R,(x,-) = N, (X, €-) are the
canonical measures associated with the infinitely divisible random measures
Y, under Q, [see Dawson (1992), Section 3.4 and Chapter 6]. The definitions
of N, , and X, imply

Nu,x(Xt EA) = Nx(Xt—u EA) = Rt—u(x’A)’

(2.5)
Vi>us=0,xeR?

Take means in (2.3) to conclude
(26) Nu,x(<Xt7 ¢>) = Nx(<Xt—u’ ¢>) = @Sx(<Y;—u’ ¢>) = Pt—uqb(x)’

where we used the superprocess property (the fact that the mean measure of
a superprocess is given by the expected value of the underlying Markov
process) in the last equality.
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We will also use the laws P*(-) = P (W, , € ), w € #', on Q (supported
by Q) to formulate the strong Markov property of W under N,. Let
Z=N,5,0W:s <r)and let 6, denote the usual shift operators on Q. If T
is an (#)-stopping time such that T > 0, N -a.e., F € pF; and G € pF, then
[see Le Gall (1995)]

(2.7) N,(L(T < ®)F-(G>6,)) =N,(1(T < =) FP} (G)).

We now follow Section 3 of Le Gall (1994a) and introduce the exit mea-
sures X from a fixed open subset D of R, X R? [see also Le Gall (1995)]. If
w € C(u,»),R?), let

T(w) = p(w) = inf{¢ > u: (¢,w(t)) € D}, infJ = oo,

and we abuse the notation slightly by also writing 7(w) for the “same” exit
time if w e 7™, Assume (0, x) € D and P*(r < ») > 0. If y, = (£, — 7(W))",

= [¢1(y, > 0)ds and a(s) = inf{r: A(r) > s}, then under P,, (v,(,), s = 0)
1s a reflecting Brownian motion with local time at level zero LO [Proposition
3.1 of Le Gall (1994a)]. Let LY = L, ,, and call L? the exit local time of D. As
in Section 3 of Le Gall (1994a) we may in the same way define L? o
(Q4,N, ,) for (u, x) € D such that P* *(r < ) > 0. To see this, argue as in
Le Gall (1994a) with space—time planar Brownian motion as the underlying
process and note that N, . differs from the associated excursion measure in a

trivial manner. For (u x) as above, define the exit measure X” on
(QO7 u,x) by

D _(° & D
(XP, ) focﬁ(s,Ws)dLs.

If (u,x) & D or P“*(1 < ) = 0, set X? = 0 under N, ,. Then X? € M(R,
X R2) is supported on dD and
(2.8) N, ,((XP,$)) = P“*(¢(r,B,)1(r<®)), V(u,x)eD

[more details on the construction of X? in this setting can be found in
Le Gall (1995)]. It is easy to check that if

(2.9) D™ ={(r—u,x):r>u,(r,x) €D},
then
(2.10) N, ,(XP e ) =N,(g,(X"") €"),

where (o,(v), ¢) = (v, ¢(u + -,-)) for any nonnegative function ¢ on R, X
RZ. [The reader may prefer to use (2.10) as the definition of N, (X D e )]

The special Markov property of W from Le Gall (1995) Wlll play an
essential role in our lower bound on the Hausdorff measure of the support. To
describe it, fix (u, x) € D such that P* *(7, < ©) > 0 and let

(2.11) =n(s) = inf{t: ftl( L < 7(W,))dr> s}, W, =W, for W € Q,.

Let &P be the o-field of subsets of (), generated by W’ and the N, ,-null
sets in Q,. The random open set {s € [0, ¢): 7(W,) < ¢} is the countable
union of d1s301nt open intervals {(a;, b,): i € I}. For each i in I, 7(W,) = 7' is
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constant for s in [a;, b;] and so is W(¢) for all ¢t < 7' [see the proof of
Proposition 3.1 in Le Gall (1994a)]. Define the ith excursion “outside D” by
(2'12) VVsi(t) = VV(al+s)/\ bl(t)’ t = Ti’

so that W' € QU has lifetime ¢/ = {, . ns - Let /AAW) = L, 8y (dW).
THEOREM 2.2 [Special Markov property, Le Gall (1995)]. If ® € pF°, then

Nu,x(exp(— y cp(Wi)) ‘g”) - exp(—th’y(l - exp(—CD))XD(dt,dy)).

iel
That is, conditional on &P, # is a Poisson measure on Q, with characteristic
measure [N, () XP(dt, dy).

3. Some bounds for N. Let w, € 7 have lifetime ¢,. By Proposition 2.5
of Le Gall (1994a) there is a Poisson random measure A on [0,¢,) X Q,
defined on (2, 7, P ), such that A has characteristic measure 2 d¢ Ny 6 (dW)
and

(3.1) X, = [*[ X, (W)dA(t, W), Pj-as.
0 7Q

This expresses X, (W) as the sum of the contributions from excursions of ¢
above its minimum-to-date.

NoraTION. If ¢ € p#(R?) and ¢t > 0, set

G(d,t) = [Ot sup P, ¢(y) ds.

yeR?

The next result is, in view of Remark 2.1, essentially Lemma 6.5.4 of
Dawson (1992). We give a proof using W.

LEmMMA 8.1. If ¢ €pB[R?), t >0 and y € R%, then, for every A in
[0,(4G(o, )],

Ny(exp()t<Xt, $)) - 1) < 2AP,$(y).

Proor. The Markov property (2.7) shows that
(n) 7N, (CX,, ")

) Ny(fc)<u1< ..‘<u"<01:1¢(Wu1) drt, - stu”)

- 11 o(10.)

O<u;< - <u,_1<o 1

X P*Wu”_l(fo%(vffu) dLZ) drt, . - deul).
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Since W, has lifetime ¢, dLi, -a.e., we may set w, =W, , assume w,
has lifetime ¢ and use (3. 1) to see that

P ([ o (W, de) = 2[ Ny, (X, #) dr

=2[ P, b(wo(r)) dr [by (26)]
< 2G(¢,t).
The obvious induction gives
(n) 7N, ((X,, ") < (2G($,1))" N, ((X,, 6))

= (2G(4,))" "P,¢(3).
The desired result follows by multiplying by A* and summing over n. O

The above result shows the moments

¥(t,x,¢,p) =N, ((X,,$)"), ¢cbpB(R*),peZ,, xR’

are finite. The following recursion relation between these moments is well
known.

