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THE STOCHASTIC RANDOM-CLUSTER PROCESS AND THE
UNIQUENESS OF RANDOM-CLUSTER MEASURES!

BY GEOFFREY GRIMMETT
University of Cambridge

The random-cluster model is a generalization of percolation and
ferromagnetic Potts models, due to Fortuin and Kasteleyn. Not only is the
random-cluster model a worthwhile topic for study in its own right, but
also it provides much information about phase transitions in the associ-
ated physical models. This paper serves two functions. First, we introduce
and survey random-cluster measures from the probabilist’s point of view,
giving clear statements of some of the many open problems. Second, we
present new results for such measures, as follows. We discuss the relation-
ship between weak limits of random-cluster measures and measures
satisfying a suitable DLR condition. Using an argument based on the
convexity of pressure, we prove the uniqueness of random-cluster mea-
sures for all but (at most) countably many values of the parameter p.
Related results concerning phase transition in two or more dimensions are
included, together with various stimulating conjectures. The uniqueness
of the infinite cluster is employed in an intrinsic way in part of these
arguments. In the second part of this paper is constructed a Markov
process whose level sets are reversible Markov processes with random-
cluster measures as unique equilibrium measures. This construction
enables a coupling of random-cluster measures for all values of p. Fur-
thermore, it leads to a proof of the semicontinuity of the percolation
probability and provides a heuristic probabilistic justification for the
widely held belief that there is a first-order phase transition if and only if
the cluster-weighting factor g is sufficiently large.

1. Introduction. The Ising model [39] is well known to probabilists as a
model for ferromagnetism; it exhibits a phase transition and provides a host
of beautiful problems for the mathematician and the physicist. Whereas the
Ising model allows only two possible spins at each site, the Ashkin-Teller
and Potts models permit a general number of spin values [4, 57]. In the late
1960’s, Kasteleyn observed that electrical networks, percolation processes
and Ising /Potts models have certain features in common, namely, versions of
the series and parallel laws. In joint work with Fortuin, he formulated a class
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1462 G. GRIMMETT

of measures which includes the percolation, Ising and Potts measures. This
class is simple to describe and has rich structure: it is the class of random-
cluster measures, sometimes known as Fortuin—Kasteleyn measures; see
[19-22, 29, 40] for the early work on this topic.

The random-cluster model is a process on the edges of a graph rather than
on its vertices. Through studying its properties, we obtain information about
phase transitions in physical systems. The model incorporates a unifying
description of certain physical processes and provides a natural setting for
various techniques of value. Indeed it is now recognized as a standard tool in
studying Ising /Potts systems [1, 7, 10, 18, 23, 27, 28, 44, 56, 59, 60].

Whereas a Potts model has a strength </ of interaction and a number g of
states, the corresponding random-cluster model has an edge parameter p =
1 — e’ and a “cluster weighting factor” g. We shall assume that 0 <p < 1
(so that J > 0) and q is a real number satisfying 0 < g < . The relationship
between random-cluster models and their physical counterparts is well docu-
mented elsewhere and we shall not repeat this material here; see [18, 30]. It
has proved valuable to study the random-cluster model in its own right (see,
eg.,[1, 7, 10, 18, 23, 28, 30, 52, 56, 59]). Quite apart from its relevance to
statistical physics, the model is of considerable intrinsic interest and has
many beautiful mathematical questions of stochastic geometry associated
with it.

- This paper begins with an introduction to the random-cluster model and a
brief description of the main techniques of value. The purpose of this is to
prepare the reader with a background in modern probability, and to tempt
that reader to try to solve some of the beautiful open problems associated
with the model. In addition this paper contains new results, as summarized
later in this Introduction.

We define a random-cluster measure on a finite graph G = (V, E) as
follows. Let 0 < p < 1 and g > 0. The relevant sample space is the finite set
Q= {0, 1}%, containing configurations that allocate 0’s and 1’s to the edges of
G. For w € O, we call an edge e open if w(e) = 1 and closed otherwise. The
random-cluster measure on G, having parameters p and g, is the probability
measure ¢g , , on {5 given by

1 —wle
(11) dg,p (@) = ——{ [T pO(1=p)" "}g"®,  weay,
ZG,p,q eck

where k(w) is the number of open components of w [i.e., the number of
components of the graph (V, n(w)), where n(w) is the set of open edges under
w] and

(12) Zopo= T {[1p*0(1-p)'*)g"

Y wey .e€E
is the normalizing factor (or “partition function”). Note that ¢ , , differs
from product measure (i.e., percolation [26] or “random graphs” [12]) only in
the presence of the term g*(“),
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The reader is referred to [29, 30] for some historical remarks and basic
references pertaining to such measures. We note that percolation corresponds
to the case g = 1, the Ising model to the case ¢ = 2 and the Potts models to
the cases ¢ = 2,3,....

In defining a random-cluster measure on an infinite lattice ., we may
follow either of two routes. The first is to take G to be a finite box in % and to
pass to the infinite-volume limit (with suitable boundary conditions). The
second is to follow the Dobrushin-Lanford—Ruelle formalism and to study
measures which, conditional on the states of edges outside a finite subgraph
G of Z, have the form (1.1) with appropriate boundary conditions. There are
some difficulties in comparing these two approaches, which are explored in
some detail in Section 3. When ¢ > 1, we conjecture that there is a unique
random-cluster measure ¢, , (following either route) except at the critical
point of a first-order phase transition (see below).

Assume for the moment that ¢ > 1. An infinite-volume random-cluster
measure ¢, , has a phase transition. More specifically, the probability
0(p,q) = ¢, ,(0 & =) that the origin lies in an infinite open path satisfies

=0, ifp<p/q),

1.3 0(p,q .
(1.3) ( ) >0, ifp>p.q),
for some critical value p,(q) [€ (0,1)] that depends on the lattice. It is
hopeless to expect an exact calculation of p(q) for a general lattice, but there
are certain tempting conjectures for some two-dimensional lattices. For exam-
ple, for the square lattice it is believed that

(1.4) . p.(q) = ﬁ‘/% ifg>1.

This conjecture is based on the self-duality of the square lattice (see Section
5). This exact calculation is known to be valid for the cases ¢ = 1, ¢ = 2 and
for large values of q [41, 43, 45, 54].

One of the principal features of random-cluster measures is the discontinu-
ity of the phase transition for large g. It is believed that, for any lattice .# in
at least two dimensions, there exists @ = Q(%) such that the “order parame-
ter” 6(p, q) (defined with an appropriate boundary condition) is continuous at
p =pSq) if ¢ <@, and is discontinuous if ¢ > . This amounts to the
conjecture that

= 0, f < ’
(15) Ol(pc(q)’q){ >0 if;' > g

’

where 6'(p, q) = ¢, ,(0 < ») and ¢} , is the maximal random-cluster mea-
sure (with the usual stochastic ordering of measures). Furthermore, one
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expects that

o [4, ifd=2,
(1.6) Q([L)‘{z, ifd > 6,

where 1¢ denotes the d-dimensional hypercubic lattice. For any lattice in two
or more dimensions, it is known that 6(-, ¢) is discontinuous at the critical
point so long as q is sufficiently large; see [44]. This is in contrast to the state
of knowledge for small q. In particular, it is widely believed but currently
unproven that, in the case ¢ = 1,

(1.7) 6(p.(1),1) = 0 for all lattices,

and this is one of the main open problems of percolation theory (see [5, 6, 26,
32, 34]). We call a phase transition first-order if 6(-, q) is discontinuous at
the critical point and second-order otherwise.

There are numerous other open questions for random-cluster measures,
such as the exponential decay of the pair connectivity function throughout
the subcritical phase [i.e., when p < p.(g)] and so on. Many partial results
are known, but few complete theorems.

Having given a taste of the open problems for these measures, we move on
to summarize the material presented in detail in this paper. Throughout the
article we shall encounter references and discussion related to the above
issues.

There are two main mathematical targets and a number of lesser results.
The first three principal sections (Sections 3-5) are devoted to a study of
“random-cluster measures” in their generality. Here we study the relation-
ship between weak limits of such measures on finite boxes and the associ-
ated measures on the infinite lattice which satisfy a type of Dobrushin—
Lanford—Ruelle (DLR) condition. We prove a partial uniqueness theorem for
random-cluster measures and make certain conjectures about uniqueness
and translation invariance.

The second main target of this paper is to construct Markov processes on
the infinite lattice having invariant measures which are random-cluster
measures. Such constructions have been obtained for a host of interacting
particle systems (see, e.g., [48]). In the present instance, the usual general
theory from interacting particle systems cannot be applied, since the natural
“speed functions” are not continuous in the product topology; we adopt here
an alternative strategy based on FKG orderings of measures. We pursue this
strategy at a level of generality sufficient to produce also a level-set represen-
tation of random-cluster measures for different values of p (the second
parameter ¢ is fixed and assumed to satisfy ¢ >.1). Such couplings of
processes for different values of p have applications for percolation and the
Ising model also (see [9, 26, 35]).

We terminate this Introduction with an outline of the contents of the
remainder of the paper. In Section 2, we introduce some necessary notation
and sketch the main techniques, namely, the FKG inequality and the com-
parison inequalities. Section 3 contains two definitions. The first of these is a
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definition of a random-cluster measure as a probability measure satisfying a
certain DLR condition via an appropriate “specification” (see [24]). The
second definition is of weak limits of such measures defined on finite boxes. It
is proved that all translation-invariant weak limits are indeed random-clus-
ter measures and that a certain pair of weak limits, ¢1§’,q and ¢;,q, are
extremal when ¢ > 1. The theorem of Burton and Keane [14] concerning
uniqueness of infinite clusters is employed here, and this uniqueness takes
the role played by “quasilocality” for Gibbs states (see [24]).

In Section 4, we adapt an argument first used by Lebowitz and Martin-Lof
[47] in order to prove that there is a unique random-cluster measure for
almost every value of p, so long as g > 1. Further results are available for
the special case of two dimensions, and some progress is achieved in the
“non-FKG” regime where 0 < g < 1.

Phase transition is the theme of Section 5. In particular, the semicontinu-
ity of certain percolation probabilities is noted, as are further partial results
concerning the uniqueness of random-cluster measures. It is noted that the
critical point p, = p(g) is a Lipschitz-continuous and strictly increasing
function of ¢ on [1, x).

Time-evolutions and couplings are the subjects of Sections 6 and 7. The
appropriate graphical representation is established in Section 6, together
with an account of the Markov processes on finite boxes whose level sets form
stochastic random-cluster processes with different values of p. Certain mono-
tonicities are established which enable the thermodynamic limit to be taken
(in Section 7) at the level of processes, thereby yielding Markov processes on
the infinite lattice with appropriate level-set properties. It is interesting that
two different Markov semigroups turn out to be relevant for the evolution in
time of random-cluster processes. As a consequence of this work, we obtain a
heuristic explanation suitable for probabilists of the widely held belief that
“first-order phase transition occurs if and only if ¢ is sufficiently large.”
Certainly it is known that the percolation probability is discontinuous at the
critical point if g is large [43—-45], but it is an open problem to prove the
existence of a critical value of ¢ marking the onset of this discontinuity. The
Markov processes of Section 7 have a structure which hints strongly at this
belief, in that atoms in the marginals of the unique equilibrium measure of a
certain process appear to increase as g increases. Of course, this phenomenon
of discontinuity is fully understood for the mean-field random-cluster mea-
sures [13].

Other general accounts of the area have been published. Much of the basic
methodology appeared first in the papers of Fortuin and Kasteleyn listed
above. In addition, Aizenman, Chayes, Chayes and Newman [1] have pro-
vided a useful modern account of some of this material; see also [29, 30].

2. Fundamental techniques and notation. One of the most valuable
properties of random-cluster measures ¢ , ,, defined in (1.1), is the FKG
inequality, which is valid if and only if g >.1. There appears to have been no
serious study of the case 0 < g < 1, presumably because the FKG inequality
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does not hold in this regime; we include certain results about this case in
Section 4, particularly in Theorem 4.5. Before stating the FKG inequality, we
require some notation in addition to that given around (1.1).

There is a partial order on Qj given by w < o' if and only if w(e) < w'(e)
for all e € E. A function f: Qy — E is called increasing if f(w) < f(w')
whenever w < w’, and is called decreasing if —f is increasing. An event A
(c Qp) is called increasing (resp., decreasing) if its indicator function 1, is
increasing (resp., decreasing).

If v is a probability measure and g is a random variable, we denote by
v(g) the expectation of g under v. Further notation will be introduced as
necessary.

THEOREM 2.1 (FKG inequality). Suppose that q > 1. If f and g are increas-
ing functions on Qy, then

(21) ¢G,p,q( fg) = ¢G,p,q( f)d’G,p,q(g)'

Replacing f and g by —f and —g, we deduce that (2.1) holds for decreas-
ing f and g. Specializing to indicator functions, we obtain that

(22) ¢, ,(ANB)=¢g , ,(A)dg , ,(B) forincreasing events A, B,

“whenever g > 1. It is easy to see, by example, that the FKG inequality is not
generally valid when 0 < ¢ < 1.

A second valuable property of random-cluster measures is the pair of
“comparison inequalities,” as follows. Given two probability mass functions
u, and uy on Qp, we say that u, dominates wu,, and write u, < u,, if

(2.3) wi(f) < me(f) for all increasing functions f: Qp — R.

Certain domination inequalities may be established, involving the measures
¢g, p, o for different values of the parameters p and q.