PropOSITION 3.2. We have y(t, x, ¢,1) = P,¢(x) and, forp > 2,
p—-1

d’(t, x, ¢, p) =2 Z (?)[(:Pt—s(‘/’(s" ’ ¢’j)¢’(37' , b, p _J))(x) ds.
j=1

Proor. If u,(A, x) = U(A¢pXx) is as in (1.2) with y = 4, then

(3.2) u,(A, %) = APd(x) = 2[ P, (u,(A,)*)(2) ds.
0
Equations (1.1) and (2.4) show that
u, (A, x) =N, (1 - exp(—XX,, $)))

- Y (- 1" 1—¢(t x,é,n),

n=1

where the series is absolutely convergent if |A| < Ay, for some A, > 0, by
Lemma 3.1. If a,(¢, x) = (= 1)"~ X(n!) " Yy(t, x, ¢, n), then the absolute conver-
gence gives

n-1

u,(A, x) = ;‘,2)\” Zaj(t,x)an‘j(t,x) ,

j=1

where the series is again absolutely convergent for |A| < A,. Substitute this
into (3.2) and use Fubini’s theorem (thanks again to Lemma 3.1) on the
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right-hand side to conclude that, for 0 < A < A,

;1(—1)"‘1(n!)‘1w(t, x, b, n)\"

o n-1

=Po(x)A =2 L L [P (a(s,)a,-(s,))(x) ds A",

n=2 j=0

Equate coefficients of A? to obtain the desired recurrence relation. O

Let D(x,r) denote the open disk in the plane centered at x and with
radius r. We slightly abuse the notation and write (¢, x, r, p) for (¢, x, ¢, p)
when ¢ = 1(D(0, r)).

Fix ¢; > 1/2 and let ¢, = (4¢; — 2)/(4¢c; — 1) € (0, 1). A routine calcula-
tion shows there is a constant c¢; > 0 such that

P*(B,e D(0,r)) > ¢4 exp(—lxl2/2t)r2t‘1, Vr<vt,xeR2

Finally let ¢, = c5(2¢;)"!. By convention, 0° = 1.

COROLLARY 3.3. We have

w(t,x,r,p) =2ccip!r?? c'_-‘:xp(—clloclz/t)t“1 log+(tc§’/r2)p_l,

Vt>r?, peN,xeR2
ProorF. We will use induction on p. If p =1, this follows from the

definition of c¢; (even with ¢; = 1/2). Let p > 1 and assume the result for all
p’' < p. By Proposition 3.2 and the induction hypothesis,

Y(¢,x,7,p)
—2¢4lyl? _
> 2plefr??(2¢,)* Z f JPes(y — 2)exp| ——— |57

Jj=1

X log+(sc£r_2) - logJ’(.s'cf‘jr_z)p_j_1 dys~1ds
p-1
t
=2plefr??(2¢1)" ¥ [ [pe-s(y = %) Pojac(¥) dy
j=1r

2 ) ; i
chzlogJ’(scér‘z)J log™* (scf —ip=2)P 's-1ds
1

cptrs . -~ )

Jj=1
-1

X(t - s(l - (401)_1))

><10g+(sc§r‘2)j_1 10g+(sc§"jr‘2)p_j_ls‘l] ds.
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Note that s < ¢,¢ implies 2(¢ — s(1 — (4¢;)™!)) = ¢/c, and that
log*(scjr=2) = log*(scf 'r %) forl<j<p-—1.
Therefore,

W(t,x,7,p) = cfplr??(2e,)exp( ~|xl%, /t)t (p — 1)

(3.3) o R
X/c;_przlog(ch 1, 2)p s lds 1(c§t > r2)‘

Let u = log(scf~'r~?2) to see that the integral on the right-hand side of (3.3)
equals

/‘log*(Cé’"_z)up—Zdu = log+(tcé’r_2)p_1(l7 - 1)_1'
0

Substitute this into (3.3) to complete the proof. O
Fix w, € 7" with lifetime 1 and let @,(¢) = wy(1 — ¢) — wy(1). If A is as in
8.1) and r € (0, 1), let

Z(r) = Ll_;rzle_t(D(wo(l),r))A(dt,dW)(r2log%)_

and

I(r,p) = /Zexp

r

_c1|w0(3)|2 tlanpa—2\P~ 1 —1 1’
(f (log*(scsr=?))" s ds(log;) D,

pEN,
where ¢; and ¢, are as in Corollary 3.3. Intuitively, r2 log(1/r)Z(r) is the
contribution to X,(D(wy(1), 7)) from particles which split off from w, in
[1-r,1-r2].

LEMMA 3.4. There exist constants c5 > ¢4 such that, for every r € (0,1/2)
and p € N,

cfp? = P} (Z(r)?) = cfp®I(r, p).

PRrROOF. An easy calculation shows that
(34) G(1(D(0,r)),1) < 3r2log(1/r) forr e (0,1/2).

Therefore if r € (0,1/2) and A = 1/12, then ArZ%log(1/r) ! <
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AGW(DO, rNt)~! forall t <1 and so

Pk (exp AZ(r)) = exp(fll__rrzf (exp(/\(r2 log;)

Xl_t(D(wO(l),r))) - 1)

X 2N, (AW ) dt)

< exp(folél)\(rz log%)_lPl_t(l(D(wo(I), r)))(wo(t)) dt)

(Lemma 3.1)
<e [by(3.4)].

The required upper bound is now clear because Pj(Z(r)?) <
p!ATPPy (exp AZ(r)).
For the lower bounds, use Corollary 3.3 to see that

L) = B [ X (D(wo1), ) A, @) |2 g

-pP

_ 1\7*
= 2/1 rzle_,(D(wo(l), r))prO(t)(dW) dtr‘z”(log—)
1-r r
r —c, |ty (2)I1? tef \ P! 1,77
! — - 7 ! + 2 _
> 4clc;fp.fr2exp( ; t~*log 2 dt (logr )
> cfpPI(r,p). |

LEMMA 3.5. There exists a constant ¢, such that if p = [2A/cg] + 1 ([(x] is
the integer part of x), then

+42 6 1
Pr(Z(r) = A) = ((2°I(r,p) — 1) ) exp(—c;A), VA Ez—, re (O, 5)

ProOF. Let A > c¢z/2 and r € (0,1/2), so that 2A /cg < p < 4A/cq. Use
P (Z(r)") < AP + P2 (Z(r)??) " PE(2(r) > A)Y*
to see that
P (2(r) > A)2 > (P2 (2(r)") - AP) PL(2(r)™)

> ((¢s)"1(r,p) ~ A7) (e52p)
> (A/es2p)’(27I(r,p) — 1)
> (cg/8c5)"(271(r, p) = 1)"
> (ce/8e5)**/™(271(r,p) — 1)
=exp(—c;A/2)(2PI(r,p) — 1)+. O

-1/2
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4. Upper bound for the Hausdorff measure of the support. Let
r,=r(n)=272" and if C c R? and r > 0, set C" = {x: d(x,C) < r}, where
d(x,C) is the usual distance from x to C. Let

A, = {C : C an open square of side length r, centered at
(j + e)r, forsomej € 7%, e € {0, 1/2}2, Cc(-n, n)2}

We will use a well-known theorem of Rogers and Taylor which reduces the
upper bound on A — m(S(Y;)) to showing that, for a sufficiently small ¢ > 0,

h—~ m({x € S(Y;): limsupY,(D(x, r))h(r)_l < c}) =0, @ -as.
rlo

The key to finding a good cover for the above set will be an estimate on
(4.1)  No(Xy(C) >0, X,(C") < ch(r)) forj=2",...,2""" - 1)

for C in A,»+1. The strong Markov property for W, (2.7), allows us to estimate
the above set by analyzing the two conditions separately. This is of course
what is done when bounding the Hausdorff measure of the Brownian path
[see Taylor (1964), page 256]. Note, however, that if one works only with the
super-Brownian motion Y, it is not all clear how to get such an estimate on
(4.1). The process W introduces time dynamics to the analysis of Y, which
are critical for our arguments to work.
For B> 0and w € 7 with (> 1, let
n—1
F, p(w) = — Y L(sup(Jw(Z—t) —w()]:0 <t <27)>B277/?).
Jj=0
Lemma 1 of Le Gall (1994b) shows that for any 6 > 0 there are a B > 0 and a
cg > 0 such that

(4.2) No(Ft20:4=1,F, 5(W,)>8) <cge™
LEMMA 4.1.  For each B, ¢, > 0, there exists an integer ny(B, c,) € N such

that whenever n > n,, wy €7 has lifetime 1 and F,, g(w,) <1/6 for all
m > 22", then for any C € Ayn+1 such that wy(1) € C,

Pk (Xi(C™) < coh(r)) forj=2",...,2"" 1 = 1) < exp(—2"1 %)),
ProoF. Let 6(r) = log* log* log*(1/r). Assume w, € 7" and C € Ayus:
satisfy the hypotheses of the lemma for a given B > 0 and n € N, and let

¢y > 0. In the course of the proof we will need to assume n > n, for some
no(B, cy). Define A and Z(r) as in Section 3. Then

q, = P:,‘O(XI(CU) < coh(r;) forj=2",...,2""1 - 1)
Pi (Z(r;) < co(r;) forj =27,...,2"*1 — 1)

2n+1_1

1_[" szo(z("j) = 009(’}'))

Jj=2

IA
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by the independence property of A and the fact that rjz =r;.; Let p;=
[2¢,60(r))/cg] + 1 and note that p; ~ (2¢y/cgllog j as j — « (the ratio ap-
proaches 1). If n > n(c,), then Lemma 3.5 shows the above is bounded by

2n+1_1
+1\2
jl=—2[" (1 - exp(—c7c00(rj))((2pzl(rj,pj) - 1) ) )
2n+1_1 —c lZ) s 2
S eXp _— Z cj_c760 2p1/rj exp( M_.
j=2n rjzcgpj S
, 1\~ 'ds
X logs+21+llog2—pjlogc— -
2

+12
Xp;27P:(log2) " — 1) ) .

If s> 2jrj2 and j > 2", then for n, sufficiently large it is easy to see

log s + 2/*'log2 — p;log(1/c,) R |
: > —.
log s + 27+ 1og2 T2

Use this in the above to see that if
I, = fz_m exp(—cl|w0(s)|2/s)(log s +2/*110g2)” s~ 1 ds,
2—(m+1)
then, for n > n,,

2n+1_1
q, < exp|—c¢ Z j_c7co((2—(j-1)pj—1(10g2)—13jpj

j=2"
2it1_j-1 *
X Y I,]-1
m=2J

W, €A, = {w ew:{=1, sup |w(s)] sB2"”/2}.

s<2™"™

(4.3)
Suppose
Then for 2/ <m < 2/*1 —j — 1,

I, > exp(—2clB2)f1(log2(21'Jr1 -m—1) <u<log2(2/*! — m))u?i"! du

2 exp(~2¢,B%)(log2) (27" = (m + 1)),
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and therefore if 2/ < m < 3(2/71),
2°U~bei~1(log2) " p.I,
> ¢(B)p;(4 — (m + 1)2707D)”(2i*1 — (m + 1))7"
> c(B)pj2_j.
This, together with (4.3), gives us (for n > n,)

327" H-1
(( Z lAm( ’I’o)

m=2J

2n+1_1

s—CHC
g, <exp|—c ), jere
j-2n

¢(B)p,27 - 1) )

2n+1_1

< exp| —c A_Zzn j—c7co(((2j—1 _ 3(2j_1)F3(2j—1),B(w0))C(B)ij_j _ 1)+ )2)

2n+1_1

<exp|l—c ) j_c7c°((c(B)pj/4 - 1)+ )2)

j=2"

[since F, p(wy) <1/6for m > 22"]
< exp(—2"1 %))
provided n > ny(B,cy). O
THEOREM 4.2. There is a constant ¢y € (0,%) such that

cgh —m(ANS(Y,)) <Y, (A), VAez(R?),Q;-as.