THEOREM 2.2 (Comparison inequalities). We have that
(24) ¢ .0 < ,, ifqad =2q,9'21,p" <p,

’

p p
2.5) dgpq = b ifq'2q,9' 21, — ~ = .
( ) G,p',q G,p,q q(l—p) q(l—p)

For proofs of the above inequalities, see [1, 30]. Comparison inequality (2.4)
may be improved somewhat, using a technique developed in [2, 10, 51] to
prove the strict inequality of critical points. More precisely, there exists a
function vy such that

(2.6) b6, 0. < D6 p.q ifg"'>qg>1land p’' <p + y(p,q,q").

‘Moreover, y(p,q,q") >0 if ¢’ >q>1 and 0 < p < 1. The function y de-
pends on G only through the maximum degree of its vertices. Inequality (2.6)
is proved in [31] and applied there to obtain the forthcoming Theorem 5.1(c).
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There is one further general property of random-cluster measures, namely,
the effect of conditioning on the absence or presence of some given edge. For
e € E, we denote by G \ e (resp., G.e) the graph obtained from G by deleting
(resp., contracting) e. We write 5 = {0, 1}2\¢); for 0 € O we define 0’ € O
by w'(f) = o(f) for f+ e. Recall that the event {e is open} is the set of
configurations @ with w(e) = 1, and similarly for the event {e is closed}. We
write J, = {e is open} and J; for the complement of JJ,.

THEOREM 2.3. We have that
(2.7) ¢G,p,q(w|Jec) = qu\e’p’q(w') for w $ Je,
(28) ¢G,p,q(w|Je) = ¢G‘e,p,q(w,) for wE Je'

That is to say, the effect of conditioning on the absence or presence of an
edge e is to replace the measure ¢ , , by the random-cluster measure on
the respective graph G \ e or G.e. The proof is elementary and is omitted.

We turn now to the notation of this paper. The results which follow are
valid for general lattices, but for the sake of definiteness we shall consider
only the d-dimensional hypercubic lattice [ having vertex set Z¢ and edge set
E containing all pairs of vertices which are Euclidean distance 1 apart. We
assume throughout that d > 2. We shall write x = (x4, x,,..., x,) for x € Z¢,
‘and we denote by {x, y) an edge joining vertices x and y. A path of L is an
alternating sequence x,,e,, x;,e;,... of distinct vertices x; and edges e;
such that e; = (x;, x;, ;) for each j. If this path terminates at some x,, then
it is said to join x, to x, and to have length n; if a path has infinitely many
vertices, then it is said to connect x, to .

The basic configuration space is Q = {0, 1}t endowed with the o-field &
generated by the finite-dimensional cylinders of (). In Sections 6 and 7 we
shall study Markov processes on the larger state space X = [0,1]f, and
particularly the level sets of such processes under the projection mappings
wP,m,: X - ( given by

» . |1, ifl-p<a(e),
mra(e) = 0, ifl—p>a(e),

|1, ifl-p<a(e),
H(€) =10, if1-p > ale),

where o € X. The complement of an event A will be denoted by A°.
A configuration w (€ Q) is an assignment of 0 or 1 to each edge e (€ [E)
and may be put into one-one correspondence with the set

n(w) = {e € E: w(e) =1}
of “open” edges in w. The “opeﬁ paths” of a configuration w are those paths of
L all of whose edges are open. If A and B are sets of vertices, we write
{A < B} for the event that there exists an open path joining some vertex of A
to some vertex of B. Similarly, we write {A < «} for the event that some

eel,
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vertex of A is the endpoint of an infinite open path. For any set S of edges (or
vertices), we write {A <g B} for the event that there exists an open path
joining some vertex of A to some vertex of B and using only edges (or
vertices) lying in S. The complements of such events are denoted using the
symbol < .

For any subset E of E, we write &; for the o-field of subsets- of
generated by the finite-dimensional cylinders of E, so that ¥ = ;. A box A is
a subset of Z¢ of the form

d
A= I__.[l[xi’yi]

for some x, y € Z%, and where [ x,, y,] is interpreted as [ x;, y;] N Z. The box
A generates a subgraph of L with vertex set A and edge set E, containing all
edges (u,v) with u,v € A. We write 9, = Fe\i,, the “external” o-field of A,
and

IT=N%
A

for the tail o-field. The boundary 9V of a set V of vertices is the set of all
vertices x (€ V) which are adjacent to some vertex of L not in V. The
complement of V is denoted by V°.

3. Random-cluster measures. As in the case of Gibbs states, there are
two candidates for the definition of a random-cluster measure on the infinite
lattice L: the first is in terms of a “specification” and the second is as a weak
limit of measures defined on finite regions.

For £ € O (={0,1)F) and a box A, we write Q} for the (finite) subset of Q
containing all configurations w satisfying w(e) = ¢(e) for e & E,. For £ € Q)
and values of p, q satisfying 0 <p <1, g > 0, we define d),f,p,q to be the
random-cluster measure on the finite graph (A, E,) “with boundary condition
&”; this is the equivalent of a “specification” for Gibbs states. More precisely,
let ¢ »,q be the probability measure on ({,.%) satisfying

1
(31 6 ,q(0) = 5

A,p,q

{ [T pe0(1 —p)l_“’(”)}qk(“”“ for v € Qf,

ek,

where k(w, A) is the number of components of the graph (Z¢, n(w)) which
intersect A, and where Z§ »,q 18 the appropriate normalizing constant

(32) zt, .= ¥ { I1 pee(1 _p)l—w(e)}qk(w,,\)‘

wEQf Q_EIE/\

Note that ¢ , (%) = 1. There follows the definition of a random-cluster
measure, based upon the usual Dobrushin-Lanford—Ruelle (DLR) definition
of a Gibbs state [16, 46]. After this is the definition of a weak limit.
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DEFINITION 3.1. A probability measure ¢ on ((,.%) is called a random-
cluster measure with parameters p and q if

(83) ¢(AlF) =, ,,,(A), ¢as,forall A <5 andboxes A.
The set of such measures is denoted by %, ,

DEFINITION 3.2. A probability measure ¢ on (Q,%) is called a limit
random-cluster measure with parameters p and ¢ if there exists £ € ) and
an increasing sequence (A,: n > 1) of boxes, satisfying A, — Z% as n - =,
such that

(3.4) bf pq=¢ asn o,

where = denotes weak convergence. The set of all such measures is denoted
by 7, , and the closed convex hull of 7, , is denoted by co7, ,

No extra generality is obtained by allowing a sequence (¢,) of configura-
tions in such a way that

B pg =@

in place of (3.4) in the latter definition. This is so since, for any ¢ (€ Q) and
any box A, there exists a configuration ¢ (€ Q) and a box A containing A
such that ¢/ .p,q and ¢A »,q induce the same measure on A, for all configu-
rations ¢’ which agree with ¢ on E,. It follows that if qu" = ¢, then
there exists ¢ (€ Q) and a subsequence (A,,: & > 1) of (A,: n > 1) such that
¢A§"k’p’q = ¢as k>

We note that 7, , # & for all 0 < p < 1, ¢ > 0, by the usual compactness
argument.

It is well known that limit random-cluster measures for integral q (> 2)
may be constructed from Gibbs measures with Potts interactions (having g
spin values available at each vertex), but it is important to note that
Definition 3.2 does not cover every such possibility. For example, consider the
Ising measure on the box A, with plus boundary conditions on the upper half
U and minus boundary conditions on the lower half L. The corresponding
random-cluster measure on A is the measure ¢, p.q (Where p =1 — e B),
having boundary condition ¢ = 1, conditioned on the event that there is no
open path from U to L. This last event may be thought of as “negative
information,” and such events play no part in Definition 3.2. Thus Definition
3.2 excludes certain possibilities which are relevant to, for example, the
copstruction of non-translation-invariant Gibbs states (see [1, 8, 17, 23, 52]
for related work).

We write 0 (resp., 1) for the conﬁguratlon in O which takes the value 0
(resp., 1) on every edge.
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THEOREM 3.1. Suppose 0 <p <1 andq > 1.

(a) The weak limits
(3.5) b, = Alinzld(ﬁf'p’q forb =0,1,

exist and are translation invariant.
(b) We have that ¢£,q, ;’ ¢ €%, , and, furthermore,

0
(3.6) ¢, <b<¢,, forallpex, V7,
(c) The probability measures ¢, , and ¢, , are ergodic.

We interpret the limit in (3.5) as being along any increasing sequence of
boxes A with limit Z%. The stochastic inequalities of (3.6) are to be inter-
preted in the usual way; see (2.3). Part (a) of this theorem is well known (see
[1, 30]).

Theorem 3.1 implies that &%, , is nonempty when ¢ > 1, and also the
important and useful fact that

(8.7 |#, =17, /=1 ifandonlyif ¢ 6 = ¢! .

Later we shall state conditions under which ¢? , = ¢, ,, thereby obtaining
sufficient conditions for the uniqueness of random-cluster measures. Further

properties of %, , and 7, , are as follows.

THEOREM 3.2. Suppose 0 <p <1 andq > 0.

(a) The set &, . is nonempty and convex and contains at least one
translation-invariant probability measure.

(b) All extremal members of R, 4 are trivial on the tail o-field 7 and lie in
Y
(c) All translation-invariant members of v, , liein %, .

(d Ifq =1, then ¢1‘3’ q and qb;,q are extremal elements of %, .

In proving Theorems 3.1(b) and (¢) and 3.2 we shall make use of the
following result concerning the uniqueness of the infinite cluster. For v € (),
let I = I(w) be the number of infinite components of the graph (Z¢, n(w)),
and let J, be the event {w(e) = 1}.

THEOREM 3.3. Let ¢ € co¥, ,, where 0 <p <1 and g > 0.

(@) If 0 <p <1, then ¢ has the “finite-energy property,” which is to say
that ., ’

(3.8) 0< ¢(Jel9’[;\(e}) <1, ¢-a.s., foralle € E.
(b) If ¢ is translation invariant, then (I € {0,1}) = 1.
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(c) If ¢ is ergodic, then
(3.9 either ¢(I=0)=1 or ¢$(I=1)=1.

Theorem 3.3(a) and (b) will be used directly in the proof that translation-
invariant weak limits are indeed random-cluster measures [part (c) of Theo-
rem 3.2]. In the present context, the uniqueness of the infinite cluster takes
the role played by “quasilocality” for Gibbs states (see [24]). However, we note
that this uniqueness is a property of measures, whereas quasilocality is a
property of specifications. Our proof of Theorem 3.2 constitutes an essential
application of the Burton—-Keane uniqueness theorem [14] and leads to
hitherto unknown conclusions (cf. [50]).

We begin the proofs with that of Theorem 3.3.

PRrROOF OF THEOREM 3.3. Parts (b) and (c) are obvious if p = 0,1, and so
we assume that 0 < p < 1. It is a consequence of the Burton—Keane theorem
[14] that (a) implies (b) and (c), and so we need only prove part (a). For
related literature on the finite-energy property, see [14, 23, 53].

The basic fact we shall use is the following. Let ¢; be the random-cluster
measure with parameters p and ¢ on a finite graph G = (V, E); see (1.1).
Then, for any edge e and configuration ¢,

, P if¢eD,
(310) ¢o(Jlo(f) =¢(f)forfre)=§ P .cp
p+(1-p)q’ ’

where D is the event that there exists no open path of E \ {e} joining the
endpoints of e. This fact is easily checked by reference to the definition (1.1)
of random-cluster measures (see also [1, 30]). Define the constants « and B

by
a=mm{ ——J’_——}
Py (1-p)q])’
. P
p= max{p’ p+(1 —p)q}

sothat 0 < a < B< L
Suppose first that ¢ €7, ,. As in (3.4), let ¢ (€ Q) and (A,: n > 1) be
such that

(3.11) ¢ = lim ¢A§n,p,q'
For any finite set F' of edges of L and any { € ), we write [ {]; for the

cylinder event {w € Q: w(f) = {(f) for f € F}. By the martingale conver-
* gence theorem (or otherwise),

(3.12) (Ll ¢ Jeniar) = Alinzld &(J N ¢ Jen@) for gace. L.
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Also, by (3.11), if e € E,,

(313) d)(Je,[ { ]E\\(e)) = r}l_l;ri ¢A§,,,p,q(Je|[ { ]EA\(G})'
We have from (3.10) and Theorem 2.3 that
(3.14) a<df o (J¢)enw) <B foralllarge n

and therefore
a < (I ¢ o) < B for drae. ¢
by (8.12). Therefore ¢ satisfies (3.8).
Assume next that

¢ = Z Y b;
i=1

for positive reals y; having sum 1 and measures ¢; € 7, ,. The measures ¢;
satisfy (3.13) and (3.14) (for suitable £ = ¢; and A, = A, ), whence

Lyidi(J. N[ e i)
Zi')’i‘l’i([ (]EA\(e))

Take the limit as A — Z¢ to obtain (3.8).
Finally, suppose that ¢ = lim, .. ¢, for measures ¢, lying in the convex
hull of 7, ,. Then

SN ¢ enw) = lim &, (LN ¢ len@)s

which lies in the interval [, 8], by (3.15). Pass to the limit as A — Z¢ to
obtain (3.8) as before. O

(3'15) d)(JeI[ 4 ]EA\(G)) = = [a’ B ] .

ProOF OF THEOREM 3.1. We may assume that 0 < p < 1 since the result is
elementary otherwise.