PrOOF. Let ¢y, = (2¢,)7! and ¢} = (1 + V2)%¢,/2. Consider the random
sets

B = {x € S(Y,): limsupYy(D(x,r))h(r) " < 0'0},
rio

By = {x € S(Y;): x € [N, NI’ Y,(D(x, (1 + V2)r;))h(r) "
<c¢, VjZN}

and note that B C U%_,By- By a slight variant of a theorem of Rogers and
Taylor [see, e.g., Perkins (1988), Theorem 1.4], it suffices to show that

(4.4) h - m(BN) = O, A4 N, @50'(1.3.

We say C € Agni1 is bad for v € Mz(R?) if and only if »(C) > 0 and
v(C™) < ¢oh(r) for j=2",...,2"*""1 — 1. Assume C € Aye1, N <2" and
C N By # ¢.If x € C N By, then for j < 2"+, C™ ¢ D(x,(1 + V2)r;) and so
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the definition of By shows that C is bad for Y; [note that C open and
C N By # ¢ imply Y,(C) > 0]. Therefore,

(4.5) {C & Agn+1: C is bad for Y,} is a cover for By whenever 2" > N.

Assume for the moment we can show there is an n, € N and ¢ > 0 such
that, for every C € Agw+1 and n > n,

No(C bad for X;) < c(exp(~2%") +|log r(2"*")| " exp(—2"/2))

[

(4.6) c(exp(—2%") + 272" (log2) ' exp(—2"/?))
o(n).

If C is bad for Y, it clearly is bad for X,(W) for some point W in the support
of the point process I1° in (2.3), and so for C and n as in (4.6),

Q;,(C bad for Y;) < 1 — exp(—N,(C bad for X))
< é(n).

Therefore, for n > n,,

@50( Y 1(C bad for Yl)h(r(2”+1)))
CeAgn+1

< card(Agn1)8(n)r(27+1)%|log (2" *1) [loglog|log r(2" 1) |
<¢2%%6(n)22"" ' (n + 1),
which is summable over n. Off the Q; -null set

r= <limsup Y. 1(C bad for Y )h(r(2"*1)) > O},

nox  CeAgn+t

(4.5) shows that (4.4) holds and we are done.
It remains to prove (4.6). Let C € A,.+1 and define

T= inf{t: Wt € Cand ¢{, = 1}.
On (T < o},
T, a
Xi() = '/0 l(Wt € ) d,L; + X,°07(-) = X;° 07,
and so by the strong Markov property (2.7),
No(C bad for X;)

<No(T <o, X,°0,(C") < coh(ry), j=2",...,2"*" ~ 1)
= No(I(T < )P (X4(C7) < eoh(ry), = 27,..., 271 1))
= NO(T <o, F, g(Wy) > 1/6 for some m > 22")
+ No(l(T <o,F, 3(Wp) <1/6V m > 2")
X Pl (X,(C7) < coh(ry), j=2",...,2" 1 = 1)),
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By (4.2) we may choose B > 0 and cg > 0 so that the first term is bounded by
cg exp(l — 22%), Apply Lemma 4.1 to see there is an n, such that, for n > n,,
the second term is bounded by

No(T < o)exp(—2"/2).
Theorem 2 of Le Gall (1994b) states that there is a ¢ > 0 such that
No(T < o) = No(S(X;) N C # @) < cllog r(27*1)| "
Combine the above bounds to obtain (4.6) and hence complete the proof. O
5. Lower bound for the Hausdorff measure of the support: outline
of the proof and preliminaries. The required lower bound on the A-

Hausdorff measure of S(Y;) N A follows from the density theorem of Rogers
and Taylor [see, e.g., Perkins (1988), Theorem 1.4] and the following result.

THEOREM 5.1. There is a constant ¢y, € (0,©) such that

limsup 22202
10 h(ry T
We know that S(Y)) is Lebesgue null Q;-a.s. [e.g., by Perkins (1989)].
Therefore, if Y,Y’ are independent, each with law Q;,, we may take a

conditional expectation given Y, and use the superprocess property to see
that

(5.1) Y{(S(Y,)) =0 as.

Let W1,...,W" be the excursions of W from 0 (under P,) completed by time
7o, for which the lifetime ¢ hits 1. Then N is Poisson with mean 1/2, and
given N = n, (X;(W'), i < n) are i.i.d. with law Ny(X, € - |X, # 0). Equation
(2.3) becomes

N
(5.2) Y= X Xl(Wi)'
i=1

This and (5.1) clearly imply that
Xl(Wi)(S(Xl(Wf))) =0, Vi#j<N,Ppas.
and, therefore,

limsupX,(W/)(D(x,r))h(r)" =0, X, (Wi)-as.¥Yi#j<N, Pg-a.s.
rio

Yi-aa. x,Q;-a.s:

It follows easily from the above observations that Theorem 5.1 would be a
consequence of

lim sup X;(D(x,7))h(r) " < ¢y,
(5.3) rio
X,(dx)-a.e., Nj-a.s. for some ¢, < .
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Let P?~* denote the law of planar Brownian motion starting at y at ¢ =0
and conditioned to be x at ¢ = 1. We may construct on some measurable
space a family of probability laws {P®): w € C([0, 1], R?)}, and two random
measures .#Z,(dv) and .#(dv) such that, under P, .#,(dv) is a Poisson
random measure on My(R?) — {0} with characteristic measure
4/lR,_,(w(t),-)dt and .#(dW) is a Poisson random measure on ({,,5°)
with characteristic measure 4/JN, () d¢. Theorem 6.4.1 of Dawson (1992)
gives a representation for the Palm measure associated with the canonical
measure R,(x, - ), which implies that for each measurable ®: R? X M(R?) —
[O; oo)’

[ [o(x,v)v(dx)Ry(y,dv)

= ff[P"w)(fb(x,fv%o(dv)))Py""(dw)pl(x ~y) dx.
Use (2.5) to see that this gives
No(fd)(x,Xl)Xl(dx))
(5.4)
- ffﬂj’"‘”(fb(x,le(W)//Z(dW)))PO"x(dw)pl(x)dx

(the necessary measurability of w — P’ is trivial to obtain). Define a
random measure Z; under P’ by

(5.5) Z, = le(W)/Z(dW).

In view of the Palm measure representation (5.4), to prove (5.3) it suffices
to fix w € C([0, 1], R?) and x = w(1) and show there is a c;; < « such that

(5.6) limsule(D(x,2"5))h(2_k)_1 <cy, P®-as.
k—ox

Then (5.3) would follow with ¢,;, = 4c¢,;.

To prove (5.6) for a fixed w in C([0,1],R?) and x = w(1), we require a
version of the special Markov property (Theorem 2.2) under P, For W €
we abuse our notation slightly and let w(W) = w(W,) denote the common
starting time of the paths traversed by W. Let D c R, X R? be open, let
(w) = 7p(w) = infl¢: (¢, w(2)) &€ D} A 1 and define the exit measure from D
under P*) by ]

ZP = fl(u(W) < 7(w)) XP(W).2(dW).

Then ZP? is P™)-as. a finite measure supported on JdD because X7 is
supported on dD under each N, ,,, [see (2.8)] and

Pw@((ZP, 1)) = 4[07('”)Nt'w(t)((XD, 1)) dt < 4.
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To define the analogue of &2, recall the definition of the map W — W' on Q,
from (2.11) and let ¥ be the o-field generated by the random measure

JUw(W) < 1(w)) oy a(dW)

and the collection of P®)-null sets. If {(W: j € J} are the points W of .#
such that w(W) < 7(w), define the excursions of W “outside D,” {W .
1 € Ij} as in (2.12) and set

H(AW) = T ¥ Syo(dW).

jediel
The following result is an easy consequence of Theorem 2.2.

PROPOSITION 5.2. If ® € p&F,, then
[F"(w)(exp( —fCD(W)/I{,(dW))’?D) =exp(—th’y(l—exp(—<D))ZD(dt,dy) .

That is, conditional on F7, A4,(dW) is a Poisson measure on Q, with
characteristic measure [N, ,()ZP(dt, dy).

We now outline the proof of (5.6). It is not hard to use a Borel-Cantelli
argument to prove

lim sule(D(x,2_2"))h(2_2")_1 <c, P®-as. for some ¢ < .

n—w

[See Proposition 6.1 below for a closely related result.] The Borel-Cantelli
argument unfortunately fails if 272" is replaced by 27*. Inequality (5.6) does
not follow immediately from the above result because A(272""") /h(272") is
not bounded away from zero. To prove (5.6), we develop a method to interpo-
late for 2 between 2"°! and 2". To this end, it is easier to replace
Z(D(x,27%)) by another quantity, whose asymptotic behavior will be the
same and is defined in terms of exit measures. For each % in N, we set

Hk={(t,y):ts1and1—t+|y—x|252‘2k}cR+x R?

and D, = H; (see Figure 1).

We will show the limiting behavior of the exit measure total mass (Z%+, 1)
is essentially the same as that of Z,(D(x,27*)). This will follow essentially
from Lemma 5.4 below.

Our interpolation argument consists of verifying that (ZP, 1) large for
some 2”71 <k < 2" implies (ZP>",1) is large with a probability bounded
from below.

First step. For a > 0 we introduce the subset U, = U,(a) of 4D, defined by

U ={(t,y):it<1,(1—¢t)+|ly—x*>=2"2 |y —x|<aVl — ¢
3
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Fic. 1.

(see Figure 1). We can then prove (Proposition 6.2) that if ZP+(U,) is large,
then so is (ZP2",1) with a probability bounded from below.

Second step. It may happen that (ZP, 1) is large but ZP*(U,) is not and
hence we cannot use the first step. Proposition 6.4 essentially tells us,
however, that if (ZP#, 1) is large, then ZP#-1(U,_,) must also be large and so
the first step may be used with 2 — 1 in place of &.

We start by proving some preliminary estimates.

LEmMMA 5.3. If (¢,y) € D, and t < 1, then
N, ,((XPx, 1)) < 80-272¢(1 + log* ((1 — £)22*))N, ,({XP*,1)).

PROOF. Recall from (2.10) that N, ,((X?+,1)*) = N,((X?¥, 1)*). Let (L,,
s > 0) denote the exit local time of D{. Then (XP¥ 1) = L, and, therefore,

N, ((XP%, 1)) = 2Ny(jj1(o <u<v<o)dL, dLv)
(5.7) )
= 2Ny(f0 Pé‘vu(La)dLu)

by the Markov property (2.7). Let 7,(w) = influ: (u, w(w)) & D{"}. Recall that
L, increases only when 7,(W,) = ¢{,. Let w be a stopped path such that
7(w) = ¢. This implies { <1 —¢ and (r,w(r)) € DY for r < {. Now use
Proposition 2.5 of Le Gall (1994a) as in (3.1) to see that if A is as in (3.1)
(with w in place of w,), then

XDsf)=f‘fXD$P(@r(W))dA(r,W), Pk-a.s.
07Q
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Take means and use (2.1) to see that
P(L,) = 2[{)§N,,w(,)(Lv) dr
(5.8) = 2j;wa(,>(<XD5e””, 1) dr [by (2.10)]
= 2[()‘Pw<f>(7t+, <o) dr [by(2.8)].
If (u,2) € 9D{*"” and u < 1 — ¢t — r, then
P“*(B,_,_, € D(x,2°*))
(59) =P°(BieD((x—2)(1—t—r—u) %2 1 -t -r-u)"?)
- (B, € D(w, (1 + lwl*) %)),
where w = (x —2)X1 — ¢t — r — u)~ /2, The disk D(w, (1 + |w|*)'/2) will con-
tain D(b,1) for some |b| < 1 and so the above probability is greater than
inf ,, .5 py(x)7 > 1/20. Therefore, the strong Markov property implies
P)(z,,, <®) < 20P*"(B,_,_, € D(x,27%)).
Returning to (5.8), we have

P*(L,) < 4Of(fP“’<’)(B1_t_, e D(x,27%)) dr

< 40'/‘1"tmin(2_2k(1 —t—-r)"", 1)dr
0
< 40-272F(1 + log*((1 — )27%)).
Use this in (5.7) to complete the proof. O

LEmMMA 5.4. If (¢,y) € D, then:

(a) Ntyy(exp()tXl(D(x,Z_k))) — 1|&P%) > exp((A/20)( X P, 1)) — 1, for all
A>0;

(b) N, ,(exp(AX;(D(x, 27%)) — 1|&P+) < exp(2A(XP*, 1)), for all A €
[0,2%%/4].