(a) This is well known, but we include a sketch of the proof for the sake of
completeness. Let A and A be two boxes satisfying A C A, and let A be the
event that all edges in E, \ E, have state 0. Now ¢ »,q May be thought of as
the measure ¢£’ p,q conditioned on the event A (by repeated application of
Theorem 2.3). Since A is a decreasing event, we have by the FKG inequality
(see Theorem 2.1) that

(3.16) & p.o(B) = & , ((BlA) < &) , ,(B)

for any increasing event B defined in terms of the edges in E,. It follows that
the limit

0 - 1 0
d)p,q(B) - Alirgd¢A,p,q(B)

exists for all increasing finite-dimensional cylinder events B. The collection of
all such events B generates .#, whence d)ﬁ o exists.
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To see that ¢1?, ; s translation invariant, one argues as follows. Let B be
an inereasing event lying in & for some finite subset F of E. Let 7 be a
translation of the lattice L and extend 7 to be a shift 7: O — Q by 7w(e) =
w(te) for e € E. For any box A containing all endpoints of all edges in F, we
have by the FKG inequality as in (3.16) that

¢9.q(B) = &5 , ((B) = ¢7s , ((7B) = & ((7B) as A - 77

Applylng the same argument with 7 replaced by 7~!, we find that ¢}?, «(B) =
d)p 7B).

Similar arguments are valid for d)l

(b) Let A be a finite box and let A be a cylinder event defined in terms of
the states of edges in E,. We use a subsidiary lemma which will be of value
later also.

LEMMA 34. Let 0<p <1, g >0, and let ¢ be a translation-invariant
member of co#, ,. The random variable g(w) = ¢y’ , (A) is ¢-a.s. continu-
ous, using the product topology on its domain ().

Before proving this, we use it to establish that d)b g for b=0,1, as
asserted in the theorem. Let b € {0, 1} and let A be a box contalmng A. By
the conditional-expectation property of random-cluster measures (Theorem
2.3),

(3.17) bi,p.q(A) = 88, (AFR), &8, a8

Let B be a cylinder event in ;. By part (a) and Lemma 3.4 applied to d)p o
the function 1z(w)¢y, ,(A) 1s ¢} ;-a.s. continuous (1 is the indicator
function of B), whence

(f’,f,q(lB(')‘l’A,p,q(A))

Jim 68, o(15()61.5.0(4))
Jim ¢ ,,o(15() 88, 5.0(417)) [y (3.17)]

Alilrzld(f)Ab,p’q(A NB) = ¢’ (A NB).

Since 9, is generated by the collection of all such B, we deduce that
(3.18) ba, p, q(A) = ¢£,Q(Al‘7/\)’ d’}I;,Q'a s

whence d;p ¢ €%, , as required.
Turning to inequality (3.6), we note that, by thoughtful application of the
FKG inequality,

d),\’p’q(A) < d),{"’p’q(A) < d)Al,p,q(A) for all w € O

and for all increasing A defined in terms of the states of E,. Using (3.4), this
implies (3.6) for ¢ € 7, . For ¢ €£, ., use (3.3), take expectations and let
A - 74
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We complete the proof of part (b) by proving Lemma 3.4. Let ¢ be a
translation-invariant member of co 7, _, and note from Theorem 3.3 that the

"number I of infinite clusters satlsﬁesp .
(3.19) ¢(I€{0,1}) =1.

Define the “discontinuity set” D of the random variable g(w) = ¢, , ,(A) by

D= {w: sup 1g(¢) —g(w)l> 0},
A {:{=won A

where the intersection is over all boxes A containing A, and we write “/ =
on A”if {(e) = w(e)forall e € E,. For any such ¢, the difference [g({) — g(w)I
can be nonzero only if there exist two points u,v € JA such that both « and
v are joined to JA by paths using open edges of w lyingin E, \ E,, but that u
is not joined to v by such a path [note that if this event occurs for no such
u,v, then k(w',A) = k(w, A) for all «’ which agree with w on E,, so that
g(¢) = g(w)]. Denoting the last event by D, ,, we have that

Dc N D, ,.
A

Therefore,
$(D) < d’( N D/\,A)'
A

However,

() D, 4 € {A° contains two or more infinite open clusters},
A

an event with zero probability by (3.19). This completes the proof of the
lemma, since D contains all configurations w at which g is discontinuous.

(¢) Inequality (3.6) implies that ¢ , and ¢, , are extremal random-clus-
ter measures in the sense that, for 6 = 0,1, there exists no a € (0,1) such
that

bpg = ad’ + (1 —a)e”

for some distinct ¢', ¢" €%, ,. It follows by [24], Theorem 7.7 and Remark

7.13, that qbp o 18 trivial on the tail o-field 9 and hence ergodic, for & = 0, 1.
O

PROOF OF THEOREM 3.2. (a) The convexity of %, , follows from Definition
3.1 as for Gibbs states. That %, , # & follows from. Theorem 3.1(b) when
g > 1, but a different argument 1s needed when ¢ < 1. Assume ¢ < 1 and
note that 7, , # &, by compactness. Let ¢ €7, , and let

, Z .

m! xeA,,

IA
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where A, = [—m,m]¢ and 7, * ¢ is the probability measure on (£, %) given
by 7, o ¢(A) = ¢(7, A) for the shift 7,(y) = x + y of the lattice. Clearly 7, - ¢
€%, , for all x, whence belongs to the convex hull of 7, . Let ¢ be a
11m1t po1nt of the family {y,,: m > 1} of measures. Certainly w 1s translation
invariant and lies in co %7, ,, whence we may apply Lemma 3.4 to .

We claim that ¢ € # and shall prove this in the same general way as we
proved (3.18). Pick ¢ Q and a sequence A, of boxes such that (3.11) holds.
Let A be a box, let B be a cylinder event in Z\ and let A be an event defined
in terms of the edges of E,. Then, using Lemma 3.4 for the first step,

(1) i, .4(4)) nlgnxwm(la(m,p,q(A))

i‘i‘im Y (lB(')‘f’A,p,q(A))

x€A,,
= lim li $opa(18() 8a, 5 q(A
0 5 T 0100088
= lim hmm Z .o 98 ,,(ANB)

1
= lim — Y 7,°¢(ANB)

m-—x IA I x€A,,

¢(ANB),

whence (3.18) holds as before with ¢? = replaced by y.

(b) The F-triviality of extremal elements of #, , is a consequence of a
general result in [24], Theorem 7.7 and Remark 7.13. That extremal elements
of #, ., liein 7, , is contained in part (b) of [24], Theorem 7.12.

(c) Let ¢ be a translation-invariant measure in #, ,- By Theorem 3.3, the
number I of infinite open clusters satisfies ¢(I € {0 1}) = 1. The proof of
Theorem 3.1(b) may now be followed to obtain the claim.

(d) This was proved for Theorem 3.1. O

4. Uniqueness of random-cluster measures. In this section we ad-
dress the question of the uniqueness (or not) of random-cluster measures for
given values of p and g. To this end we introduce the notion of “pressure.”
Let 0<p <1, q>0, £€Q, and define the (finite box) partition functions

Zf{ , , by (3.2). Rather than working with Z§ . p, ¢ itself, we work instead with

(41) Y, =(1-p) ™zf = ¥ g Mexp(nin(w) NE,l,

meﬂf

where 7 = log{p/(1 — p)} and n(w) is the set of open edges of w as usual.
The pressure f(p, q) is defined in the following theorem.
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THEOREM 4.1. Let g > 0. The limits

(4.2) lim {—logY{ , }+ =f(p,q), O0<p<1,
A—-79 I[E I

exist and are independent of &¢. Furthermore, f(p,q) is a convex function of

7 = log{p/(1 — p)} for m € R and, therefore, fis differentiable with respect to

p except on some countable set 2, [ C (0, 1)].

As a consequence of this, one obtains a partial conclusion concerning the
uniqueness of random-cluster measures when q > 1. We let 4%(p, q) denote
the edge density under the measure ¢;’, q» that is,

(4.3) R*(p,q) = ¢ (w(e) =1), b=0,1,

for ¢ > 1, and we note that 2°(p, q) does not depend on the choice of e, by
the translation invariance of 4’,?, ¢

THEOREM 4.2. Suppose that 0 <p <1 and q = 1. The following four
statements are equivalent.

(a) The pressure f(x, q) is differentiable with respect to x at the point x = p.

(b) The edge density h®(x, q) is continuous at the point x = p, for b = 0, 1.
" (c) It is the case that h°(p, q) = h'(p, q).

(d) There is a unique random-cluster measure with parameters p and q;
that is, L%’p,q! =1

Invoking Theorem 4.1, we deduce that (a)-(d) hold if and only if x ¢2,.
Note that A°(x, ¢) is monotonic nondecreasing in x when ¢ > 1 (see Propos1—
tion 4.4); the difference 2'(p, g) — h%(p, q) appears in Proposition 7.4 as the
atom at the point 1 — p of a certain probability measure on the interval [0, 1].
The argument using convexity which leads to Theorem 4.2 has been pursued
by others for Ising and other physical models; see [55] for recent results.

There is incomplete information about the countable set Z, of points of
nondlfferentlablhty of the pressure f(-, g). It is thought to be the case that
is empty for small values of g (satisfying ¢ > 1) and is a singleton point (.e.,
the critical value of p; see Section 5) when q is large. Proofs of parts of this
statement have been given in special cases [36, 43-45, 49], particularly for
d =2 and q > 4, and for d > 2 and sufficiently large q. We conjecture that
there exists @ = Q(L) such that

a, ifg<@,,
{p.(q)}, ifqg>Q.
This would imply in partlcular that |#, ,| = 1 unless ¢ > @ and p = p(q).
In those situations when |g?p | # 1, we ask whether or not %, , is the set of

convex combinations of d)p q and ¢p ¢ A weaker form of th1s conJecture is
that, except possibly at a point of first-order transition, all random-cluster

2, =
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measures are translation invariant; such a conjecture of translation invari-
ance may be made also about limit random-cluster measures.

Using a general conclusion of [1], page 37, we may obtain a fairly complete
picture when d = 2, which we summarize ar follows (the proof is deferred to
the end of Section 5).

THEOREM 4.3. Suppose that d = 2 and that 0 <p <1 and g = 1. Then

Va

(44) | ifp #+ 1—:—\/‘;1—-‘

gl =1

In the next section we discuss the phase transition for random-cluster
models and we shall recall the conjecture that «, = Va /A +y/q) is the
critical value of p in two dimensions (this value is the fixed point of a certain
mapping involving graphical duality). The results of [43] and [45] imply that

(4.5) |Z,, g >1 ifqg>@Q
in two dimensions, for some large Q. It is believed that

=1, ifl<qg<4,

(4.6) I%q,ql{ o1 o

see [36, 44].
Before proving the above results, we make two further remarks. The first
concerns properties of d’g,q for b=0,1and q > 1.

PropPosITION 4.4. Let 0<p <1l,g>1andd = 2.

(a) ¢}I,” ,(A) is a nondecreasing function of p, for b =0,1, and for all
increasing events A.

() ¢, (A) is a right-continuous function of p, for all increasing events A
which are closed (in the product topology).

(©) @) ,(A) is a left-continuous function of p, for all increasing finite-
dimensional events A.

Part (b) refers to increasing closed events A, of which an important
example is the event A = {0 © oo}, In order to see that A is closed, we argue
as follows. If w € A®, then w € {0 «» dA} for some A, implying that o' €
{0 ¢ 9A} for all @’ which agree with w on A. Therefore, A° is open.

The next remark of this section is interesting in that it is valid for all
values of g, rather than for ¢ > 1 only. It is proved by using the convexity of
the pressure for all ¢ > 0. Let 5%, , denote the set of all translation-
invariant members of %, ., and recall from Theorem 3.2(a) that TRy ¢ * D

THEOREM 4.5. Let 0 <p <1 and q >0, and let 9, be given as in
Theorem 4.1.
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(a) The edge density ¢(w(e) = 1) is constant for all e € E and all ¢ €
TR, o if P £D,.
o If 0<p<p' <1 and $€IX,,, ' €IX

1, q» then the respective
edge densities satisfy

d(w(e) =1) < ¢'(w(e) =1).

To place this in context, we recall that random-cluster measures satisfy
the FKG inequality if ¢ > 1 and not if ¢ < 1 (see [1, 30] and Theorem 2.1).
Even when the FKG inequality is invalid (i.e., ¢ < 1), part (b) implies that
the edge density ¢,(w(e) = 1) is nondecreasing in p, where ¢, is an arbitrary
member of 9%, , for each p. It is not generally the case that ¢,(A) is
nondecreasing in p for increasing events A having more complicated struc-
tures.

PROOF OF PROPOSITION 4.4. (a) If A is finite dimensional, this follows
from the comparison inequalities; see Theorem 2.2. For general A, use
Theorem 7.3 (or otherwise).

(b) For w € Q and the box A, =[—-m,m]?, we write (w,1),, for the
configuration which agrees with w on £, and equals 1 elsewhere. Let A be
an increasing closed event and let A,, = {0 € Q: (w, 1),, € A}. Clearly A, D
A, if m < n, whence the limit

B=1mA,= A4,
n—oo n
exists. Furthermore, A Cc A,, for all m, so that A CB.If w € A,, for all m,
then  may be expressed as the (product topology) limit w = lim,, , (w,1),,
of configurations in A. Since A is closed, it follows that w € A. We have

proved that A = B.
Let m < n. Using stochastic orderings of measures, we find that

by J(A) <y, (A) < ér , ,(A,) (since ACA,)
- ¢, (A,) (asn—>®)
= ¢, ,(A) (asm — ),
where ¢, , , = ¢, o Also,
r},p,q(An) = ¢)r1+1,p,q(An) (since A, C A, 1)
> ¢)r1+1,p,q(An+1) (since A, DA, .q).
The two sets of inequalities above imply that the sequence (qﬁ,},p, (AL

n > 1) is decreasing with limit qﬁg, (A). However, each qﬁ,}’ pq(A,) is a
continuous function of p, whence qb;, qZ A) is upper semicontinuous, and hence

~ right continuous. .
_"(c) If A is an increasing cylinder event, then ¢,{”p’q(A) is (ultimately)
nondecreasing as A — Z¢, whence the limit qﬁg 4(A) is lower semicontinuous,

and therefore left continuous. O
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PROOF OF THEOREM 4.1. In the proofs of this and Theorem 4.2, we use a
standard argument of statistical mechanics in a form related to that used in
[47]. Fix the box A. For w, £ € Q we define w? by

w(e) = w(e), ifeek,,

£(e), otherwise,

and note that w¢ € Qf. Clearly

E(o',A) <k(0f A) <k(0’ A) <k(w!,A) +|dAl
whence
(4.7) V! <Yi<Y?<Yl¢g"™N ifg=>1,
and with the inequalities reversed when g < 1. Take logarithms in (4.7) and
divide by |E,|. The limits exist as A — Z%, as in [25], and they are indepen-
dent of the choice of ¢ by (4.7) and the fact that |dA|/|E,| — 0. Therefore,

f(p, @) is well defined by (4.2).
The function

fi(p,q) = logYA

Eal
is a convex function of = = log{p /(1 — p)}, for any ¢ € (). This is immediate
from the form of Yj: just differentiate twice and use Holder’s inequality. We
niote for later use that

df £ 1 | E,|
N
d7T “E |¢A pq(n(w) )
Since, for any £ € Q, (f¢(p, 9)), is a family of convex functions of 7 = 7(p)
which converge to the finite limit function f(p, q) as A — Z¢, it follows that
f(p,q) is a convex function ‘of 7. Therefore, f(p, q) is differentiable with
respect to p except on some countable set F, of values of p. O

(4.8)

ProoF oF THEOREM 4.2. Fix g > 1 and let 2 = 9, be the set of values of
x [€ (0,1)] at which the pressure f(x, q) is nondeferentlable
First we prove that (a) implies (c). Assume 0 < p < 1. We have by the
convexity of f(-, q) that
dff df

(4.9) pradiem as A > Z¢ foré€ Q and p €9.
a a

For any box A and any edge e € E,,

1
E(f’/(\),p,q(ln( w) N [E/\') = ¢1?,q(Je)

(4.10) 1
, 'Sd’lq(J)Sﬂﬁd’/%pq(,n(w)m[E ),

where J, = {w(e) = 1}, and we have used the translation invariance of d)o
and qbp 4> together with the stochastic orderings of certain measures. Usmg
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(4.8) and (4.9), we deduce by passing to the limit as A — Z¢ that

df
(4.11) g;=¢£,q(Je) =¢) ,(J,) forecEand p £9.
This implies (c).
Suppose now that (c) holds. We claim that

(4.12) o 4(A) = ) (A) for all increasing cylinders A,

which will imply (d), by (3.7). One way to see that (c) implies (4.12) is as
follows. Since g > 1, the two measures d)o g and qu , may be coupled in the
way described by Holley [37]: there exists a probability measure u on
Qf x Q) whose marginals are ¢ , . and ¢, , ,, and such that the u-prob-
blhty of the set of pairs (w,, wy) (€ Q9 x Ql) with w, < w; is 1. For an
increasing event A defined on the finite edge set E (C ), we have that

q’),%’p,q(A) - qﬁf\’,pyq(A) =uw(w €A, wy&A)

= ZE:U«(‘”l(e) =1, wy(e) = 0)
= ZE{d)/{,p,q(Je) - d)/(\),p,q(Je)}
- ZE{d);,q(Je) ~¢5 o(J)} =0

by (c).

Since f(x,q) is a convex function of 7w (x) = log{x/(1 — x)}, it has right
and left derivatives with respect to x, denoted by df/dx*. Furthermore,
df/dx* (resp., df/dx ") is right continuous (resp left continuous) and nonde-
creasing. We shall prove that

df df 1
4. - = . - ¢?
( 13) dp+ dp— p(l _p) { p,q(Je) p,q(Je)}
and that
(414) ) ;,q(Je) = I}'l?; ¢;?’,q(Je)’ ;?,q(Je) = 1},1?3) ¢;’,q(J'e)’

In advance of proving (4.13) and (4.14), we note the following. Relation (4.13)
yields that (d) implies (a), and we have proved that (a), (¢) and (d) are
equivalent. In conjunction with (4.14), it yields by the semicontinuity in p of
kb(p,q) = ¢ (J,) (see Proposition 4.4) that (a) and (b) are equivalent.
Finally we prove (4.13) and (4.14). Equations (4.14) are a consequence of
the semicontinuity and monotonicity of d)}’,’ 4(dJ,) (see Proposition 4.4) and the

fact that I% | =1 for p’ €9, a countable set.
By (4.11), w1th = m(x),
df 1 df

1
dx x(l - x) dm x(1 - x) x,q( e) or 0,1and x &
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Writing f’ for the derivative of f(x, g) with respect to x,

daf lim £( £) = 1 )
o7 ) T Ry e
x&D
and
df 1
E_—=1lmf(x)_ (1 )¢pq( J.),
x&ED

whence (4.13) follows. O

PrOOF OF THEOREM 4.5. Assume ¢ € 5% _ and define the random vari-

able p.q
1
gr(w) = |T](w) NE,l
Then
&(J,) = ¢(g,) (by translation invariance)
(4.15) = ¢(dap, q(gA)) (since ¢ €2, ,)

o 2) Bres.

Now (df,/dm), is a sequence of bounded random variables (since |g,| < 1)
which converges as A — Z% to df/dm so long as p & 9,; this holds by (4.9),
which is valid for all positive g. Letting A — Z¢, we ﬁnd by the bounded
convergence theorem that

df\ df |
(;b(Je) = d)(a—;) = :l-; lfp $9q,
which implies (a).

As for part (b), pick p” € (p, p') such that p” &9,. By (4.15), (4.8) and
the bounded convergence theorem,
” ‘f’(a ) " drly

oy <o 2] )
p” ) - d),(;l; p”) =E;p’

as A — Z¢, where the derivatives are evaluated at = = 7 (p"). O

and

¢(J)<¢(f“

5. Phase transition. The phase transition in these models is marked by
the onset of an infinite cluster. We assume henceforth that q > 1 and we
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concentrate here on the extremal random-cluster measures ¢>£,q and qb;,q.
Let

(5.1) 0°(p,q) = ¢} (0 o ), b=0,1,

be the ¢?  percolation probability.

The functions 0°(p,q) and 6(p, q) play (respectively) the role of the
magnetization for Potts measures with free and constant-spin boundary
conditions. More precisely, let o, be the spin at vertex u of a Potts model
with g states (where ¢ is now assumed to be integral). Then

(1=a H){0°(p, @)} = lim {m'(or = ) = a77),
(1-9¢71)6'(p,q) =7'(0p=1) —q7,

where 7f and 7! are the g-state Potts measures arising from free and spin-1

boundary conditions (respectively) with interaction J (> 0) and inverse
temperature 8, and where p = 1 — e #Y. It is standard that 6! satisfies the
above equation (see [1, 18, 30]). The given statement for ° may be proved
similarly, making use of Theorem 3.2 and [24], Proposition 7.9. The corre-
sponding statement is valid for 8' also, with 7 replaced by *.

It is immediate from Proposition 4.4 that 6°(:, q) is nondecreasing, and
therefore one may define the critical points

(5.2) pl(q) = sup{p: 6°(p,q) = 0}, b=0,1.

We have by Theorems 4.1 and 4.2 that ¢, = ¢, , for almost every p,

whence 8°(p, q) = 8'(p, q) for almost every p, and therefore p°(q) = pl(q).

Henceforth we use the abbreviated notation

(5.3) p.(q) =p(q) =p.(q),

and we record next some properties of p.(q). Parts (a) and (b) of the following
theorem are well known (see [1]); part (c¢) is proved in [31] using the improved
comparison inequality (2.6).

THEOREM 5.1. Letd > 2.

(@) 0 <pq) <1 forallq > 1.
M® If1<q<gq’, then

1 1 q'/q q’
— < < — - —
r.(q’) " p.(q) " p(q) q

(¢) p(q) is a Lipschitz-continuous and strictly increasing function of q on
[1, ).

+ 1.

(5.4)

We turn our attention now to continuity properties of the percolation
probabilities 6°(p, q) for b = 0, 1. Of course, 6% p,q) = 6 (p,q) =0if p <
p.Lq).
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THEOREM 5.2. Letd > 2 and g > 1.

(a) The function 0°(:, q) is left continuous on [0,1]\ {p(q)}.

(b) The function 0(-, q) is right continuous on [0, 1].

() 6°%p,q) = 60X p, q) ifand only if p & 9,, where 9, is given in Theorem
4.1.

(d) The functions 0°(-, q) and 6'(-, q) are continuous at the point p [ # p(q)]
if and only if p € 9,.

It is presumably the case that 6°(-, g) and 6!(:, q) are continuous except
possibly at p = p(q). In addition, it may be conjectured that 6°(:, q) is left
continuous everywhere. A verification of this conjecture would include a proof
that

0°(p.(q),q) = lim 6°(p,q) =0,
p1pLg)

implying in particular that 6(p.(1),1) = 0. This last statement is one of the
famous open problems of percolation theory (see [26, 32]).

Finally we record some information about the set of values of p at which
there exists a unique random-cluster measure.

THEOREM 5.3. Assume that q > 1 and d > 2. Then | %, ,| = 1if any of the
following holds:

(a) 0'(p,q) = 0;

() 6°(p,q) = 6'(p, q);

(¢) p > p’, where p' [= p'(d)] is a certain real number satisfying p(q) <
p' <1

Part (a) was proved in [1], page 37. There is more information than
Theorem 5.3 when d = 2. Recall Theorem 4.3, which asserted that, when
d =2 and g > 1, then

Va

=1 ifp# ——

1++vq

The proof of Theorem 4.3 was deferred to the end of this section and makes
use of the fact that

|#

p,q

(5.5) ifqg=>1,d=2;

pr.(q) = IT%

see [60]. It is conjectured that equality is valid here, but no proof is known for
general g (= 1). Certainly equality holds for ¢ = 1, ¢ = 2 and for large ¢
[36, 41, 43, 45, 54].

PROOF OF THEOREM 5.2. We shall prove (a) at the end of Section 7. Part (b)
is a consequence of Proposition 4.4(b). Part (d) follows from (a)—(c), on noting
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that 6°(-, ¢) is nondecreasing for b = 0, 1. We turn therefore to the proof of
(c). Certainly @0 = ¢, , if p ¢, (by Theorem 4.2), whence 0% p, q) =
0'(p,q) for p ¢ 9,. Suppose conversely that

(5.6) 9°(p,q) = 0'(p,q).
We shall now give the main steps in a proof that
(5.7) R°(p,q) =h'(p,q);

this will imply that I‘%’p, qI = 1 by Theorem 4.2.

Fix an edge e = {u,v) and let J, = {w(e) = 1} as usual. For a vertex w, let
I, = {w & «} and let H, be the event that w is an infinite open path not
using e. We write A° for the complement of an event A. It is a consequence of
the forthcoming Theorems 7.2 and 7.3 that there exists a probability measure
¢ on (Q,%)* with marginals ¢) , and ¢, ,, and assigning probability 1 to
the set of pairs (w,, w;) € Q2 satisfying w, < w, (this may be proved directly
also, without recourse to the theorems of Section 7). Let F(w) be the set of
vertices which are joined to infinity by open paths of the configuration w
(€ Q). We have that

(58)  0<y(F(w) #F(w)) < L {d; (L)~ (L)} =0,

wez?
by (5.6). Now J, N I, N I, is an increasing event, whence
(5.9) o (I, NI, NL) <¢) (J.NI,NIL).
Also
¢ (JENI,NT) =¢2 (JNH,NH,)
= bp,o(JSIH, N H,) ¢, (H, NH,).

However, ¢£,q(JeclHu NH,)= d);,q(Je“IHu N H,) by the DLR condition [Theo-
rem 3.1(b)]. In addition, ¢, (H, N H) < ¢} (H, N H,) since H, N H, is an
increasing event. Therefore, (5.10) implies

¢0 (JENI, NI, < ¢ (JEIH, N H,))¢, (H,NH,)

=d¢, (JENH,NH,) =¢, (JENI,NIL).
Adding (5.9) and (5.11), we obtain
0 (I, N 1) <&y (I,N).