ProoF. Under N, ,, X,(WXD(x,27%)) is the sum of the contributions to

this mass from the excursions of W outside D,. Therefore, if .#" is as in
Theorem 2.2 with D = D,, then

X,(D(x,27%)) = [X(W)(D(x,27%) (W)
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and the special Markov property shows that
N, ,(exp(AX,(D(x,27%))) — 11&7)

(5.10) - eXp(/Nu’z(exp()\Xl(D(x’2“k))) - 1)XD”(du,d‘z)) -1

> exp(A/Nu’z(Xl(D(x,2_k)))XDk(du,dz)) -1
It is easy to see that Xt is a.e. supported on 9'D, = dD, N {(u, 2): u < 1}
[use (2.8)]. For (u, z) € 9'D,, (2.6) gives us
N, .(Xy(D(x,27%))) = P“*(B, € D(x,27%))
1
= —,
20

where in the last part we argue as in (5.9) (with ¢ = r = 0). Use this in the
above to prove (a).
For (b) we again use the equality in (5.10). Lemma 3.1 and (2.5) imply

N, .(exp(AX,(D(x,27*%))) — 1) < 2AP*(B,_, € D(x,27%)) < 2A

provided that 0 < A < 1G(U(D(x,27%)),1 — w)™ L If (u,2) € 9'D,, then
G((D(x,27%)),1 —u) <1 — u < 27%* and (b) follows upon using this bound
in the equality of (5.10). O

As an immediate consequence of Lemmas 3.1 and 5.4(a), we see that, for
(t,y) € D,
N, ,(exp((A/20)(XP*, 1)) - 1) < Nt_y(exp()tXl(D(x,Z_k))) - 1)
(5.11) < 2/\Py(Bl_t eD(x,2‘k)),
vaelo,i1-67"].
6. Lower bound for the Hausdorff measure of the support: proof.
In this section we prove Theorem 5.1. Fix w in C([0, 1], R?), let x = w(1) and

write P for P, Recall the definitions of Z; and Z” from the previous section
and recall also that it suffices to prove (5.6).

PROPOSITION 6.1. There is a constant c;, (350 will do) such that if r(n) =
272", then

limsup{ZP2", 1)h(r(n)) ' <cp, P-as.

n—ow
ProoF. Use (3.4) to see that if A = 1/12, then for & € N,
A2%k~1 < 1G(1(D(x,27%)),1) .
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Therefore, Lemma 3.1 shows that
P(exp(A22*k1Z,(D(x,274))))

= exp(4f01Nt,w(t)(exp()\22kk“le(D(x,2"“))) -1) dt)

< exp(8)t22kk_1 fole(‘)(Bl_t € D(x,27%)) dt) [use (2.5) as well]

< exp(8122*k71G(1(D(x,27%)),1)).
Use (3.4) again to see that G(1(D(x,27%)),1) < (81n2)272*k and, therefore,
P(exp(A2%%k71Z,(D(%,27%)))) < 4
Using Lemma 5.4, and noting that u(W) = ¢ for N, , ,,-a.a. W, we have
P(exp(A22*(20%) ' (ZP+, 1)))

exp(4f11(t < T(w))Nt,w(t)(exp(A22k(20k)"I(XDk, 1) - 1) dt)
0

IA

exp(4j:Nt’w(t)(exp()\22kk_le(D(x,2_k))) - 1) dt)

P(exp(A22*k~'Z,(D(x,27%))))

< 4.
It follows in particular that, for £ < &,

P({ZP+,1) > (241)27%*k loglog k) < 4 exp( —(241,/240)loglog k)

— 4(log k)“241/240.
If £ = 27, this is summable over n and an application of the Borel-Cantelli
lemma completes the proof. O

For every k € N, let n = n(k) be the unique integer such that 2" ! < k£ <
2" If W € Q, let 2(W) = Wy(w(W)) so that (w(W), z2(W)) denotes the “start-
ing point” of W. Clearly (u(W), 2(W)) = (¢, 2), N, ,-a.e.

PROPOSITION 6.2. For every a > 0, A > 0, there is a constant cy3(a) in
(0,1] and an integer ky(a, A) such that if k > k, and n = n(k), then
[P’((ZD?", 1) > ci3(a) AR(272")|9P) = 2 on {ZDk(Uk) zAh(2‘k)}.
PrROOF. We use the special Markov property under P = P (Proposition
5.2). Let /I/’“ be as in that result with D = D,, and write 7, for 7, the exit

time from D,. Decompose X?2"(W) according to the contributions from
excursions outside D, to see that

z% > [1(u(W) < 7y(w)) X2 (W).#(dW)

= [XP(W)A3(dW).
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Let
ZP = [15(w(W), 2(W)) XPx(W )3 (dW)

denote the contribution to X?>" from excursions outside D, which “start” in
U, = U,(a). By Proposition 5.2,

P({ZP2", 1)|5P+) = fflUk(u(W),z(W))(XDz",1)Nt,z(dW)ZDk(dt,dz)

= [15,(2, 2)N, L((XP>, 1)) ZP(dt, d2).

If (¢, 2) € U, then
N, ,({XP2",1)) = P“*(15, <) [see (2.8)]
> P*(B,_, € D(x,2°%"))
= P(B, e D((x —2)(1 - t) /%, 27 (1 - t)"1/?))
> c(a)2%k-2" ‘

for c(a) = exp(—(a + 1)2/2)/2. We have used the fact that, for (¢, 2) € U,
272"(1 —¢t)"1/2 > 2%°2" and |x — z[(1 — ¢t)"'/2 < a. Using this in the above,
we obtain

(6.1) P({ZP>, D)IFP+) = c(a)22*~2ZPx(U,).