Equality holds here by (5.8), and therefore equality holds in (5.9), which is to
say that

(5.10)

(5.11)

(5.12) ¢y (. NI, NL)=¢) (J,NI, N1).
It is obvious that -
(5.13) 0 (J,NIENL) = ¢t (I, NIENT,)

since both sides equal 0. The same equation holds with I} N I, replaced by
I, NI
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Finally we prove that
(5.14) 80 (T NISOIE) = ¢ (I, NIEN T,

which, in conjunction with (5.12) and (5.13) (together with the associated
remark), implies (5.7) as required. Let & > 0. With A = {u < JA, v ¢ JA),
we have that

0<¢,) ,(A) -l (A) <e foralllarge A

and we pick A accordingly. This is valid since the central term above
converges, as A — Z%, to ¢) (I¢N1IY) — ép (L5 N If), which equals 0 by
(5.8). The events {u < JA} and {v < JA} are finite dimensional, whence

(5.15) 0<d¢y,,(A)— ¢, (A) <2¢ foralllarge A

and we pick A (2 A) accordingly. Let S = S(w) ={x € A: x © JA} and
G = G(w) = A\ S. We now employ a coupling of s . quly »,q constructed as
in [52], page 254. Following this reference, there exists a probability measure
gy on O X O}, with marginals ¢ p.q @and & , . which assigns probability
1 to pairs (w,, »,) satisfying w, < w;, and with the additional property that,
conditional on G = G(w,), both marginals of ¢, on E, equal the free bound-
ary condition random-cluster measure qS& p,q- Writing & for the class of all
subsets of A which contain u and v, it follows that

¢A1,p,q(Je m‘4) Z d’Al,p,q(Je’G:g) = Z lt[fA(wl eJe’G(wl) =g)

ge¥% ge¥

= X (w € LIG(w;) = g)Yn(G(w;) =g)
geg

=) (o € J,IG(w,) = 8)(G(w,) =g)
ge¥g

‘ (g €J,, w; € A)
and, in addition,
¢£,p,q(’Je NA) = ¢y(w, €J,, wy € A).
Therefore,
0< ¢A0,p,q(Je NA) - ¢Al,p,q(Je NA)=ih(w, €d,, 0, €A, 0, €A),
which by (5.15) does not exceed 2. Take the limits as A - Z%, A —» 7% and
e 10, to obtain (5.14). O

ProOOF OF THEOREM 5.3. It was proved in [1], Theorem A.2, that
d’g,q = ;,q if '(p,q) = 0;

th"is implies |%, ,| =1 by (3.7). We do not include the proof here, since
condition (b) is implied by condition (a). Suppose that (b) holds. By Theorem
5.2(c), p €9,, whence |%, ,| = 1 by Theorem 4.2.



1486 G. GRIMMETT

Next we sketch a proof that ¢) , = ¢, , if p is sufficiently close to 1. There
are certain topological complications in doing this, and we avoid giving all the
relevant details, most of which may be found in a closely related passage of
[42], Section 2. We begin by defining a lattice ., having the same vertex set
as L but with edge relation

x~y if|lx;—yl<1lforl<ic<d.

For w € ), we call a vertex x white if w(e) = 1 for all e incident with x in L,
and black otherwise. For any set V of vertices of ., we define the black
cluster B(V) as the union of V together with the set of all vertices x, of %
for which there exists a path x, e;, x,€4,...,€,_1, x, of alternating vertices
and edges of .# such that x,, x,...,x,_; €V, x, €V and xy, xy,...,%,_1
are all black. Note that the colors of vertices in V have no effect on B(V), but
that V ¢ B(V). We define

d

IB(V)I = sup{ Ylx,—ylixeV,ye B(V)}.

i=1

For any integer n and vertex x, the event {||B(x)|| > n} is a decreasing
event (we confuse the singleton x with the set {x}), whence

bp,o(IB(x) 2 n) < &7 , ((IB(x)ll = n)

(5.16)
< ¢9 . (IIB(x)ll = n) foranybox A,

where w =p/(p + (1 — p)q) and we have used the comparison inequalities
[see (2.5)]. Using a Peierls argument (see [42], pages 151-152), there exists
a(p) such that the percolation (product) measure ¢, ; = lim, ¢ ¢ , |
satisfies

(5.17) ¢, (IB(x)ll = n) <e™*® forall n,

and furthermore a(p) > 0 if p is sufficiently large, say, p > p’ for some
p' €lpl),D.

Let A be an increasing event defined in terms of the edges in the finite
subset E of E, and let A be a box such that E C E,. Let A be a large box
satisfying A C A. For any subset S of A° (= Z% \ A) containing JA, define the
interior boundary D(S) of S to be the set of all vertices x of .& satisfying the
following conditions:

(a) x & S.

(b) x is adjacent in ¥ to some vertex of S.

(c) There exists a path of L from x to some vertex in A, this path using no
vertex of S.

, We write S = S U D(S). Denote by I(S) the set of vertices x, for which there
exists a path x,e,, x;,e;,...,€,_;,%, of L with x, € A, x; & S, for all i.
Note that every vertex of 9I(S) is adjacent to some vertex lying in D(S). We
shall concentrate on the case S = B(JA).



RANDOM-CLUSTER PROCESSES 1487

Let £ >0 and p > p'. By (5.16) and (5.17), there exists a box A’ suffi-
ciently large that

(5.18) ¢ (Ky ) =1—s ifADA,

where K, , = {B(dA) N A = J}. We pick A’ accordingly and let A 2 A".
Let us assume that K, , occurs, so that I = I(B(9A)) satisfies I 2 A. We
note three facts about B(JA) and D(B(JA)):

(a) D(B(9A)) is L-connected in that, for all pairs x,y € D(B(JA)), there
exists a path of L joining x to y using vertices of D(B(JA)) only.

(b) Every vertex in D(B(JA)) is white.

(¢) D(B(JA)) is measurable with respect to the colors of vertices in Z% \ I,
in the sense that the event {B(JdA) = h, D(B(JA)) = D(h)} lies in the o-field
generated by the colors of vertices in I(4), for any given & satisfying  C A°.

Claim (a) may be proved by adapting the argument used to prove Lemma
2.23 of [42]; claim (b) is a consequence of the definition of D(B(JA)); claim (c)
holds since D(B(JA)) is part of the (“internal”) boundary of the black cluster
of Z generated by JA. We do not include full proofs of (a) and (c), which
would be rather long and which would have much in common with Section 2
of [42].

Let Z denote the set of all subsets of A°, and let 2 be a subset of A°
satisfying & €.%. The ¢£’q-probability of A, conditional on {B(JA) = h}, is
given by the wired measure ¢>}(h)’ »,q- This holds since: (a) every vertex in
dI(h) is adjacent to some vertex of D(%), and (b) D(k) is L-connected and all
vertices in D(%) are white. Therefore, by conditional probability and the FKG
inequality,

¢1(>).q(A) = ¢£,q(¢11,p,q(A)1KA,A)
(5.19) : > ) (84 5 o(A)1k, ) (since I CA)
> ¢y, p,q(A) — & [by(5.18)].

Take the limits as A — Z¢, £ |0, to obtain ¢, > ¢} ,, whence @), = ¢, .
. O

ProoF oF THEOREM 4.3. This was deferred from Section 4 and uses a
graphical duality that is well known (see, e.g.,[7, 15, 60]). We write 1.2 = (Z%, )
for the square lattice. Recall that the dual G¢ of a planar graph G is obtained
by placing a vertex within each face of G and by joining two such vertices by
an edge whenever the two corresponding faces of G have a boundary edge in
common. (If G is finite, its dual graph possesses a vertex in the infinite face
of G in addition to vertices in its finite faces.) It is easy to see that the dual of
12 is isomorphic to 12 )

Let G = (V, E) be a finite simple plane graph, and let G¢ = (V4, E?) be its
dual. In the following, we shall make use of Euler’s formula (see [61]):

(520)  k(w)=IV]I-In(w)l+f(w) -1 forweQy=1{0,1}",
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where k(w) is the number of components and f(w) is the number of faces of
the graph (V, n(w)) including the infinite face. Any configuration w gives rise
to a configuration »? lying in the space Q% = {0, 1}Z* defined as follows. If e
(€ E) is crossed by the dual edge e! (€ E9), then wi(e?) =1 — w(e). As
before, each configuration w? gives rise to a set n(w?) = {ed € E%: wi(e?) = 1}
of open edges of the dual. By drawing a picture, one may easily be convinced
that every face of (V, n(w)) contains a unique component of (V¢, n(w?)) and,
therefore,

(5.21) f(w) =k(wd)

in the obvious notation.
The random-cluster measure on G is given by

()|
d)G””q(w)a(l—p) q*@ for w € Op;

see (1.1). Using (5.20), (5.21) and the fact that [n(w)| + [9(w?)| = |E|, we find
that

for 0 € Q4.

»d)|
q(1 —p) ™
b6, p () (—) ghe®

It follows that

(5.22) ¢G’p,q(w) = d)Gd,p,,q(wd) for w € Qp,
where ¢ga . , is the random-cluster measure on G4, and p’ satisfies
! 1 —
(5.23) P - = a1~ p) , 0<p' <1
1-p p

Equation (5.22) may be expressed by saying that the dual of a random-cluster
measure is itself a random-cluster measure, but with a different parameter
value. Of special importance is the “self-dual” value of p, that is, the fixed
point of the mapping p — p’ given in (5.23). This is easily calculated to be
p = k,, where k, = Va /A + Vo).

Next we apply (5.22) to the square lattice. Let A = A(M,N) =[—-M, N]?,
and think of A(M, N) as a subgraph of 12 in the natural way. The dual graph
A! = A(M, N)¢ may be described as the graph obtained from A(M + 1, N) +

1,3) by an identification of all vertices in the boundary JA? of this graph.

Applying (5.22) to the pair (A, AY) and noting that the identification of
vertices in JA® amounts to working with wired boundary conditions, we
deduce that

¢/(\),p,q( (1)) = d)zid,p’,q( wd)A
in the natural notation. Finally we take the limit A 1Z¢ to obtain that
(5.24) ¢,?,q(A) = d);,’q(Ad) forq > 1,

for any appropriate event A. Here, A? contains all w? for which w € A.
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The argument of Zhang reported in [26], page 195, may be adapted to show
that

(5.25) 0%°(x,,q) =0 ifg=>1.

This implies in turn that p(q) > K, that is, (5.5). (This inequality may be
found without full proof in [60].) To see (5.25), we argue as follows. As in
Theorem 3.3, any infinite cluster is ¢, ,-a.s. and ¢} -a.s. unique. Now set
p = K,, so that ¢  and ¢,  are dual measures in the sense of (5.24). If
0 (0 < ) > 0, then ¢, ,(0 < ) > 0 also, and Zhang’s argument yields a
contradiction, based on the a.s. uniqueness of infinite clusters. Therefore,
(5.25) holds. See [60] for related arguments of this type.
It follows from (5.25) and (5.3) that 6'(p,q) = 0 for p < k,, whence, by
Theorem 5.3, |%#, ,| = 1if p < k,. That |#, .| =1 when p > k, is a conse-
quence of the duality relation (5.24), on observing that p < k, if and only if

p' > «, in(523). 0

6. Time evolutions on finite boxes. Two of the main purposes of this
paper are to construct time-evolutions of random-cluster processes and to find
useful level-set representations of such processes. Related results for other
models, particularly the Ising model, may be found in [9, 35, 48]. As re-
marked in the Introduction, we follow a route which attains both targets
simultaneously and which is based on FKG orderings of measures rather
than on the general methods of [48].

An application of the level-set representation is presented in Theorem
5.2(a), which is the random-cluster equivalent of the continuity theorem of
[9].

Assume g > 1. We shall construct a Markov process on the state space
X =[0,1]%, and we do this via a graphical construction involving a family of
doubly stochastic Poisson processes. First we describe these processes. For
each edge e € [:

(a) A(e) =(A,(e): n > 1) and B(e) = (B,(e): n > 1) are the (increasing)
sequences of arrival times of two independent Poisson processes having
rate 1;

(b) C(e) = (C,(e): n = 1) is the (increasing) sequence of arrival times of a
Poisson process having rate ¢ — 1, independent of A(e) and Bf(e);

(© ale) =(a,(e): n > 1), Ble) =(B,(e): n>1) and o(e) = (g(e):n>1)
are families of independent random variables having the uniform distribution
on the interval (0, 1), independent of A(e), B(e) and C(e).

Furthermore, we assume that the three paired processes (A(e), a(e)),
(B(e), B(e)) and (C(e), o(e)) are independent for different edges e. It is
standard that these processes may be constructed in such a way that, for
each e, only finitely many arrivals take place for A(e), B(e) and C(e), in any
finite time interval. We write P for the appropriate probability measure.



1490 G. GRIMMETT

Let A be a box, let { € X and define the subset X} of X by
Xi={¢eX: &(e) =((e)fore & E,}.

We let (Z{ ,: t > 0) be the Markov process on the state space X} given in
the following way. First we set Z{ , = { and we require that Z{ . has right-
continuous sample paths. The process Z,{,, jumps at the times
{A,(e),B,(e),C,(e): m >1, e € E,} and remains constant between these
times. We need now to specify how the process behaves at each of these
special epochs. Fix an edge e € E, and a time ¢ > 0, and suppose that ¢ is an
arrival time of exactly one of A(e), B(e),C(e), but of no A(f), B(f),C(f) for
f # e. Certainly the limit v = Z{ , exists. We define Z§ , by

B v(f), iff+e,
(61) Z/f,t(f) - p(e), lff= e,
where p(e) is given by -
v(e) V a,(e), ift=A4,(e),
(6.2) p(e) ={v(e) A By(e), if t = B, (e),

v(e) A{o,(e) vV F(e,v)}, ift=C,(e).

(As usual, @ V B8 = max{a, B8} and o A B8 = min{e, 8}.) The function F: E X
X — [0,1] is defined by

(6.3) F(e,v) = sup miny(f),

meR, 1€

where 2, is the set of all paths of L which do not use the edge e but which
have the same endpoints as e. In (6.3), the minimum is taken over all edges f
lying in the path 7. The supremum in (6.3) is over the countably infinite set
2,. However, in (6.2), we have that e € E, and v € X}, so that F(e, v) is
expressible as a supremum over a finite set (depending on A and ¢).

There are two final details. First, if two or more of the three processes
A(e), B(e),C(e) fire at exactly the same instant ¢, we do not change the
current value of Z,{’,_(e). Second, subject to the last sentence, if ¢ is an
arrival time of two Poisson processes indexed by different edges e and f,
then we update the process on the edges e and f according to the usual rules.
There is probability zero that such a time ¢ ever occurs for any edge e (in
either case).

To what end do we define such a random process Z,{’ .2 The purpose of the
construction is to achieve level-set representations of evolving random-cluster
processes on A. Let p satisfy 0 < p < 1 and recall that Q = {0, 1}t. For v € X,
we define two “projected elemepts” 7Py and m,v of () by

5 1, ifl-p < w(e),
D. =
(64) mhv(e) {O, if1 —p>w(e),
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and
(1, if1-p<w(e),
(6.5) mv(e) = {o, if1—p > v(e),

for e € E. The projected processes (wPZ{ ,: t > 0) and (m,Z{ ,: t > 0) take
values in the (respective) state spaces

(6.6) mPXt={we Q: w(f) = wP(f)for f&E,},

(6.7) mX{={w e Q: o(f) =m{(f)for f & E,}.

We point out that

(6.8) mv <Py forall p,v

and

(6.9) m, Vi < T, Vs, Py, < P, if p; <p,and v; < v,.

In writing v, < v, here, we are using the partial order < on X given by
v, < v, if and only if v,(e) < vy(e) for all e € E.

We introduce one more piece of notation before stating the main result of
this section. For v, { € X, and a box A, we denote by (v, ) [= (v, {),] the
configuration which agrees with » on E, and with { off E,. We sometimes
suppress the subscript A when using this notation. For example, the expres-
sion Z{",*) denotes the value of the process on the box A at time ¢, with
initial Value (v, {),. Finally, we denote by T? the set of all ¢ (€ X) with the
property that 7w”[(0, {),] has at most one 1nﬁn1te cluster.

THEOREM 6.1. (a) The process (m,Z{ ,: t > 0) is a Markov chazn on the
state space T XA having unique statwnary distribution ¢7v5 ., and this
stationary measure is reversible for the process. Furthermore

(6.10) m, Z§ , < m, Z§ , forallt,ifp; <p,.

(b) Statement (a) is valid with the operator m, replaced throughout by m?,
so long as { € TP.

Note that the equilibrium measures ¢775 5, and 4)"']5 depend on the
values of { outside E, only.

In the next section we shall consider such dynamics on the whole lattice L,
rather than on finite boxes only. This will be achieved by passing to the limit
as A 1Z% and by using certain monotonicity properties of the processes {Z}{ }
for different A and {. We state these properties next.

We equip the product space X = [0, 1]® with the Borel o-field . An event
A € is called increasing if v' € A whenever v’ > v and v € A; A is called
decreasing if its complement is increasing.

LEMMA 6.2. (a) If { < v, then Z{ , < Z} , for all A,¢.
(b) Let E be an increasing event in & and let A be a box. The function

gb(t) =P(Z>"2 €E)

is nondecreasing if b = 0 and nonincreasing if b =
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Using this lemma together with Theorem 6.1, we shall prove the (weak)
convergence of the process Z{ , as ¢t — .

THEOREM 6.3. For { € X and a box A, there exists a probability measure
wi on (X, B), with uf(X§) = 1, such that

Z") = pi ast - o, forall v.
While Lemma 6.2 expresses a stochastic monotonicity, there is a sample
path monotonicity of the graphical representation which will enable us to

take the limit as A 1Z% Furthermore, if v and ¢ are close to one another,
then so are Z{",”) and Z{*,*, for b € {0, 1}.

LEMMA 6.4. (a) Let A and A be boxes satisfying A € A. Then

(6.11) Z¢0 < Z¢E”  forall {andt
and
(6.12) Z¢P = ZEY forall {andt.

(b) Let A be a box and let b €{0,1}. For v, € X,
1Z{"2(e) — Z{4 P (e)l < Iflé%X{lV(f) - 4NN
forallt > 0 and alle € E.

(6.13)

Before moving to the proofs, we make two notes concerning the value of q.
First, the above construction may be extended in order to couple together
random-cluster processes with different values of p and different values of g
(satisfying g > 1). This is achieved by a suitable coupling of the processes
{C(e): e € [} for different q. Second, some of the arguments of this section
may be recast in the non-FKG case when ¢ < 1. When ¢ < 1, we alter the
definitions of the processes A(e), B(e), C(e) so that B(e) has rate ¢ and C(e)
has rate 1 — g. With minor changes elsewhere, this enables the construction
to proceed, but unfortunately with the loss of Lemmas 6.2 and 6.4.

ProOF OF THEOREM 6.1. The projected process (7, Z{ ;i t > 0) takes values
in the finjte state space Qf = m, X}; recall (6.7). First we perform a little
calculation involving F(e, v), defined in (6.3). Let y € Qf and let v (€ X) be
such that 7, = y. We have by (6.3) that F(e, ») < 1 — p if and only if, for all
m €%, there exists f € 7 with m,v(f) = 0, which is to say that y = m,» € D,,
the event that the endpoints of e are in different components of (Z¢, n(m,v) \

{e}). Recall that n(w) = {f: «(f) = 1}. We have shown that
(6.14) F(e,v) <1—-p ifandonlyify=muveD,.

Clearly the projected process changes its value only 1f Z{ . changes its
value. Assume that Z{ , = v and 7,Z{ , = m,v = v. Let y' € Q‘“ Examining
(6.1)-(6.3), we see that the rate at which WA jumps subsequently to the
new state vy’ depends only on the arrivals of the doubly stochastic Poisson
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processes (A, a),(B, B),(C, o), at times subsequent to time ¢, and upon the
set of edges E ={e € E,: F(e,v) <1 —p}). By (6.14), E={e € E,: ye D},
which depends on vy only, and not further on ». It follows that m,Z§ £ isa
time-homogeneous Markov chain on Qf. This argument is expanded in the
following computation of the jump rates.

For y € () and e € E, we denote by y° and vy, the configurations

(f), iff#e,

y(f) = {7 A

(6.15) fr=e
() = {Y(f) if f+e,

Ye , if £ = e.

Let G{ = (G{(y, w): v, » € Qf) denote the generator of the process (7,Zf :
¢t > 0). Since Z{ . changes its value (a.s.) only on single edges at any tlme we
have that

Gi(y,w) =0 if Y |y(e) — w(e)| = 2,

and it remains to calculate G{(y,,y%) and G¢#(y%,y,) for y € Qf and e € E,.
Consider G{(y,, v°). A calculation based on (6.1) and (6.2) shows that

P(m,Zf 1sn = ¥ImZf ,=v,) =ph +o(h) ashlO,

since such a transition during the time interval (¢, ¢ + h) requires that the
Poisson process A(e) fires in this interval and that the associated value «a,
satisfies @, > 1 — p. Recall that A(e) has rate 1 and P(a, >1—-p) =
Hence

(6.16) Gi(v,y?) =p foryeQf,eck,.

To prepare for the other case, let y € Qf, e € E, and suppose that v (€ X)
is such that m,v = y°. We shall see later that the choice of v is otherwise
immaterial. Suppose that Z{ , = v, implying m,Z{ , = v°, and consider the
intensity of the possible transition from y* to vy,. Such a transition requires a
diminution in the value of Z{ ,(e), which by (6.2) may take place in either of
two ways. The first of these involves the firing of the process B(e), and the
corresponding value B, must satisfy B8, < 1 — p. The intensity of such an
eventis 1 — p, since B(e) hasrate 1 and P(B, <1 — p) = 1 — p. The second
of these ways involves a firing of the process C(e) and requires that the
corresponding value o, satisfies

0,V F(e,v) <1-p.
This cannot occur if F(e,v) > 1 — p, while if F(e,v) <1 — p it occurs with

intensity (g — 1X1 — p), since C(e) hasrateq — land P(0, <1 -p)=1-p
Combining this with the previous remark, we conclude by (6.14) that

l—p, if’yeeDey

C( e _
GO T\ g -p), ity e,
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We complete the calculation of the generator G{ by requiring that
Y Gf(y,w) =0 forallye Qf.

wEQI{

It is now straightforward to check that
A p q(Ye)G (’Ye”y ) = d’A p, q(y )G/\g(’y 'Ye)

whence the process is reversible with stationary measure ¢,{’,P1f,q (see [33],
page 219). Inequality (6.10) follows from (6.9).

The proof of part (b) is essentially the same as for (a), but with one notable
difference. In place of (6.14) we have now that

(6.17) F(e,v) <1-p ifandonlyif v € D,,

whenever v € X{ and { € TP. To see this, we argue as follows. If F(e, v) <
1 - p, then wPv € D,, by (6.3). Conversely, suppose that 7?v € D,, where
ve X{ and { € TP. Since wPv € D,, we have that

p(m) = I}Pin”(f) satisfies w(w) <1-—p forallmeR
e

therefore F(e,v) <1 — p. Suppose F(e,v) =1 — p. Then there exists an
- infinite sequence 7(n) of distinct paths (n = 1,2,...) lying in %, such that
wm(n)) <1 —p but wW(w(n)) > 1—p as n - «. Let & be the set of edges
belonging to infinitely many of the paths 7 (n); for f € &, we have that

v(f) > lim p(m(n)) = 1-p,

so that w*v(f) = 1.

Write e = (u,v), and let C(u) [resp., C(v)] denote the set of vertices of L
joined to u (resp., v) by paths comprising edges f with #*v(f) = 1. By a
counting argument, we have that u (resp., v) lies in some infinite path of &,
and therefore |C(u)| = |C(v)] = «. Since 7Py has at most one infinite cluster,
we have that C(u) = C(v), whence 7wPv & D,, a contradiction. This proves
that F(e, v) < 1 — p, as' required for (6.17). The rest of the proof of (b) follows
that of (a). O

ProOF OF LEMMA 6.2. (a) This follows from the transition rules (6.1) and
(6.2) together with the fact that F(e, v) is nondecreasing in v.
(b) We have that

gl(s+t) =P{P(Zzt R, €EIZE ), b=0,1

Using the time homogenelty of the driving processes (A, a),(B, 8),(C, o)
‘and the fact that

g0 =(0,8), ifb=0
Ml <(1,0), ifb =1,
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we deduce by part (a) that

bt if b =0,
b(s+t) g°(1), 1 O
<gbt), ifb=1.

PrOOF OF THEOREM 6.3. We have from Lemma 6.2(a) that
Zo8 < Z < Z{P forall t and v.

Also, Z{",%) is stochastically increasing if & = 0 and stochastically decreasing
if b = 1 [by Lemma 6.2(b)]. It therefore suffices to show that

ZOH - Z0P) =0 ast > .
Let £ > 0 and write & = {N"',2N"',...,(N — 1)N !}, where N is a positive
integer satisfying N™! < ¢. Then

P(|z(f(e) — Z{#(e)| > & for some e € E,)
Y X P(Z{f(e) <1-p<Z{}f)(e)).
eck, pe&
Now

P(Z{}(e) <1—p <Z{F)(e))
< P(m,Z{"F(e) = 1) — P(m,Z{F(e) = 1)
-0 ast >

by the ergodicity of the Markov chain (m,Z} ,: ¢ > 0); compare Theorem 6.1.
O

ProOF OF LEMMA 6.4. (a) We consider the case (6.11) of 0 boundary
conditions; the other case is exactly analogous. Certainly

0=2{¢") <Z{* ") fore¢E,.

For e € E,, note first that Z{,”(e) = Z{;"(e), since A C A. It now suffices to
check that, at each arrival time of one of the Poisson processes A(e), B(e),
C(e), the process Z{*”(e) cannot jump above Z{**'(e). This is a consequence
of the transition rules (6.1)-(6.3) on noting that F(e, v) is nondecreasing in v.

(b) Since the processes Z{",?, Z{*,*) have only finitely many transitions in
any finite time interval, it sufﬁces to prove that if a transition occurs at time
T, then

|1Z7(e) = ZiEA(e)|

< }nai_ExHZ(" 22(f) — Z¢5P (f)]) foralle € E,.
A

Clearly (6.18) holds for any edge e on which there is no transition at time 7.
Suppose that a transition occurs on e at time T. We have from (6.3) that

|F(e, &) — F(e, &) < I}lgg{lf(f) —¢(f)} forall ¢, ¢ €X.

Examining each of the cases listed in (6.2), we deduce that (6.18) holds. O

(6.18)
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7. Dynamics in the infinite-volume limit. In this section we study
certain Markov processes on the state space X = [0, 1]E. We show the exis-
tence of two different transition semigroups with the same (unique) invariant
measure. The first of these semigroups gives rise to a “level-set representa-
tion” of free boundary condition random-cluster processes, and the second of
wired boundary condition processes.

We arrive at such Markov processes by studying the limit of the finite-
volume process Z ,{’,, defined in the last section, as A 1Z% The two extreme
boundary conditions ¢ are { = 0,1, and we define accordingly the monotone
limits

(7.1) Z{59 = lim Z{&0, ZEY = lim ZED,
A7 ze ’ A TZd 4

which limits exist by virtue of Lemma 6.4(a). In particular, we write

(7.2) Z0 =700, Zl =z,

We shall show that the processes (Z?: t > 0), for & = 0, 1, are Markovian, and
we shall explore their properties in the limit as ¢t — .