Then, by Proposition 5.2 and a standard formula for the second moment
measure of a Poisson measure,

P(((Z’Dz", 1) — P(ZP, 1>|37Dk))2L?Dk)
=f{fluk(u(W),z(W))<XD2",1>2Nt,z(dW)]ZDk(dt,dz)

= [14,(t, 2N, ,((XP>, 1*)ZP(dt, d)

80(1 + 2(2" — k))2 22" P((ZP>, 1)|5P)
=g (k)>

In the last inequality we used Lemma 5.3 and the fact that 1 — ¢ < 272 for
(¢, z) € U,. Chebyshev’s inequality implies

(6.2) P([(ZP,1) — P((ZP>, D)IFPh)| 2 20 (k)IFPr) < 4
(6.1) shows that on the set {ZP*(U,) > AR(27*)} and, for & > ky(a, A),
P((ZP2, 1)|5P) = c(a) A2%*~2Dh(27F)

c(a)
4

IA

>

Ah(27%")
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and so an easy calculation gives, for £ > ky(a, A),
20 (k) < sP((ZP, 1)|5Pr).

Use the above two bounds in (6.2) to prove the result with ¢;5(a) = (c(a))/8.
O

COROLLARY 6.3. We have
lim sup Z2 (U (@))h(27%) " < cype5(a)”™,  P-a.s.Va>0.

k—ox

PROOF. Let ¢ > ¢j5¢,5(a)™" andlet (k (), j € N) be the successive “times”
for which ZDk(Uk) > ch(27%), where k; = « if the jth such time does not
exist. Since ZP* is FP+-measurable [Le Gall (1995)], {k,} are (#7*)-stopping
times. It suffices to show that P(k; < V j) = 0. Let n; = n(k;) and

Ay = {k; <, (ZP7,1) 2 cyg(a)ch(272")}.

Proposition 6.2 (with A =c) and the fact that %; is a stopplng time show
that, for j large,

It follows that

P(limsup A;) > limsup P(4;) > $P(k; <oV j).
The left side is zero by Proposition 6.1 because c¢;3(a)c > ¢;, and the proof is
complete. O

PROPOSITION 6.4. If a > 8, then for any ¢ > 0,

i [P’((ZD'*”, 1) > ch(27%7 1), ZP(U,(a)) <

—h(27h),
k=1 1000

(2P, 1) sah(z‘k)) <o,

ProOF. Let /I/’k and 7, be as in the proof of Proposition 6.2 and fix ¢ > 0.
For W such that u(W) < 7,(w), decompose X ?#+1(W) according to the contri-
butions from individual excursions outside D,. This shows that

D — ZAD D 7D
Z k+1 = k+1+z k+1+z k+1,
where

ZDii1 = fl(fk(w) <u(W) < 1y y(w)) X2y (W)t (dW),

ZPs = [1y(w(W), 2(W)) XPrs(W LA (W)
and

ZPer = [1y(w(W), 2(W)) XPrs(W ) (dW).
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Consider ZP+1 first. Clearly 7, > 1 — 272* and so if A € [0,2%%2], (5.11)
shows that

A r A
P(exp(—zz<ZDk+l, 1))) = exp(4 ’(’;l)(w)Nt’w(t)(exp(%<XD’¢+1, 1)) - 1) dt)
Tk

< exp(4 ! 2AP“®O(B,_, € D(x,27*° 1)) dt)
1-272
< exp(81272F).
This bound easily implies

oc

(6.3) y (<2Dk+1,1> > %h(Z‘k‘l)) <.
k=1

Next we bound
= c
(6.4) P((ZDk, 1) < ch(27%),(ZPr1,1) > gh(z—k—l)).
Use Proposition 5.2 and (5.11) to see that, for A < 22% /4,

_A_ 7D )}_71%
P(exp( 20 (ZPr+1 1)
(6.5) = exp(flUkc(t, z)N,,z(exp(é%<XDk+1, 1)) - 1)ZDk(dt, dz))

< exp(2/\f1U§(t, z)P*(B,_; € D(x,2_k_1))ZDk(dt,dz)).

For the last inequality note that Z?+(d¢, dz) is supported on 4'D, = D, N
{(u, z): u <1} (since XP+ is; see the proof of Lemma 5.4) and so we may
assume 1 —¢ < 27%2% If (¢,2) € 39'D, N U,(a), then some simple algebra
leads to

(x—zl -2 )1 -¢)""?>a-La®+1,
and, therefore,
P*(B,_, € D(x,27*71))
=P(B,eD((x —2)(1 —t) %27k (1 - 1) "'?))

<P(IB) 2 a - $Va? + 1) = n(a).

Clearly n(a) approaches zero as ¢ — « and in fact an elementary calculation
gives n(a) < 0.001if @ > 8. On the set {(ZP*,1) < ch(27*)} we get the bound
22k

A
[P’(exp(—zz(ZDk“, 1))'.‘7[”') < exp(4An(a)ch(27%)), A< e
This shows that (6.4) is bounded by (take A = 22* /4 in the above)

exp(— —é%ch(2_k‘1) + 4)m(a)ch(2‘k)) < exp(— 25(2"“)(2710 — 4n(a))),
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where 6(r) = log*(1/r)log* log* log*(1/r). For a > 8, so that n(a) < 0.001,
this is summable in % > k&, and so

- — c
(6.6) Z P((ZDk,1> < ch(2—k)’ (ZD"“,1> > gh(ka—l)) <
k=1
It remains to bound

(6.7) ((sz > —h(2 E-1) ZDw(U,) < 1_<)06h( -k))

Argue as in (6.5) to see that, for A < 22*72 and on the set {Z?«(U,) <
(c/1000)h(27 %))},

AL
P(exp(%(ZD’”l, 1>)}.°7Dk) < eXp(4/\1—00—6h(2 k))

Take A = 2272 and conclude that (6.7) is bounded by

exp( h(2 k-1 A250h(2‘k)) < exp(—£5(2k)(§1—0 - 2_;6))

This is summable over £ > &, and hence

- Dy _ k- D, - k
> P20, 1) > Sh(21), 22(0,) < 1oash(2) <=

This, together with (6.3) and (6.6), proves the proposition. O

PrOOF OF THEOREM 5.1. Set a = 8 and write U, for U,(8). We first prove
that

(6.8) limsup (ZP%, 1)A(27%) " < 1000cy,c,5(8) ',  P-as.
k—> o

Let ¢ > 1000c;,¢,5(8)"! and suppose the lim sup in (6.8) exceeds c. Assume
also we are outside the P-null sets off which the conclusions of Proposition 6.1
and Corollary 6.3 hold. By Proposition 6.1 and the fact that ¢ > c,,, we see
there are infinitely many % for which (ZP?+ 1)h(27%)~" crosses from [0, c] to
[c, ). Combine this with the conclusion of Corollary 6.3 to conclude that for
infinitely many values of 2 we have

(ZP+,1) <ch(27*), (ZPw1,1) = ch(27'71),

ZP () < 7o h(27).