A possible alternative to the methodology of this section might employ the
martingale method described in [38, 48]. For general accounts of the theory of
Markov processes, consult the books [11, 48, 58].

The state space X = [0, 1]t is a compact metric space equipped with the
Borel o-field %. Let D(X) be the set of functions G: R — X which are right
continuous with left limits. For s € [0,»), let e, be the evaluation mapping
defined by e,(G) = G(s). Let # be the smallest o-field of subsets of D(X)
with respect to which each e, is measurable, and let /# be the smallest such
o-field defined in terms of {e,: s < t}. We write B(X) for the space of bounded
measurable functions from X to R, and C(X) for the space of continuous
functions.

We now introduce two transition functions and semigroups, as follows. For
be{0,1}and ¢t = 0, let

(7.3) PY({,A) =P(Z¢PeA), (€X, A,
and let Sb: B(X) — B(X) be given by
(74) SUF(L) =P(F(ZE)),  LeX, feB(X),

THEOREM 7.1. Let b € {0,1}. The process (Z?: t > 0) is a Markov process
with sample paths in D(X) and Markov transition function (P?: t > 0).

THEOREM 7.2. There exists a translation-invariant probability measure u
on (X, #) such that

Zb=pu ast—> o, forb=0,1.
Note that the weak limit in the latter theorem is identical for the two
processes Z? and Z]. It follows by monotonicity that, as ¢ — o,
(7.5) Z¢é® =y foreXandb=0,1;
recall Lemma 6.2(a) and (7.1). ’
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We turn attention now to the level-set processes of Z? and Z;!. Fix
p €(0,1), and write

(7.6) L, =m2z L.,=aPZ}, t>0.

Here 7” and 7, are defined in (6.4) and (6.5).

THEOREM 7.3. (a) The processes (Li’,,t: t>0), b =0,1, are Markov pro-
cesses on the state space Q = {0, 1}t with weak limits given by

7.7 Lb, = ¢b ast > o,
Dt p.q

where d)}l?),q is the random-cluster measure defined in (3.5) for b = 0,1. The
measure ¢;,” q 18 reversible for the process Lll’,’ "
(b) The measures d)f,” ¢» for b = 0,1, are level-set measures of u, in that

(78) #0.,(A) = u({:meA)), ) ,(A) = u({L: 7% < A)),
forall A € 7.

We make several remarks before proving the above theorems. First, the
two weak limits ¢ , and ¢, , in Theorem 7.3 are identical if and only if

p €9, where 9, is given in Theorem 4.1.
Next, let u be the limit measure of Theorem 7.2, let e € E and define the
marginal atomic function

J(x) =p({{eX:{(e) =x}) forO<x<1.

Since w is translation invariant, J does not depend on the choice of the
edge e.

PROPOSITION 7.4. We have that

hl(p’q) - ho(p»q) =J(1 _p)»
where h*(p, q) = ¢ (w(e) = 1).

In the light of Theorem 4.2, this implies that p €9, if and only if
J(1 — p) # 0, thereby providing a representation of &, in terms of atoms of
the weak limit w of the stochastic random-cluster processes Z? and Z!. It is
this representation that we employ at the end of this section in order to prove
the left continuity of the percolation probability #°(-, g) (cf. Theorem 5.2(a)
and [9)).

As discussed already after Theorem 4.2, it is believed that there exists
Q@ = Q(d) such that

9 - , ifg <@,
“ \{p(q)}, ifqg>@Q,

and it is a first-rate challenge to prove this. The above results provide a
probabilistic (but incomplete) justification for this claim, as follows. The set
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9, is exactly the set of atoms of the u-measure of the random variable
1'— ¢(e), for { € X. These atoms presumably arise through an accumulation
of edges e having the same value Z2(e). Such coalescences occur only at the
times of firing of the processes C(e); see (6.2). These Poisson processes have
rate ¢ — 1, indicating that coalescences are more frequent for larger gq.

Next we make some remarks about uniqueness of infinite clusters. The
Burton-Keane [14] result implies (see Theorem 3.3) the d)f,” ,-a.s. uniqueness
of the infinite cluster, for b € {0,1} and 0 < p < 1. It is another matter to
obtain such uniqueness simultaneously for all values of p. That is, we may
ask whether or not

,LL(I; = 1forall pand b = 0,1) =1,

where I 1? (resp., I 1}) is the number of infinite open clusters of 7, (resp., wP(),
for a configuration ¢ (€ X) having law w. Such matters have been considered
by Alexander [3].

Finally, we describe the transition rules of the projected processes L(I),,,
and L} ,. It turns out that the transition mechanisms of these two chains
differ in an interesting (but ultimately unimportant) regard. It is convenient
to summarize the following discussion by writing down directly the infinites-
imal generators of the two processes, and we do this next.

We begin with some notation. Let e = {x, y) € E and let &, be [as after

"(6.3)] the set of all paths of L which join x to y but do not use the edge e. Let
@, be the set of all pairs a = (ay, a,,...), B = (B4, By,...) of vertex-disjoint
semiinfinite paths (where «; and B, are the vertices of these paths) with
@, =x and B; =y. We require a; # 8; for all i, j. Thus &, comprises pairs
(a, B) of paths. We call an element (a, B) of @, open if all the edges of « and
B are open.

For b = 0,1, let G® be the linear operator, with domain a suitable subset
of C(Q), given by

G'f(w) = L {p(f(0°) = f(0)) + hb(e, 0)(f(w,) — f(®))},
(79) ecl
we,

where »° and w, are given in (6.15). Here, h®(e, ») is defined by

(7.10) hb(e,w) = (1 —p){1+ (g — Dlps (@)}, weQ,

where
(7.11) D°(e) = {no path in &, is open},
(7.12) D'(e) = {no element in &, U &, is open}.

Note that G°f is well defined for all cylinder functions f, since the infinite
sum in (7.9) may then be written as a finite sum. However, G°f is not
. generally continuous when g > 1, even for cylinder functions f. For example,
suppose q > 1. Let f be the indicator function of the event that a given edge
e is open, and let w be a configuration satisfying the following conditions:
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(a) w(e) =1.
(b) No path in £, is open, under .
(c) Some pair («, B) in @, is open, under w.

Then
G’f(w) = —h®(e, w).

However, h%(e, ) is discontinuous at w for b = 0, 1, since, for b € {0, 1} and
for every finite box A, there exists w' € ) agreeing with w on E, such that
ht(e, w') # h®(e, w). Perhaps such difficulties may be avoided by restricting
the space () of configurations. With a little further care, one may see that the
Markov transition functions of L) , and L} , are not Feller; see the notes at
the end of this section.

In describing the transition rules of the processes L(;,’t and L},’t, we shall
make use of the following lemma, which is of use also in the proofs of
Theorems 7.1 and 7.3. Recall the function F(e, v) defined on E X X by (6.3).

LEMMA 7.5. Lete € E and v € X, and let (v,), be a family of elements of
X indexed by finite boxes A.

@ Ifv,Tvas A > Z% then

(7.13) F(e,vy )1 F(e,v).
®) If vy € X} and v, | v as A > 72, then
(7.14) F(e,v )| G(e,v),
where
(7.15) G(e,v) = sup supv(f).

T€P,VUE, fET

Note that, in the definition (7.15) of G(e, v), £, contains certain paths ,
and &, contains certain pairs 7 = (a, B) of paths; for = = (a, B) € &,, the
infimum in (7.15) is over all edges f lying either in « or in 8.

Consider the process Z?. Since Z? is the increasing limit of Z{"” as
A — 7%, we have from the definition (6.5) of m, that

0 _ : 0,0
(7.16) L, = Ah:;dwng’t).

Assume that Z{>” = £, for each A and { = lim, ;4 , so that

0o _ L
(7.17) L, , =m{= AhTI;d T -

Fix an edge e € E and assume first that { is such that 7,{(e) = 0. At what
rate does the state of e change from 0 to 1? Examining the transitions of the
process Z . [see (6.1)-(6.3)], we see that this occurs at the next firing of the
process A(e) that results in an associated «,, satisfying «,, > 1 — p. The
intensity of this transition is p, as in the proof of Theorem 6.1. Assume next
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that { is such that 7,{(e) = 1 and consider the intensity at which e assumes
the state 0. Returning to (6.2), we see as in the proof of Theorem 6.1 that
there are two independent sources of such a transition, namely, the two
processes B(e) and C(e). The process B(e) fires at rate 1 and produces such a
transition with probability P(B,, <1 — p) = 1 — p. The associated effective
intensity is 1 — p. The process C(e) fires at rate ¢ — 1 and produces such a
transition with probability

0, if li[{n F(e,v,) >1-p,

7.18
( ) 1-p, ifli/l\nF(e,VA)Sl—p,

where vy = ZJ ; and T is the time of the firing in question of C(e). Now
v=1lim,  yav, is an increasing limit, whereby F(e, ,)1 F(e, v) by Lemma
7.5(a). We have therefore that lim, F(e, v,) < 1 — p if and only if F(e, v) <
1 — p, which is equivalent to the statement m,v € D%e), by (6.3), (6.5) and
(7.11). In conclusion, the state of e flips from 1 to 0 at rate
(1-p), if ve DO(e),
(1-p)+(¢-1)(1-p), ifreD(e),
in agreement with (7.9) with & = 0.

We turn next to the process L), ,. This time, Z; is the decreasing limit of
"Zy ,as A > Z¢ and
(7.20) L, ,= lim =?Z; ,

’ A ’

as in (7.16). We have used the definition (6.4) of 7w? here, noting that the
corresponding statement with 7, (in place of 7 ”) fails in general. We now
follow the above argument step by step, noting that increasing limits are
replaced by decreasing limits, m, by 7?, F(e, v) by G(e, v) [defined in (7.15)]
and D°(Ce) by D(e). Our conclusion is in agreement with (7.9) with 6 = 1.

Next appear the proofs, beginning with Lemma 7.5.

(7.19)

PrOOF OF LEMMA 7.5. (a) Suppose v, 1 v. Certainly F(e, v,) is nondecreas-
ing in A, whence the limit
A= lim F(e,v,)
A-Z4

exists and satisfies A < F(e, v). Now for x € (0, 1), we have that A < x if and
only if F(e, v,) < x for all A. By (6.3), this occurs if and only if
Vrer, VA, Afen with y(f) <=x.
Since all paths in %, are finite, this implies
Vrer, Ifen withv(f) <x,
which implies in turn that F(e, v) < x. Therefore, F(e, v) < A.

" (b) Suppose v, € X} and v, | v. First we prove that the decreasing limit
A = lim, F(e, v,) satisfies

(7.21) A < G(e,v).
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Let x €(0,1) and suppose G(e,v) < x. We shall deduce that A < x, thus
obtaining (7.21). Write e = {u, v) and call a finite set S of edges of L a cutset
(for e) if () e & S, (i) every path in &, contains at least one edge of S and
(iii) S is minimal with the two properties above, in the sense that no strict
subset of S satisfies (i) and (ii). We write G(e, v) = max{A, B}, where

A = sup minv(f), B = sup inf v(f).

neP, fen nead, fen

Since G(e, v) < x, we have that A, B < x, which implies that there exists a
cutset S with v(f) <x for all f€ S. To see this, argue as follows. For
w € 7% let C,(v) be the set of vertices of L that are connected to the vertex
w by paths 7 of L satisfying the following criteria: 7 does not contain the
edge e, and every edge [ of 7 satisfies v(f) > x. If u € C,(v), then there
exists m €, with v(f) = x for all f € w, which contradicts the fact that
A < x. Therefore, u & C,(v). Furthermore, either C,(v) or C,(») (or both) is
finite, since if both were infinite, then there would exist 7 = (a, B8) € @, with
v(f) =x for all f in « and B, thereby contradicting the fact that B < «x.
Suppose without loss of generality that C,(») is finite, and let R be the
subset of E\ {e} containing all edges g having exactly one vertex in C, ().
Certainly v(g) < x for all g € R, and additionally every path in %, contains
some edge of R. However, R may fail to be minimal with this property, in
which case we replace R by a subset S which is minimal; S is the required
cutset.
We have that v(f) < x for all f € S, implying (since S is finite) that

for all large A, n(f) <x forall fe S,
and therefore (using the finiteness of S again),
for all large A, F(e,v) <x,

implying that A < x as required for (7.21).
Finally we prove that

(7.22) A= G(e,v),

and we achieve this by proving that A > A and A > B, separately. That A > A
is an immediate consequence of the fact that v, > v, so we turn toward the
inequality A > B. For 7 = (a, B) € &,, where a has endpoint u and B has
endpoint v, let a, (resp., B,) denote the initial segment of a (resp., B)
joining u (resp., v) to the earliest vertex w, of a (resp., w, of 8) lying in JA.
Since w;,w, € JA and w, # w,, there exists a path y joining w, to w, and
using no other vertex of A. We denote by 7' the path comprising «,, followed
by v, followed by B, taken in reverse order. Note that #’' € %, and denote by
P,  the set of all 7’ € 2, obtainable in this way from any 7 = (a, B) € @,.

e
Now

F(e,vy) = sup minvy,(f) (since &, , C£,)
nep fe€T ’
e, A
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sup min w(f) [since v (f) =1forf¢&E,]

' cn'N
7' €P, o

[\

sup min v(f) (sincey, > v)
' eP, \ em' NEy

= sup min v(f)
'n'E@’efeﬂmlEA

> sup infv(f) =B,
e @e fen
where we have used the fact that every ' €%, , arises from some 7 € &,.
Inequality (7.22) follows. O

PrROOF OF THEOREM 7.1. The transitions of the process (Z?: t > 0) are
given in terms of families of independent doubly stochastic Poisson processes.
In order that Z? be a Markov process, it suffices therefore to prove the
following facts:

(a) Sample paths lie in D(X).
(b) The distribution of (Z?, ,: ¢ > 0), given (Z%: 0 < u < s), depends only on
Zb

First we prove (a). Let F be a finite subset of E, let ¢ > 0 and let
S = sup{A,(e),B.(e),Ci(e) <t:e€F,m,r,s > 1},
T = inf{A,,(e), B,(e),Ci(e) >t:e € F,m,r,s > 1}.