Proposition 6.4 shows this last event is P-null and so (6.8) is proved.
To complete the proof of (5.6) write

Z(D(x,27%)) = Z) + Z®,
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where [again denoting by 7, the exit time of (¢, w(¢)) from D,]
Z0 = [L (W) < 7)) X,(W)(D(x,27)).#(dW)
and
Z® = [Lw(W) 2 7,) X(W)(D(x,27")).#(dW).

Argue as in the derivation of (6.3) [use Lemma 3.1 in place of (5.11)] to see
that

(6.9) YP(ZP > eh(27%)) <», Ve&>0.
k
Turning to Z{", note that if #} is as in the proof of Proposition 6.2,

Z{0 = [X(W)(D(x,27) 1t (dW)
and, therefore, Proposition 5.2 shows that, for A < 22%°2,
P(exp AZ{D|FP+) = exp(th’z(exp(/\Xl(D(x,2‘k))) — 1)ZP+(dt, dz))

< exp(2A(ZP+,1)) [by (5.11)].
Taking A = 22¥72 we get
P(ZP > 2(ZP+,1) + k2724 FPr) < /4.
Use the above, (6.9) and the Borel-Cantelli lemma to conclude that V & > 0,
Zy(D(x,27%)) < 2(ZP+,1) + k27%% + gh(27*) forlarge k a.s.
Now (6.8) completes the proof of (5.6) with ¢;; = 2000¢,¢,5(8)" 1. O

REMARK. For those keeping score, our value of c¢;, in Theorem 5.1 is
2.24 X 107 x e81/2,

7. Proof of Theorem 1.1. By (1.4) it suffices to consider y =4. If u
M(R?) — {0}, Theorem 1.1 of Evans and Perkins (1991) shows that Q,(Y; € )
and Q;(Y; € -) are equivalent laws. Therefore, we only need consider ¢ = 1
and u = §, in Theorem 1.1.

Theorem 5.1 and the Rogers—Taylor result [e.g., Perkins (1988), Theorem
1.4] imply that

Y,(A) <cjoh —m(ANS(Y,)), VAeBR?),Q;-as.
This, together with Theorem 4.2, shows that ¥, and Y,() = A — m(-n S(Y;))

are Q, -a.s. equivalent measures on R? and the Radon-Nikodym derivative of
Y, with respect to Y, satisfies

dY;
(7.1) cog < —=(x) <cy
Y,

for Y;-a.a. x, Q; -a.s.
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We have to show that, for a certain constant c,,

dy,
(7'2) :i“?(x) =Cy

for Y,-a.a. x, Q; -a.s. To do this, we use a zero—one law as in the proof of
Theorem 5.2 of Dawson and Perkins (1991). The argument is almost identical
to the d > 3 case treated there and so we only sketch the proof, using the
notation of the present work.

Let (r,) be a fixed deterministic sequence decreasing to 0 and, for every
measure v on R? and x € RY, set

. V(B(x’rn))
flev) = msup B e N 8(»)

By standard results on the derivation of measures [see, e.g., Federer (1969),
Theorems 2.9.5 and 2.9.7], we have

dy,
:ﬁ.:(x) =f(x,Y;)

for Y;-a.a. x, Q,-a.s. Therefore, we need to check that f(x,Y;) =c,, for
Y;-a.a. x, @, -a.s. The same arguments we have used to derive Theorem 5.1
from (5.3) show that this last statement follows from

(7.3) f(x,X;,) =c, for X;-a.a. x,Nja.e.

To prove (7.3) we rely on the Palm measure formula (5.4). We start with a
result which states that only “close cousins” contribute to X,(B(x,r)) for
X;-a.a. x and r small. Recall the notation in (5.4).

LEMMA 7.1. There exists a constant c¢,, such that

paw) fl(u(W) 51—014(log%) )XI(W)(B(w(l),r))/(dW) >0

7.4
(74) L g
< cM(loglog—)(log——) ,
r r
for 0 <r <(cyy) ! and all w in C(0, 1], R?).

Although we have altered the notation to be consistent with that used
here, this is the two-dimensional version of (5.7) in Dawson and Perkins
(1991). For the proof, note that by the definition of .# the left-hand side of
(7.4) is

1- exp(—4f01_c“(l°gl/r)ldu N, w(Xi(B(w(1),r)) > 0)
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and use the bound
Ny x(Xi(B(y,7)) > 0) < (1 —u) '(log(1/r)) ',
forx,y € R?, re(0,1/2),1 —u>r,

from Le Gall [(1994b), Theorem 2].

Let us fix r, = exp(—n?). We then use Lemma 7.1 and the Borel-Cantelli
lemma to conclude that, for every w € C([0, 1], R?), P*“)(d w)-a.s., there is an
integer n,(w) such that, for n > n,,

JX(W)(B(w(1),r,))#(dW)
= [1(1 = eyn™? <u(W) < 1) X (W)(B(w(1),r,))#(dW)

=Z1(B(w(1),r.)),

where Z} = [1(1 — ¢;yn™ % < u(W) < DX,(W).#(dW). We have, therefore,
also P*)-a.s.,

flw), fxw)e(aw))

L Z}(B(w(1),r,))
TP R m(B(w(1),r,) N 8(21))

(7.5)

Note that Z] is measurable with respect to the o-field generated by
11 —cyyn 2 <u(W) < 1).#(dW). By a standard zero—one law for Poisson
point measures, the right-hand side of (7.5) is a constant cy(w), P**)-a.s. By
the Blumenthal zero—one law applied to the process w(1) — w(1 — ), this
constant does not depend on w, outside a set of P%measure 0. We have thus
proved that

f(w(l), le(W)/é’(dW) =c,, P™-as. forPa.a. w.

Equation (5.4) and the above imply (7.3), which gives (7.2). Finally, (7.1)
shows that 0 < ¢, < », completing the proof. O
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