Since, for each edge e, the processes A(e), B(e), C(e) have only finitely many
arrivals in any finite time interval, we have that S < ¢ < T. Now

(7.23) Zb (e) =2 s(e) forS<s<T,ecF.

Therefore, Z%(e) = Z(e) for s € [S,t), whence the limit Z} (e) exists for
e EF.

If T>t, then Z%(e) = Z%,(e) for e € F by (7.23), whence Z° is right
continuous at ¢. If T =¢, then Z} (e) = Z} [(e) for e € F and t <s < U,
where

U =inf{A,(e),B,(e),Cie) >t:e €F, m,r,s > 1},

implying right continuity as before.

Next we prove (b). We have that Z%,, = lim, _;« Z} ,.,, where the pro-
cesses Z f\”s ., are given in terms of a graphical representation of compound
Poisson processes. Therefore, conditional on (Z,’\’,u, Zb:0<u<s, ACZ9,
the process (Z?%,,: ¢ > 0) has law which depends only on the family (Z,’\”s:
A C 7%) indexed by finite boxes A. Write £, = Z} , and { = lim,  za {, = Z!.
We need to show that the (conditional) law of Z?,, does not depend on the
family (¢,), but only on its limit {. To achieve this, we shall use Lemma
6.4(b).

First we introduce one more piece of notation. Let s,z >0 and v € X.
Denote by Y\*;%, the state (in X/) at time s + ¢ obtained from the evolution
rules (6.1)-(6.3), starting at time s in state (v, b) = (v, b),.
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Suppose that b =0, so that £, 1 { as A - Z% Let £> 0 and let A be a
finite box. There exists a box A’ such that A’ 2 A and
{(e) —e<{(e) <f(e) foralle € E,,if ADA".
It follows by Lemma 6.4(b) that
Y42 — e <Y <Y <Y&D ifAA.
Use the fact that Y(4,%) = Z} _,, and pass to the limits as A - Z%, A —» 7¢
and ¢ |0, to obtain that
(7.24) lim Y49 =2z¢%,,,
A-z? °
implying as required that Z?%,, depends on ¢, but not further on the family
(£,). The same argument is valid when b = 1, with the above inequalities
reversed and the sign of £ changed.
The Markov transition function associated with the process Z? is the

family (@ ,: 0 < s < t) given by
(L, A)=P(2L,,€AlZt =), (€X, Acx.
In the light of the remarks above and particularly (7.24), we have that
sb,t(g’ A) = Qg,t—s( £, A)
and that
Q0. o(¢,A) =P(Z{E) € A) =P (¢, A)

as required. O

PrROOF OF THEOREM 7.2. We have from Lemma 6.2 that the limits ?,
given by
YP(A) = limP(th EA), b=0,1,
t— o0
exist for any increasing event A. Therefore, Z? and Z} converge weakly as
¢t — o. It therefore suffices to show that
Z} -Z)=0 ast— .

Since we are working with the product topology on X, it will be enough to
show that, for all £ > 0 and all finite subsets F of E,

(7.25) P(|Zt1(f)—Zto(f)|>aforsomef€F)—>0 ast — o,

Let 9 =9, be as in Theorem 4.1 and let & > 0. Pick a finite subset & of
2°¢ =(0,1)\Z such that every interval of the form (x, x + ¢) contains some
point of &, as x ranges over [0,1 — ). Recall from Theorem 4.2 that

(7.26) 0. =¢l, ifpes.
We have that, for f € [,
P(|ZX(F) - Z20(F)| > &)
< X P(Z)(f) <1-p<Z)f))

pe&
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2 P(Z) (f) <1-p<2Z},f)) (forallboxesA)

pe&
- L (83, 5.0(F7) = 82 . o(J7)} (ast — =)
- Z {6,0(I7) = 82 o (J;)} (as A > Z%)

=0 [by (7.26)],
where J, = {w(f) = 1}. Equation (7.25) follows since F is finite.
That the limit measure u is translation invariant is a consequence of (e.g.)

Theorem 7.3 and the fact that ¢° and q')}}’ , are translation invariant (see
Theorem 3.1). O

ProoF oF THEOREM 7.3. (a) That the projected processes (L” 1t =0),
b = 0,1, are Markovian follows from Theorem 7.1 and the d1scuss1on after
Lemma 7.5.
Let A be an increasing event in . Using Lemma 6.2, we have that the
limits
PP(A) = tli_)n;P(L’;,’t €A)

exist for b = 0, 1. Since L) , < L}, ,, it follows that

(7.27) P(A) < ¥, (A) forincreasing A € 7.

Assume now that A is an increasing event defined in terms of the edges in
the finite subset F' of E. Then

Y (A) = limP(L} , € A)
t—>x
(7.28) , = th_,nolcp(” z, EA) (smce L, > w2z )

= ¢y , ,(A) (by Theorem 6.1)

- ¢ (A) (as A > Z9),
and similarly .
(7.29) U(A) = 8, (4).
Combining (7.27)—(7.29), we deduce that

oa(A) = 4 (A) = 4, (A) = ¢, ,(A) ifp&g,
where 9, is given in Theorem 4.1 (see also Theorem 4.2). This proves (7.7)
whenever p €9, since ¥ is generated by the 1ncreas1ng finite-dimensional
cylinders.
In order to show that

: 62 (A) = 42(A), ¢l ,(A) = yl(A),

for all p and any such event A, it suffices to show that l/JO(A) is left
continuous in p and ¢,(A) is right continuous (the conclusion will then
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follow by Proposition 4.4). We confine ourselves here to the case of wpo(A),
since the other case is exactly similar.

Fix p €(0,1) and let A be an increasing finite-dimensional event of .7,
defined in terms of the edges in the finite set F. Let

={{eX:mi€d}, C,={(eX:m%ecA}

be the corresponding events in % and note, from (6.4)-(6.5), that B, is
increasing and open, and that C, is increasing and closed. Furthermore,
C,_.<B, if £>0 and B,\C,_, > as ¢]0. We have by stochastic
monoton1c1ty that lim, P(Z Oe B ) exists, and by weak convergence (see

Theorem 7.2) that
lim P(Z? € B,) > u(B,).

t—o
We claim further that P(Z) € B,) < u(B,) for all ¢, whence
(7.30) P(zZ) €B,) > u(B,) ast— =

To see the claim, suppose P(Z2 E B,) > w(B,) + n for some T and n > 0.
Then P(Z € C,_,) > w(C,_,) + 37m for some &> 0 and for all ¢ > T. This

contradicts the fact that ZtO = u, since C,_, is closed.
Now, for A > 0,

U, (A) = U4 (A)

lim {P(Z? € B,) - P(Z? € B,_,)}

t—> o0

= u(B,\B,_,) [by(7.30)].

However, B,\B,_, > as h |0 since B, and B,_, are open. Hence
4/1p R(A) > 0(A) as h 0.

In the correspondmg argument for 4/11(A) the set B, is replaced by the
increasmg closed event C,, and the dlfference B, \B _p is replaced by

p+h \ C
Fmally we prove that L9 , is reversible; the argument is similar for L},

Let f and g be increasing cylinder functions mapping Q to R, and let UA .
(resp., U) be the transition semigroup of the process m,Z7 , (resp., LY =
z°) If A C A, then

(MU ,.g(n) <f(mUL,g(n) <f(mTU’g(n), mneq,
by Lemmas 6.2 and 6.4. Therefore,
&2 5o (F(MUY . 8(M) < &2, o(F(MUY.8(m))
< ¢y o(F(m)ULg(m)) fACA,
since ¢y , , < ¢J . Take the limits as A » Z¢ and A — Z%, and use the
monotone convergence theorem to deduce that
(7131) B, (UL .g(m) = ¢5.(F(m)Ulg(n)) as A - z°.

Thé left-hand side of (7.31) is unchanged when f and g are exchanged, by the
reversibility of m,ZJ , (see Theorem 6.1). Therefore, the right-hand side of
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(7.31) is unchanged by this exchange, implying the required reversibility (see
[48], page 91).

(b) It suffices to prove (7.8) for increasing finite-dimensional events A,
since such events generate . For such A, (7.8) follows from (7.30) in the case
of ¢? ,, and similarly for ¢, ,. O

PROOF OF PROPOSITION 7.4. This is an immediate consequence of Theorem
7.3(b). O

PROOF OF THEOREM 5.2(a). This was deferred from Section 5. We follow
the argument of [9] as reported in [26]. For p € (0,1) and { € X, we call an
edge e p-open if m,{(e) = 1, which is to say that {(e) > 1 — p.Let C, = C,({)
be the p-open cluster of L containing the origin and note that C, c C, if
p' <p.

The function 6° is defined by (5.1) in terms of the measure ¢J .. In the
light of Theorem 7.3(b), we have that

0°(p,q) = u(IC,| = =),
where u is given in Theorem 7.2. Therefore,

0°(p,q) = 0°(p — ,q) = lim p(IC,| =,|C,| < =)
(7.32) p'te
= p(IC,l = »,IC, | <= forall p’ <p).

Let p > p.(q) and suppose |C,| = <. If p.(q) < a <p, there exists a.s. an
a-open infinite cluster I,, and furthermore I, is a.s. a subgraph of C,, since
otherwise there would exist at least two infinite p-open clusters (an event
having probability 0, by Theorem 3.3). It follows that there exists a.s. a
p-open path 7 joining the origin to some vertex of I,. Such a path 7 has
finite length and each edge e in 7 satisfies {(e) > 1 — p. Therefore, B =
min{{(e): e € 7} satisfies B> 1 — p. If p’ satisfies p’ >aand1 - B <p’' <
P, then there exists a p’-open path joining the origin to some vertex of I, so
that |C,| = ». However, p' < p, implying that the event on the right-hand
side of (7.32) has probability zero, as required. O

PROOF OF NON-FELLER PROPERTY. Finally we show (as promised before
Lemma 7.5) that the processes Lg’t are not Feller. For simplicity we take
d =2 and b = 0. A similar argument is valid for d > 2 and /or b = 1. Take e
to be the edge with endpoints (0,0) and (1,0), and let f be the indicator
function of the event that the edge e is open. We shall show that the function
ULf is not continuous for sufficiently small positive values of s, where U, is
the transition semigroup associated with Lg’t. Let V be the set of vertices
x = (x4, x,) satisfying

either x; >[x,|+ 1 or —x;>|x,l,

and let Ey, be the set of edges having both endpoints in V. Note that e € Ey,.
Fix a positive integer n and let A be the box [ —n, n]% Let w°, 0! (€ Q) be
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the configurations given by
1, iffeE,nky,
w’(f) =10, iffeE\E,, whereb=0,1.
b, otherwise,

Note that »° and w! depend on n, and also that w® & D%e), but w® € D%e).
Taking »° and ' as initial configurations, we claim that this property
persists with strictly positive probability for a nonzero time interval, under
the evolution accordmg to the appropriate semlgroup U?l.

For b=0,1, let K}, be the process m,Z{,® for some {° satisfying
w® =7 (% the value of ¢? is otherwme immaterial. We write K} =
lim, _ ,a K A.¢» which limit exists by the usual monotonicity. We claim that
there exist ¢, n (> 0), not depending on the value of n, such that

(7.33) P(K)(e) =1,K2(e) =0) > s.
This implies that
P(K)(e) =1) - P(K{(e) =1) > &,

irrespective of the value of n, and therefore that the semigroup U is not
Feller. In order to prove (7.33), we use a percolation argument. Let n > 0. For
each edge f, we set X; = 0 if none of the processes A(f), B(f),C(f) have
fired during the time interval [0, ], and X, =1 otherwise. Since the sum of
the intensities of these three processes is ¢ + 1, we have that {X,: f € F} is a

family of independent Bernoulli variables with common parameter 1 —
exp(—(g + 1n). Choose 1 sufficiently small such that

1-exp(~(g + 1)m) <3,
noting that ; is less than the critical probability of bond percolation on the

square lattice (see [26]). Routine percolation arguments may now be used to
obtain that there exists ¢’ > 0 such that

P(K, , ¢ D°e), K{ ,€De)forallt €[0,1]IX, =0) > ¢,

for all A containing [ —2n,2n]% Suppose that A(e) and B(e) do not fire
during [0, n], but that C(e) does indeed fire once, with an associated value o
satisfying o < 1 — p. At this time T of firing, the edge e is removed from the
lower process K 1, but not from the upper process K, r, for all large A.
Therefore,

P(K} (e) =1,K? ,(e) =0)> ¢ forall A containing [ -2n,2n]?,
with £ = ¢’(1 — p)e 2"(q — Dnexp(—(q — 1n)}. Now take the limit as A —
79 to obtain (7.33). O
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